Skip to main content
Log in

Visual salience guided feature-aware shape simplification

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In the area of 3D digital engineering and 3D digital geometry processing, shape simplification is an important task to reduce their requirement of large memory and high time complexity. By incorporating the content-aware visual salience measure of a polygonal mesh into simplification operation, a novel feature-aware shape simplification approach is presented in this paper. Owing to the robust extraction of relief heights on 3D highly detailed meshes, our visual salience measure is defined by a center-surround operator on Gaussian-weighted relief heights in a scale-dependent manner. Guided by our visual salience map, the feature-aware shape simplification algorithm can be performed by weighting the high-dimensional feature space quadric error metric of vertex pair contractions with the weight map derived from our visual salience map. The weighted quadric error metric is calculated in a six-dimensional feature space by combining the position and normal information of mesh vertices. Experimental results demonstrate that our visual salience guided shape simplification scheme can adaptively and effectively re-sample the underlying models in a feature-aware manner, which can account for the visually salient features of the complex shapes and thus yield better visual fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Botsch, M., Pauly, M., Kobbelt, L., et al., 2007. Geometric modeling based on polygonal meshes. ACM SIGGRAPH, Course Notes, Article 1. [doi:10.1145/1281500.1281640]

    Google Scholar 

  • Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: measuring error on simplified surfaces. Comput. Graph. Forum, 17(2):167–174. [doi:10.1111/1467-8659.00236]

    Article  Google Scholar 

  • Cohen, J., Varshney, A., Manocha, D., et al., 1996. Simplification envelopes. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.119–128. [doi:10.1145/237170.237220]

    Google Scholar 

  • Corsini, M., Larabi, M.C., Lavoué, G., et al., 2013. Perceptual metrics for static and dynamic triangle meshes. Comput. Graph. Forum, 32(1):101–125. [doi:10.1111/cgf.12001]

    Article  Google Scholar 

  • Fleming, R.W., Singh, M., 2009. Visual perception of 3D shape. ACM SIGGRAPH, Course Notes, Article 24. [doi:10.1145/1667239.1667263]

    Google Scholar 

  • Garland, M., Heckbert, P.S., 1997. Surface simplification using quadric error metrics. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.209–216. [doi:10.1145/258734.258849]

    Google Scholar 

  • Garland, M., Heckbert, P.S., 1998. Simplifying surfaces with color and texture using quadric error metrics. Proc. IEEE Visualization, p.263–269.

    Google Scholar 

  • Hoppe, H., 1996. Progressive meshes. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.99–108. [doi:10.1145/237170.237216]

    Google Scholar 

  • Hoppe, H., 1999. New quadric metric for simplifying meshes with appearance attributes. Proc. IEEE Visualization, p.59–66. [doi:10.1109/VISUAL.1999.809869]

    Google Scholar 

  • Hoppe, H., DeRose, T., Duchamp, T., et al., 1993. Mesh optimization. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.19–26. [doi:10.1145/166117.166119]

    Google Scholar 

  • Howlett, S., Hamill, J., O’Sullivan, C., 2005. Predicting and evaluating saliency for simplified polygonal models. ACM Trans. Appl. Percept., 2(3):286–308. [doi:10.1145/1077399.1077406]

    Article  Google Scholar 

  • Itti, L., Koch, C., Niebur, E., 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell., 20(11):1254–1259. [doi:10.1109/34. 730558]

    Article  Google Scholar 

  • Lee, C.H., Varshney, A., Jacobs, D.W., 2005. Mesh saliency. ACM Trans. Graph., 24(3):659–666. [doi:10.1145/1073 204.1073244]

    Article  Google Scholar 

  • Liu, Y., Liu, M., Kihara, D., et al., 2007. Salient critical points for meshes. Proc. ACM Symp. on Solid and Physical Modeling, p.277–282. [doi:10.1145/1236246.1236285]

    Google Scholar 

  • Luebke, D., 2001. A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl., 21(1): 24–35. [doi:10.1109/38.920624]

    Article  Google Scholar 

  • Luebke, D., Hallen, B., 2001. Perceptually driven simplification for interactive rendering. Proc. 12th Eurographics Workshop on Rendering, p.223–234. [doi:10.2312/EGWR/EGWR01/223-234]

    Google Scholar 

  • Luebke, D., Reddy, M., Cohen, J.D., et al., 2003. Level of detail for 3D graphics. Morgan Kaufman Publishers, San Francisco, CA, USA.

    Google Scholar 

  • Miao, Y., Bösch, J., Pajarola, R., et al., 2012a. Feature sensitive re-sampling of point set surfaces with Gaussian spheres. Sci. China Inform. Sci., 55(9):2075–2089. [doi:10. 1007/s11432-012-4637-0]

    Article  MATH  Google Scholar 

  • Miao, Y., Feng, J., Wang, J., et al., 2012b. A multi-channel salience based detail exaggeration technique for 3D relief surfaces. J. Comput. Sci. Technol., 27(6):1100–1109. [doi:10.1007/s11390-012-1288-y]

    Article  Google Scholar 

  • Ohtake, Y., Belyaev, A., Seidel, H.P., 2002. Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. Proc. Vision, Modeling and Visualization, p.203–210.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al., 1992. Numerical Recipes in C: the Art of Scientific Computing (2nd Ed.). Cambridge University Press, New York.

    Google Scholar 

  • Qu, L., Meyer, G.W., 2008. Perceptually guided polygon reduction. IEEE Trans. Visual. Comput. Graph., 14(5): 1015–1029. [doi:10.1109/TVCG.2008.51]

    Article  Google Scholar 

  • Shilane, P., Funkhouser, T., 2007. Distinctive regions of 3D surfaces. ACM Trans. Graph., 26(2):7:1–7:15. [doi:10.1145/1243980.1243981]

    Article  Google Scholar 

  • Todd, J.T., 2004. The visual perception of 3D shape. Trends Cogn. Sci., 8(3):115–121. [doi:10.1016/j.tics.2004.01. 006]

    Article  Google Scholar 

  • van Kaick, M., Pedrini, H., 2006. A comparative evaluation of metrics for fast mesh simplification. Comput. Graph. Forum, 25(2):197–210. [doi:10.1111/j.1467-8659.2006.00935.x]

    Article  Google Scholar 

  • Wei, J., Lou, Y., 2010. Feature preserving mesh simplification using feature sensitive metric. J. Comput. Sci. Technol., 25(3):595–605. [doi:10.1007/s11390-010-9348-7]

    Article  MathSciNet  Google Scholar 

  • Williams, N., Luebke, D., Cohen, J.D., et al., 2003. Perceptually guided simplification of lit, textured meshes. Proc. Symp. on Interactive 3D Graphics, p.113–121. [doi:10. 1145/641480.641503]

    Google Scholar 

  • Wu, Y., He, Y., Cai, H., 2004. QEM-based mesh simplification with global geometry features preserved. Proc. 2nd Int. Conf. on Computer Graphics and Interactive Techniques in Australasia and South East Asia, p.50–57. [doi:10.1145/988834.988843]

    Google Scholar 

  • Xiao, C., Fu, H., Tai, C.L., 2009. Hierarchical aggregation for efficient shape extraction. Vis. Comput., 25(3):267–278. [doi:10.1007/s00371-008-0226-z]

    Article  Google Scholar 

  • Xing, L.P., Hui, K.C., 2012. A visual and geometry-based hybrid approach for surface simplification. Comput.-Aid. Des. Appl., 9(2):167–176. [doi:10.3722/cadaps.2012.167-176]

    Google Scholar 

  • Zatzarinni, R., Tal, A., Shamir, A., 2009. Relief analysis and extraction. ACM Trans. Graph., 28(5):136:1–136:7. [doi:10.1145/1618452.1618482]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-wei Miao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61272309) and the Key Laboratory of Visual Media Intelligent Process Technology of Zhejiang Province, China (No. 2011E10003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Yw., Hu, Fx., Chen, My. et al. Visual salience guided feature-aware shape simplification. J. Zhejiang Univ. - Sci. C 15, 744–753 (2014). https://doi.org/10.1631/jzus.C1400097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400097

Key words

CLC number

Navigation