Skip to main content
Log in

Performance study of selective encryption in comparison to full encryption for still visual images

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Securing digital images is becoming an important concern in today’s information security due to the extensive use of secure images that are either transmitted over a network or stored on disks. Image encryption is the most effective way to fulfil confidentiality and protect the privacy of images. Nevertheless, owing to the large size and complex structure of digital images, the computational overhead and processing time needed to carry out full image encryption prove to be limiting factors that inhibit it of being used more heavily in real time. To solve this problem, many recent studies use the selective encryption approach to encrypt significant parts of images with a hope to reduce the encryption overhead. However, it is necessary to realistically evaluate its performance compared to full encryption. In this paper, we study the performance and efficiency of image segmentation methods used in the selective encryption approach, such as edges and face detection methods, in determining the most important parts of visual images. Experiments were performed to analyse the computational results obtained by selective image encryption compared to full image encryption using symmetric encryption algorithms. Experiment results have proven that the selective encryption approach based on edge and face detection can significantly reduce the time of encrypting still visual images as compared to full encryption. Thus, this approach can be considered a good alternative in the implementation of real-time applications that require adequate security levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amigó, J.M., Kocarev, L., Szczepanski, J., 2007. Theory and practice of chaotic cryptography. Phys. Lett. A, 366(3): 211–216. [doi:10.1016/j.physleta.2007.02.021]

    Article  MATH  Google Scholar 

  • Bhatnagar, G., Wu, Q.M., 2012. Selective image encryption based on pixels of interest and singular value decomposition. Dig. Signal Process., 22:648–663. [doi:10.1016/j.dsp.2012.02.005]

    Article  MathSciNet  Google Scholar 

  • Chen, T.S., Chang, C.C., Hwang, M.S., 1998. A virtual image cryptosystem based upon vector quantization. IEEE Trans. Image Process., 7(10):1485–1488. [doi:10.1109/83.718488]

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, H., Li, X., 2000. Partial encryption of compressed images and videos. IEEE Trans. Signal Process., 48(8): 2439–2451. [doi:10.1109/78.852023]

    Article  MathSciNet  Google Scholar 

  • Droogenbroeck, M.V., Benedett, R., 2002. Techniques for a selective encryption of uncompressed and compressed images. Proc. Advanced Concepts for Intelligent Vision Systems, p.90–97.

    Google Scholar 

  • El-Fishawy, N., Abu Zaid, O.M., 2007. Quality of encryption measurement of bitmap images with RC6, MRC6, and Rijndael block cipher algorithms. Int. J. Network Secur., 5(3):241–251.

    Google Scholar 

  • Flayh, N.A., Parveen, R., Ahson, S.I., 2009. Wavelet based partial image encryption. Proc. Int. Multimedia, Signal Processing and Communication Technologies, p.32–35. [doi:10.1109/MSPCT.2009.5164167]

    Google Scholar 

  • Khashan, O.A., Zin, A.M., 2013. An efficient adaptive of transparent spatial digital image encryption. Proc. 4th Int. Conf. on Electrical Engineering and Informatics, p.288–297. [doi:10.1016/j.protcy.2013.12.193]

    Google Scholar 

  • Krikor, L., Baba, S., Arif, T., et al., 2009. Image encryption using DCT and stream cipher. Eur. J. Sci. Res., 32(1): 48–58.

    Google Scholar 

  • Kulkarni, N.S., Raman, B., Gupta, I., 2009. Multimedia encryption: a brief overview. Recent Advances in Multimedia Signal Processing and Communications Studies in Computational Intelligence. In: Grgic, M., Delac, K., Ghanbari, M. (Eds.), Studies in Computational Intelligence, Springer Heidelberg, 231:417–449.

    Article  Google Scholar 

  • Li, C., Lo, K., 2011. Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process., 91(4):949–954. [doi:10.1016/j.sigpro.2010.09.014]

    Article  MATH  Google Scholar 

  • Li, S., Li, C., Chen, G., et al., 2008. A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. Image Commun., 23(3):212–223. [doi:10.1016/j.image.2008.01.003]

    Article  Google Scholar 

  • Lian, S., Chen, X., 2013. On the design of partial encryption scheme for multimedia content. Math. Comput. Model., 57(11–12):2613–2624. [doi:10.1016/j.mcm.2011.06.007]

    Article  Google Scholar 

  • Liu, H.J., Wang, X.Y., 2010. Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl., 59(10):3320–3327. [doi:10.1016/j.camwa.2010.03.017]

    Article  MATH  MathSciNet  Google Scholar 

  • Maini, R., Sohal, J.S., 2006. Performance evaluation of Prewitt edge detector for noisy images. Int. J. Graph. Vis. Image Process., 6(3):39–46.

    Google Scholar 

  • Martin, K., Lukac, R., Plataniotis, K., 2005. Efficient encryption of wavelet-based coded color images. Pattern Recogn., 38(7):1111–1115. [doi:10.1016/j.patcog.2005.01.002]

    Article  MATH  Google Scholar 

  • Norcen, R., Podesser, M., Pommer, A., et al., 2003. Confidential storage and transmission of medical image data. Comput. Biol. Med., 33(3):277–292. [doi:10.1016/S0010-4825(02)00094-X]

    Article  Google Scholar 

  • OpenCV, 2013. Open Source Computer Vision Library. Available from http://opencv.org/.

    Google Scholar 

  • Podesser, M., Schmidt, H.P., Uhl, A., 2002. Selective bitplane encryption for secure transmission of image data in mobile environments. Proc. 5th Nordic Signal Processing Symp., p.1034–1037.

    Google Scholar 

  • Prewitt, J.M.S., 1970. Object Enhancement and Extraction: Picture Processing and Psychopictorics. Academic Press Inc., USA, p.75–150.

    Google Scholar 

  • Puech, W., Bors, A.G., Rodrigues, J.M., 2013. Protection of colour images by selective encryption. Adv. Color Image Process. Anal., p.397–421. [doi:10.1007/978-1-4419-6190-7_12]

    Chapter  Google Scholar 

  • Shekhar, S., Srivastava, H., Dutta, M.K., 2012. An efficient adaptive encryption algorithm for digital images. Int. J. Comput. Electr. Eng., 4(3):380–383. [doi:10.7763/IJCEE.2012.V4.516]

    Article  Google Scholar 

  • Stutz, T., Uhl, A., 2006. Transparent image encryption using progressive JPEG. LNCS, 4176:286–298. [doi:10.1007/11836810_21]

    Google Scholar 

  • Subba Rao, Y.V., Mitra, A., Mahadeva Prasanna, S.R., 2006. A partial image encryption method with pseudo random sequences. LNCS, 4332:315–325. [doi:10.1007/11961635_22]

    Google Scholar 

  • Tolba, A.S., El-Baz, A.H., El-Harby, A.A., 2006. Face recognition: a literature review. Int. J. Signal Process., 2(2):88–103.

    Google Scholar 

  • Verma, O.P., Agarwal, R., Dafouti, D., et al., 2011. Performance analysis of data encryption algorithms. 3rd IEEE Int. Conf. on Electronics Computer Technology, p.399–403. [doi:10.1109/ICETECH.2011.5942029]

    Google Scholar 

  • Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.511–518. [doi:10.1109/CVPR.2001.990517]

    Google Scholar 

  • Zhang, D., Zhang, F., 2013. Chaotic encryption and decryption of JPEG image. Optik-Int. J. Light Electron Opt., 125(2): 717–720. [doi:10.1016/j.ijleo.2013.07.069]

    Article  Google Scholar 

  • Zhang, X., Wang, X., 2013. Chaos-based partial encryption of SPIHT coded color images. Signal Process., 93(9): 2422–2431. [doi:10.1016/j.sigpro.2013.03.017]

    Article  Google Scholar 

  • Zhang, Y., Xiao, D., Wen, W., et al., 2013a. Vulnerability to chosen-plaintext attack of a general optical encryption model with the architecture of scrambling-then-double random phase encoding. Opt. Lett., 38(21):4506–4509. [doi:10.1364/OL.38.004506]

    Article  Google Scholar 

  • Zhang, Y., Xiao, D., Wen, W., et al., 2013b. Edge-based lightweight image encryption using chaos-based reversible hidden transform and multiple-order discrete fractional cosine transform. Opt. Laser Technol., 54:1–6. [doi:10.1016/j.optlastec.2013.04.029]

    Article  Google Scholar 

  • Zhang, Y., Xiao, D., Liu, H., et al., 2013c. GLS coding based security solution to JPEG with the structure of aggregated compression and encryption. Commun. Nonl. Sci. Numer. Simul., 19(5):1366–1374. [doi:10.1016/j.cnsns.2013.09. 019]

    Article  Google Scholar 

  • Zhao, X.Y., Chen, G., Zhang, D., et al., 2004. Decryption of pure-position permutation algorithms. J. Zhejiang Univ. Sci., 5(7):803–809. [doi:10.1631/jzus.2004.0803]

    Article  Google Scholar 

  • Zhou, Y., Panetta, K., Agaian, S., 2009. A lossless encryption method for medical images using edge maps. 31st Annual Int. Conf. on IEEE Engineering in Medicine & Biology Society, p.3707–3710. [doi:10.1109/IEMBS.2009.5334799]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama A. Khashan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khashan, O.A., Zin, A.M. & Sundararajan, E.A. Performance study of selective encryption in comparison to full encryption for still visual images. J. Zhejiang Univ. - Sci. C 15, 435–444 (2014). https://doi.org/10.1631/jzus.C1300262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300262

Key words

CLC number

Navigation