Skip to main content
Log in

Performance improvement for applying network virtualization in fiber-wireless (FiWi) access networks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Fiber-wireless (FiWi) access networks, which are a combination of fiber networks and wireless networks, have the advantages of both networks, such as high bandwidth, high security, low cost, and flexible access. However, with the increasing need for bandwidth and types of service from users, FiWi networks are still relatively incapable and ossified. To alleviate bandwidth tension and facilitate new service deployment, we attempt to apply network virtualization in FiWi networks, in which the network’s control plane and data plane are separated from each other. Based on a previously proposed hierarchical model and service model for FiWi network virtualization, the process of service implementation is described. The performances of the FiWi access networks applying network virtualization are analyzed in detail, including bandwidth for links, throughput for nodes, and multipath flow transmission. Simulation results show that the FiWi network with virtualization is superior to that without.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balasubramaniam, S., Mineraud, J., Perry, P., et al., 2011. Coordinating allocation of resources for multiple virtual IPTV providers to maximize revenue. IEEE Trans. Broadcast., 57(4):826–839. [doi:10.1109/TBC.2011.2164309]

    Article  Google Scholar 

  • Belbekkouche, A., Hasan, M.M., Karmouch, A., 2012. Resource discovery and allocation in network virtualization. IEEE Commun. Surv. Tutor., 14(4):1114–1128. [doi:10.1109/SURV.2011.122811.00060]

    Article  Google Scholar 

  • Cardoso, F.D., Correia, L.M., Mannersalo, P., et al., 2012. Physical layer aware network architecture for the future Internet. IEEE Commun. Mag., 50(7):168–176. [doi:10.1109/MCOM.2012.6231294]

    Article  Google Scholar 

  • Chowdhury, M., Rahman, M.R., Boutaba, R., 2012. ViNEYard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Network., 20(1):206–219. [doi:10.1109/TNET.2011.2159308]

    Article  Google Scholar 

  • Chowdhury, N.M.M.K., Boutaba, R., 2009. Network virtualization: state of the art and research challenges. IEEE Commun. Mag., 47(7):20–26. [doi:10.1109/MCOM.2009.5183468]

    Article  Google Scholar 

  • Chowdhury, N.M.M.K., Boutaba, R., 2010. A survey of network virtualization. Comput. Networks, 54(5):862–876. [doi:10.1016/j.comnet.2009.10.017]

    Article  MATH  Google Scholar 

  • Dai, Q., Shou, G., Hu, Y., et al., 2013. A general model for hybrid fiber-wireless (FiWi) access network virtualization. IEEE Int. Conf. on Communications.

    Google Scholar 

  • Duan, Q., Yan, Y., Vasilakos, A.V., 2012. A survey on service-oriented network virtualization toward convergence of networking and cloud computing. IEEE Trans. Network Serv. Manag., 9(4):373–392. [doi:10.1109/TNSM.2012.113012.120310]

    Article  Google Scholar 

  • Feamster, N., Gao, L., Rexford, J., 2007. How to lease the Internet in your spare time. Comput. Commun. Rev., 37(1):61–64. [doi:10.1145/1198255.1198265]

    Article  Google Scholar 

  • Feng, T., Ruan, L., 2011. Design of a survivable hybrid wireless-optical broadband-access network. IEEE/OSA J. Opt. Commun. Network., 3(5):458–464. [doi:10.1364/JOCN.3.000458]

    Article  Google Scholar 

  • Houidi, I., Louati, W., Zeghlache, D., 2008. A distributed virtual network mapping algorithm. IEEE Int. Conf. on Communications, p.5634–5640. [doi:10.1109/ICC.2008.1056]

    Google Scholar 

  • Huang, J., Xu, C., Duan, Q., et al., 2012. Novel end-to-end quality of service provisioning algorithms for multimedia services in virtualization-based future Internet. IEEE Trans. Broadcast., 58(4):569–579. [doi:10.1109/TBC.2012.2198970]

    Article  Google Scholar 

  • Kakhbod, A., Teneketzis, D., 2012. An efficient game form for multi-rate multicast service provisioning. IEEE J. Sel. Areas Commun., 30(11):2093–2104. [doi:10.1109/JSAC.2012.121202]

    Article  Google Scholar 

  • Kakhbod, A., Teneketzis, D., 2013. Correction to “An efficient game form for multi-rate multicast service provisioning”. IEEE J. Sel. Areas Commun., 31(7):1355–1356. [doi:10.1109/JSAC.2013.130717]

    Article  Google Scholar 

  • Kazovsky, L., Wong, S.W., Ayhan, T., et al., 2012. Hybrid optical-wireless access networks. Proc. IEEE, 100(5):1197–1225. [doi:10.1109/JPROC.2012.2185769]

    Article  Google Scholar 

  • Khan, A., Zugenmaier, A., Jurca, D., et al., 2012. Network virtualization: a hypervisor for the Internet? IEEE Commun. Mag., 50(1):136–143. [doi:10.1109/MCOM.2012.6122544]

    Article  Google Scholar 

  • Kiese, M., Georgieva, E., Schupke, D., et al., 2009. Availability evaluation of hybrid wireless optical broadband access networks. IEEE Int. Conf. on Communications, p.1–6. [doi:10.1109/ICC.2009.5198771]

    Google Scholar 

  • Kokku, R., Mahindra, R., Zhang, H.H., et al., 2012. NVS: a substrate for virtualizing wireless resources in cellular networks. IEEE/ACM Trans. Network., 20(5):1333–1346. [doi:10.1109/TNET.2011.2179063]

    Article  Google Scholar 

  • Kuri, T., Harai, H., Wada, N., et al., 2012. Adaptable access system: pursuit of ideal future access system architecture. IEEE Network, 26(2):42–48. [doi:10.1109/MNET.2012.6172274]

    Article  Google Scholar 

  • Leivadeas, A., Papagianni, C., Papavassiliou, S., 2012. Socioaware virtual network embedding. IEEE Network, 26(5):35–43. [doi:10.1109/MNET.2012.6308073]

    Article  Google Scholar 

  • Li, P., Fang, Y., 2012. On the throughput capacity of heterogeneous wireless networks. IEEE Trans. Mob. Comput., 11(12):2073–2086. [doi:10.1109/TMC.2011.239]

    Article  Google Scholar 

  • Liu, B., Tian, H., 2013. A bankruptcy game-based resource allocation approach among virtual mobile operators. IEEE Commun. Lett., 17(7):1420–1423. [doi:10.1109/LCOMM.2013.052013.130959]

    Article  Google Scholar 

  • Luo, J., Sun, Y., Wang, Z., et al., 2012. Research and analysis of three transmission schemes in RoF system. Opt. Commun. Technol., 36(7):50–53 (in Chinese).

    Google Scholar 

  • Lv, P., Wang, X., Xu, M., 2012. Virtual access network embedding in wireless mesh networks. Ad Hoc Networks, 10(7):1362–1378. [doi:10.1016/j.adhoc.2012.03.016]

    Article  Google Scholar 

  • Matsubara, D., Egawa, T., Nishinaga, N., et al., 2013. Toward future networks: a viewpoint from ITU-T. IEEE Commun. Mag., 51(3):112–118. [doi:10.1109/MCOM.2013.6476874]

    Article  Google Scholar 

  • Michelle, M., 2013. SDN vs. Network Virtualization: Q&A with V Mware’s Martin Casado. Available from http://searchsdn.techtarget.com/news/2240183487/SDN-vs-network-virtualization-QA-with-VMwares-Martin-Casado

    Google Scholar 

  • Pacifici, V., Dan, G., 2012. Convergence in playerspecific graphical resource allocation games. IEEE J. Sel. Areas Commun., 30(11):2190–2199. [doi:10.1109/JSAC.2012.121211]

    Article  Google Scholar 

  • Pages, A., Perello, J., Spadaro, S., et al., 2012. Strategies for virtual optical network allocation. IEEE Commun. Lett., 16(2):268–271. [doi:10.1109/LCOMM.2011.120211.111900]

    Article  Google Scholar 

  • Papagianni, C., Leivadeas, A., Papavassiliou, S., et al., 2013. On the optimal allocation of virtual resources in cloud computing networks. IEEE Trans. Comput., 62(6):1060–1071. [doi:10.1109/TC.2013.31]

    Article  MathSciNet  Google Scholar 

  • Prabhavat, S., Nishiyama, H., Ansari, N., et al., 2012. On load distribution over multipath networks. IEEE Commun. Surv. Tutor., 14(3):662–680. [doi:10.1109/SURV.2011.082511.00013]

    Google Scholar 

  • Rubio-Loyola, J., Galis, A., Astorga, A., et al., 2011. Scalable service deployment on software-defined networks. IEEE Commun. Mag., 49(12):84–93. [doi:10.1109/MCOM.2011.6094010]

    Article  Google Scholar 

  • Sarkar, S., Yen, H.H., Dixit, S., et al., 2009. Hybrid wireless-optical broadband access network (WOBAN): network planning using Lagrangean relaxation. IEEE/ACM Trans. Network., 17(4):1094–1105. [doi:10.1109/TNET.2008.2008692]

    Article  Google Scholar 

  • Shankar, P.M., 2011. Introduction to Wireless Systems. John Wiley & Sons, USA.

    Google Scholar 

  • Sharma, S., Teneketzis, D., 2012. Local public good provisioning in networks: a nash implementation mechanism. IEEE J. Sel. Areas Commun., 30(11):2105–2116. [doi:10.1109/JSAC.2012.121203]

    Article  Google Scholar 

  • Tang, W.Y., Jain, R., 2012. Hierarchical auction mechanisms for network resource allocation. IEEE J. Sel. Areas Commun., 30(11):2117–2125. [doi:10.1109/JSAC.2012.121204]

    Article  Google Scholar 

  • Wang, A., Iyer, M., Dutta, R., et al., 2013. Network virtualization: technologies, perspectives, and frontiers. J. Lightw. Technol., 31(4):523–537. [doi:10.1109/JLT.2012.2213796]

    Article  Google Scholar 

  • Wang, Y., Jin, Y., Guo, W., et al., 2011. Virtualized optical network services across multiple domains for grid applications. IEEE Commun. Mag., 49(5):92–101. [doi:10.1109/MCOM.2011.5762804]

    Article  Google Scholar 

  • Wosinska, L., Chen, J.J., 2007. Reliability performance of passive optical networks. 9th Int. Conf. on Transparent Optical Networks, p.121–124. [doi:10.1109/ICTON.2007.4296261]

    Google Scholar 

  • Yu, M., Yi, Y., Rexford, J., et al., 2008. Rethinking virtual network embedding: substrate support for path splitting and migration. Comput. Commun. Rev., 38(2):17–29. [doi:10.1145/1355734.1355737]

    Article  Google Scholar 

  • Zhang, L., Shou, G., Hu, Y., et al., 2013. Deployment of intrusion prevention system based on software defined networking. 15th IEEE Int. Conf. on Communication Technology, p.26–31. [doi:10.1109/ICCT.2013.6820345]

    Google Scholar 

  • Zhou, Y., Li, Y., Sun, G., et al., 2010. Game theory based bandwidth allocation scheme for network virtualization. IEEE Global Telecommunications Conf., p.1–5. [doi:10.1109/GLOCOM.2010.5684331]

    Google Scholar 

  • Zhou, Y., Yang, X., Li, Y., et al., 2013. Incremental re-embedding scheme for evolving virtual network requests. IEEE Commun. Lett., 17(5):1016–1019. [doi:10.1109/LCOMM.2013.031913.122883]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-long Dai.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61240040 and 61471053)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Ql., Shou, Gc., Hu, Yh. et al. Performance improvement for applying network virtualization in fiber-wireless (FiWi) access networks. J. Zhejiang Univ. - Sci. C 15, 1058–1070 (2014). https://doi.org/10.1631/jzus.C1400044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400044

Key words

CLC number

Navigation