Skip to main content
Log in

Probabilistic hypergraph based hash codes for social image search

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order representation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hyperedges. Experiments on Flickr image datasets verify the performance of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andoni, A., Indyk, P., 2006. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. 47th Annual IEEE Symp. on Foundations of Computer Science, p.459–468. [doi:10.1109/FOCS.2006.49]

    Google Scholar 

  • Arya, S., Mount, D.M., Netanyahu, N.S., et al., 1998. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. JACM, 45(6):891–923. [doi:10.1145/293347.293348]

    Article  MATH  MathSciNet  Google Scholar 

  • Bengio, Y., Delalleau, O., le Roux, N., et al., 2004. Learning eigenfunctions links spectral embedding and kernel PCA. Neur. Comput., 16(10):2197–2219. [doi:10.1162/0899766041732396]

    Article  MATH  Google Scholar 

  • Chua, T.S., Tang, J., Hong, R., et al., 2009. NUS-WIDE: a real-world web image database from National University of Singapore. Proc. ACM Int. Conf. on Image and Video Retrieval, p.48. [doi:10.1145/1646396.1646452]

    Google Scholar 

  • Gao, Y., Wang, M., Zha, Z.J., et al., 2013. Visual-textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process., 22(1):363–376. [doi:10.1109/TIP.2012.2202676]

    Article  MathSciNet  Google Scholar 

  • He, J., Li, M., Zhang, H.J., et al., 2004. Manifold-ranking based image retrieval. Proc. 12th Annual ACM Int. Conf. on Multimedia, p.9–16. [doi:10.1145/1027527.1027531]

    Chapter  Google Scholar 

  • He, J., Li, M., Zhang, H.J., et al., 2006. Generalized manifold-ranking-based image retrieval. IEEE Trans. Image Process., 15(10):3170–3177. [doi:10.1109/TIP.2006.877491]

    Article  Google Scholar 

  • Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507. [doi:10.1126/science.1127647]

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Y., Liu, Q., Zhang, S., et al., 2010. Image retrieval via probabilistic hypergraph ranking. IEEE Conf. on Computer Vision and Pattern Recognition, p.3376–3383. [doi:10.1109/CVPR.2010.5540012]

    Google Scholar 

  • Jiang, Y.G., Ngo, C.W., 2008. Bag-of-visual-words expansion using visual relatedness for video indexing. Proc. 31st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.769–770. [doi:10. 1145/1390334.1390495]

    Chapter  Google Scholar 

  • Li, P., Wang, M., Cheng, J., et al., 2013. Spectral hashing with semantically consistent graph for image indexing. IEEE Trans. Multimedia, 15(1):141–152. [doi:10.1109/TMM. 2012.2199970]

    Article  MathSciNet  Google Scholar 

  • Liu, H., le Pendu, P., Jin, R., et al., 2011. A hypergraph-based method for discovering semantically associated itemsets. IEEE 11th Int. Conf. on Data Mining, p.398–406. [doi:10.1109/ICDM.2011.12]

    Google Scholar 

  • Lowe, D.G., 2004. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis., 60(2):91–110. [doi:10.1023/B:VISI.0000029664.99615.94]

    Article  Google Scholar 

  • Salakhutdinov, R., Hinton, G.E., 2007. Learning a nonlinear embedding by preserving class neighborhood structure. Int. Conf. on Artificial Intelligence and Statistics, p.412–419.

    Google Scholar 

  • Shakhnarovich, G., Viola, P., Darrel, T., 2003. Fast pose estimation with parameter-sensitive hashing. Proc. 9th IEEE Int. Conf. on Computer Vision, p.750–757. [doi:10.1109/ICCV.2003.1238424]

    Chapter  Google Scholar 

  • Silpa-Anan, C., Hartley, R., 2008. Optimised KD-trees for fast image descriptor matching. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587638]

    Google Scholar 

  • Torralba, A., Fergus, R., Weiss, Y., 2008. Small codes and large image databases for recognition. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587633]

    Google Scholar 

  • Weiss, Y., Torralba, A., Fergus, R., 2008. Spectral hashing. 21st Advances in NIPS, p.1753–1760.

    Google Scholar 

  • Xia, S., Hancock, E.R., 2008. Clustering using class specific hyper graphs. Structural, Syntactic, and Statistical Pattern Recognition, p.318–328. [doi:10.1007/978-3-540-89689-0_36]

    Chapter  Google Scholar 

  • Yang, J., Jiang, Y.G., Hauptmann, A.G., et al., 2007. Evaluating bag-of-visual-words representations in scene classification. Proc. Int. Workshop on Multimedia Information Retrieval, p.197–206. [doi:10.1145/1290082. 1290111]

    Chapter  Google Scholar 

  • Yu, J., Tao, D., Wang, M., 2012. Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process., 21(7):3262–3272. [doi:10.1109/TIP.2012. 2190083]

    Article  MathSciNet  Google Scholar 

  • Zass, R., Shashua, A., 2008. Probabilistic graph and hyper-graph matching. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008. 4587500]

    Google Scholar 

  • Zhang, D., Wang, J., Cai, D., et al., 2010. Self-taught hashing for fast similarity search. Proc. 33rd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.18–25. [doi:10.1145/1835449.1835455]

    Google Scholar 

  • Zhou, D., Bousquet, O., Lal, T.N., et al., 2004. Learning with local and global consistency. 17th Advances in NIPS, p.321–328.

    Google Scholar 

  • Zhou, D., Huang, J., Schölkopf, B., 2006. Learning with hypergraphs: clustering, classification, and embedding. 19th Advances in NIPS, p.1601–1608.

    Google Scholar 

  • Zhuang, Y., Liu, Y., Wu, F., et al., 2011. Hypergraph spectral hashing for similarity search of social image. Proc. 19th ACM Int. Conf. on Multimedia, p.1457–1460. [doi:10.1145/2072298.2072039]

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xie.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2012CB316400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Yu, Hm. & Hu, R. Probabilistic hypergraph based hash codes for social image search. J. Zhejiang Univ. - Sci. C 15, 537–550 (2014). https://doi.org/10.1631/jzus.C1300268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300268

Key words

CLC number

Navigation