Skip to main content
Log in

A new maximum-likelihood phase estimation method for X-ray pulsar signals

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

X-ray pulsar navigation (XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood (ML) phase estimation method that directly utilizes the measured time of arrivals (TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, N., Golshan, A.R., 2008. Minimum uncertainties in position and velocity determination using X-ray photons from millisecond pulsars. Proc. Institute of Navigation, National Technical Meeting, p.110–118.

    Google Scholar 

  • Bar-Itzhack, I.Y., Oshman, Y., 1985. Attitude determination from vector observations: quaternion estimation. IEEE Trans. Aerosp. Electron. Syst., AES-21(1):128–136. [doi:10.1109/TAES.1985.310546]

    Article  Google Scholar 

  • Benedetto, F., Giunta, G., Lohan, E.S., et al., 2013. A fast unambiguous acquisition algorithm for BOC-modulated signals. IEEE Trans. Veh. Technol., 62(3):1350–1355. [doi:10.1109/TVT.2012.2228681]

    Article  Google Scholar 

  • Billing-Ross, J., Fritz, T., Pledger, D., 1992. Ultraviolet three axis attitude sensor. Annual AIAA/Utah State University Conf. on Small Satellites, p.1–5.

    Google Scholar 

  • Blackburn, J.K., Greene, E.A., Pence, W., 1993. FTOOLS: a FITS data processing and analysis software package. Bull. Am. Astron. Soc., 25:816.

    Google Scholar 

  • Chubei, M.S., Kovalchuk, L.V., Kholodova, S.I., et al., 2007. Star sensor for independent navigation in deep space. J. Opt. Technol., 74(2):107–114. [doi:10.1364/JOT.74.000 107]

    Article  Google Scholar 

  • Colonnese, S., Rinauro, S., Scarano, G., 2010. Generalized method of moments estimation of location parameters: application to blind phase acquisition. IEEE Trans. Signal Process., 58(9):4735–4749. [doi:10.1109/TSP.2010.2050316]

    Article  MathSciNet  Google Scholar 

  • Downs, G.S., 1974. Interplanetary Navigation Using Pulsating Radio Sources. N/4-34150. NASA Technical Reports.

    Google Scholar 

  • Emadzadeh, A.A., Speyer, J.L., 2010. On modeling and pulse phase estimation of X-ray pulsars. IEEE Trans. Signal Process., 58(9):4484–4495. [doi:10.1109/TSP.2010.2050479]

    Article  MathSciNet  Google Scholar 

  • Emadzadeh, A.A., Speyer, J.L., 2011. Relative navigation between two spacecraft using X-ray pulsars. IEEE Trans. Contr. Syst. Technol., 19(5):1021–1035. [doi:10.1109/TCST.2010.2068049]

    Article  Google Scholar 

  • Hanson, J., Sheikh, S., Graven, P., et al., 2008. Noise analysis for X-ray navigation systems. Position, Location and Navigation Symp., IEEE/ION, p.704–713. [doi:10.1109/PLANS.2008.4570028]

    Google Scholar 

  • Hobbs, G., Lyne, A., Kramer, M., 2006. Pulsar timing noise. Chin. J. Astron. Astrophys., 6(S2):169–175. [doi:10.1088/1009-9271/6/S2/31]

    Article  Google Scholar 

  • Kay, S.M., 1998. Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice Hall PTR.

    Google Scholar 

  • Kramer, M., 1994. Geometrical analysis of average pulsar profiles using multicomponent Gaussian fits ant several frequencies: II. individual results. Astron. Astrophys, 107:527–539.

    Google Scholar 

  • Li, J.X., Ke, X.Z., 2011. Maximum-likelihood TOA estimation of X-ray pulsar signals on the basis of Poison model. Chin. Astron. Astrophys., 35(1):19–28. [doi:10.1016/j.china stron.2011.01.003]

    Article  MATH  MathSciNet  Google Scholar 

  • Lyne, A.G., Smith, F.G., 1998. Pulsar Astronomy. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ma, J., 2005. A method of autonomous orbit determination for satellite using star sensor. Sci. China Ser. G, 48(3):268. [doi:10.1360/142004-23]

    Article  Google Scholar 

  • Manchester, R.N., Taylor, J.H., 1977. Pulsars. W.H. Freeman, San Francisco.

    Google Scholar 

  • Psiaki, M.L., 2011. Absolute orbit and gravity determination using relative position measurements between two satellites. J. Guid. Contr. Dynam., 34(5):1285–1297.

    Article  Google Scholar 

  • Ray, P.S., Wood, K.S., Phlips, B.F., 2006. Spacecraft navigation using X-ray pulsars. NRL Rev., p.95–102.

    Google Scholar 

  • Ray, P.S., Sheikh, S.I., Graven, P.H., et al., 2008. Deep space navigation using celestial X-ray sources. Proc. Institute of Navigation, National Technical Meeting, p.101–109.

    Google Scholar 

  • Ray, P.S., Kerr, M., Parent, D., et al., 2011. Precise gamma-ray timing and radio observations of 17 Fermi gamma-ray pulsars. Astrophys. J. Suppl. Ser., 194(2):17. [doi:10. 1088/0067-0049/194/2/17]

    Article  Google Scholar 

  • Rinauro, S., Colonnese, S., Scarano, G., 2013. Fast near-maximum likelihood phase estimation of X-ray pulsars. Signal Process., 93(1):326–331. [doi:10.1016/j.sigpro.2012.07.002]

    Article  Google Scholar 

  • Sala, J., Andreu, U., Xavier, V., 2004. Feasibility Study for a Spacecraft Navigation System Relying on Pulsar Timing Information. ARIADNA Study 03/4202. European Space Agency Advanced Concepts Team.

    Google Scholar 

  • Sheikh, S.I., 2005. The use of variable celestial X-ray sources for spacecraft navigation. University of Maryland, College Park, Maryland, United States. Available from http://adsabs.harvard.edu/abs/2005PhDT........30S.

    Google Scholar 

  • Sheikh, S.I., Pines, D.J., 2006. Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements. J. Inst. Navig., 53(3):149–166.

    Google Scholar 

  • Sheikh, S.I., Pines, D.J., Wood, K.S., et al., 2007. Navigational System and Method Utilizing Sources of Pulsed Celestial Radiation. Available from http://www.google.com/patents?id=31J_AAAAEBAJ.

    Google Scholar 

  • Xu, X.B., Wu, X.J., 2003. Mean pulse analysis and spectral character study of pulsar PSR B2111+46. Sci. China Ser. G, 46(1):104–112.

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Xu, L.P., 2011. An improved phase measurement method of integrated pulse profile for pulsar. Sci. China Technol. Sci., 54(9):2263–2270. [doi:10.1007/s11431-011-4524-8]

    Article  MATH  Google Scholar 

  • Zhang, H., Xu, L.P., Xie, Q., 2011. Modeling and Doppler measurement of X-ray pulsar. Sci. China Phys. Mech. Astron., 54(6):1068–1076. [doi:10.1007/s11433-011-43 38-5]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61172138), the Fundamental Research Funds for the Central Universities (Nos. K5051302015 and K5051302040), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2013JQ8040), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130203120004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, Lp., Shen, Yh. et al. A new maximum-likelihood phase estimation method for X-ray pulsar signals. J. Zhejiang Univ. - Sci. C 15, 458–469 (2014). https://doi.org/10.1631/jzus.C1300347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300347

Key words

CLC number

Navigation