Skip to main content
Log in

Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Self-similarity or scale-invariance is a fascinating characteristic found in various signals including electroencephalogram (EEG) signals. A common measure used for characterizing self-similarity or scale-invariance is the spectral exponent. In this study, a computational method for estimating the spectral exponent based on wavelet transform was examined. A series of Daubechies wavelet bases with various numbers of vanishing moments were applied to analyze the self-similar characteristics of intracranial EEG data corresponding to different pathological states of the brain, i.e., ictal and interictal states, in patients with epilepsy. The computational results show that the spectral exponents of intracranial EEG signals obtained during epileptic seizure activity tend to be higher than those obtained during non-seizure periods. This suggests that the intracranial EEG signals obtained during epileptic seizure activity tend to be more self-similar than those obtained during non-seizure periods. The computational results obtained using the wavelet-based approach were validated by comparison with results obtained using the power spectrum method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abry, P., Goncalves, P., Flandrin, P., 1993. Wavelet-based spectral analysis of 1/f processes. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.237–240. [doi:10.1109/ICASSP.1993.319479]

    Chapter  Google Scholar 

  • Andrzejak, R.G., Lehnertz, K., Mormann, F., et al., 2001. Indications of nonlinear deterministic and finitedimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E, 64:061907.1–061907.8. [doi:10.1103/PhysRevE.64.061907]

    Article  Google Scholar 

  • Goldberger, A.L., 2006. Complex systems. Proc. Am. Thorac. Soc., 3:467–471. [doi:10.1513/pats.200603-028MS]

    Article  Google Scholar 

  • Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., et al., 2002. Fractal dynamics in physiology: alterations with disease and aging. PNAS, 99(suppl 1):2466–2472. [doi:10.1073/pnas.012579499]

    Article  Google Scholar 

  • Janjarasjitt, S., 2014. Computational validation of fractal characterization by using the wavelet-based fractal analysis. J. Korean Phys. Soc., 64(6):780–785. [doi:10.3938/jkps.64.780]

    Article  Google Scholar 

  • Janjarasjitt, S., Loparo, K.A., 2009. Wavelet-based fractal analysis of the epileptic EEG signal. Int. Symp. on Intelligent Signal Processing and Communication Systems, p.127–130. [doi:10.1109/ISPACS.2009.5383886]

    Google Scholar 

  • Janjarasjitt, S., Loparo, K.A., 2010. Wavelet-based fractal analysis of multi-channel epileptic ECoG. IEEE Region 10 Conf. TENCON, p.373–378. [doi:10.1109/TENCON.2010.5686662]

    Google Scholar 

  • Janjarasjitt, S., Loparo, K.A., 2013. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG. J. Korean Phys. Soc., 63(8):1659–1665. [doi:10.3938/jkps.63.1659]

    Article  Google Scholar 

  • Janjarasjitt, S., Loparo, K.A., 2014a. Examination of scaleinvariant characteristics of epileptic electroencephalograms using wavelet-based analysis. Comput. Electr. Eng., 40(5):1766–1773. [doi:10.1016/j.compeleceng.2014.04.005]

    Article  Google Scholar 

  • Janjarasjitt, S., Loparo, K.A., 2014b. Scale-invariant behavior of epileptic ECoG. J. Med. Biol. Eng., in press. [doi:10.5405/jmbe.1433]

    Google Scholar 

  • Joshi, V., Pachori, R.B., Vijesh, A., 2014. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Contr., 9:1–5. [doi:10.1016/j.bspc.2013.08.006]

    Article  Google Scholar 

  • Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., et al., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A, 316(1-4):87–114. [doi:10.1016/S0378-4371(02)01383-3]

    Article  MATH  Google Scholar 

  • Lopes, R., Betrouni, N., 2009. Fractal and multifractal analysis: a review. Med. Image Anal., 13(4):634–649. [doi:10.1016/j.media.2009.05.003]

    Article  Google Scholar 

  • Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco, USA.

    MATH  Google Scholar 

  • Mandelbrot, B.B., van Ness, J.W., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10(4):422–437. [doi:10.1137/1010093]

    Article  MathSciNet  MATH  Google Scholar 

  • Pachori, R.B., 2008. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process., 2008:293056.1–293056.5. [doi:10.1155/2008/293056]

    Google Scholar 

  • Pachori, R.B., Patidar, S., 2014. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Method. Progr. Biomed., 113(2):494–502. [doi:10.1016/j.cmpb.2013.11.014]

    Article  Google Scholar 

  • Timashev, S.F., Polyakov, Y.S., 2007. Review of flicker noise spectroscopy in electrochemistry. Fluct. Noise Lett., 7(2):R15–R47. [doi:10.1142/S0219477507003829]

    Article  Google Scholar 

  • Timashev, S.F., Polyakov, Y.S., Yulmetyev, R.M., et al., 2009. Analysis of biomedical signals by flicker-noise spectroscopy: identification of photosensitive epilepsy using magnetoencephalograms. Laser Phys., 19(4):836–854. [doi:10.1134/S1054660X09040434]

    Article  Google Scholar 

  • Timashev, S.F., Polyakov, Y.S., Misurkin, P.I., et al., 2010. Anomalous diffusion as a stochastic component in the dynamics of complex processes. Phys. Rev. E, 81:041128.1–041128.17. [doi:10.1103/PhysRevE.81.041128]

    Article  Google Scholar 

  • Timashev, S.F., Panischev, O.Y., Polyakov, Y.S., et al., 2012. Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia. Phys. A, 391(4):1179–1194. [doi:10.1016/j.physa.2011.09.032]

    Article  Google Scholar 

  • Watters, P.A., 1998. Fractal Structure in the Electroencephalogram. Available from http://www.complexity.org.au/ci/vol05/watters/watters.html

    Google Scholar 

  • Wornell, G.W., 1991. Synthesis, Analysis, and Processing of Fractal Signals. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA.

    Google Scholar 

  • Wornell, G.W., 1993. Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE, 81(10):1428–1450. [doi:10.1109/5.241506]

    Article  Google Scholar 

  • Wornell, G.W., 1995. Signal Processing with Fractals: a Wavelet-Based Approach. Prentice Hall, New Jersey, USA.

    Google Scholar 

  • Wornell, G.W., Oppenheim, A.V., 1992. Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process., 40(3):611–623. [doi:10.1109/78.120804]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparerk Janjarasjitt.

Additional information

ORCID: Suparerk JANJARASJITT, http://orcid.org/0000-0002-0252-8795

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjarasjitt, S. Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data. J. Zhejiang Univ. - Sci. C 15, 1147–1153 (2014). https://doi.org/10.1631/jzus.C1400126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400126

Key words

CLC number

Navigation