Skip to main content
Log in

Advances in the control of mechatronic suspension systems

  • Review
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The suspension system is a key element in motor vehicles. Advancements in electronics and microprocessor technology have led to the realization of mechatronic suspensions. Since its introduction in some production motorcars in the 1980s, it has remained an area which sees active research and development, and this will likely continue for many years to come. With the aim of identifying current trends and future focus areas, this paper presents a review on the state-of-the-art of mechatronic suspensions. First, some commonly used classifications of mechatronic suspensions are presented. This is followed by a discussion on some of the actuating mechanisms used to provide control action. A survey is then reported on the many types of control approaches, including look-ahead preview, predictive, fuzzy logic, proportional-integral-derivative (PID), optimal, robust, adaptive, robust adaptive, and switching control. In conclusion, hydraulic actuators are most commonly used, but they impose high power requirements, limiting practical realizations of active suspensions. Electromagnetic actuators are seen to hold the promise of lower power requirements, and rigorous research and development should be conducted to make them commercially usable. Current focus on control methods that are robust to suspension parameter variations also seems to produce limited performance improvements, and future control approaches should be adaptive to the changeable driving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla, M.O., Al Shabatat, N., Al Qaisi, M., 2008. Linear matrix inequality based control of vehicle active suspension system. Veh. Syst. Dynam., 47(1):121–134.

    Article  Google Scholar 

  • Ab Talib, M.H., Mat Darns, I.Z., 2013. Self-tuning PID controller for active suspension system with hydraulic actuator. IEEE Symp. on Computers & Informatics, p.86-91. [doi:10.1109/ISCI.2013.6612381]

  • Akbari, A., Lohmann, B., 2010. Multi-objective H /GH 2 preview control of active vehicle suspensions. Veh. Syst. Dynam., 48(12):1475–1494. [doi:10.1080/00423110903509327]

    Article  Google Scholar 

  • Alleyne, A., Hedrick, J.K., 1995. Nonlinear adaptive control of active suspensions. IEEE Trans. Contr. Syst. Technol., 3(1):94–101. [doi:10.1109/87.370714]

    Article  Google Scholar 

  • Altet, O., Moreau, X., Oustaloup, A., et al., 2003. The hydractive CRONE suspension: Operation principle and stability study. Proc. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.677–683.

    Google Scholar 

  • Appleyard, M., Wellstead, P.E., 1995. Active suspension: some background. IEE Proc.-Contr. Theory Appl., 142(2):123–128. [doi:10.1049/ip-cta:19951735]

    Article  Google Scholar 

  • Becker, M., Jaker, K.P., Fruhauf, F., et al., 1996. Development of an active suspension system for a Mercedes-Benz coach (o404). Proc. IEEE Int. Symp. on Computer-Aided Control System Design, p.146–151.

    Google Scholar 

  • BOSE, 2010. Resolving the Conflict Between Comfort and Control. Available from http://www.boseindia.com/the-bose-suspension-system/

    Google Scholar 

  • Chang, J.C., 2007. Analysis of series type and parallel type active suspension systems. Proc. Ta Hwa Institute of Technology Int. Conf., p.177–182.

    Google Scholar 

  • Chang, Y.C., Kuo, L.W., Wu, J.L., 2010. Reliable multi-objective decentralized controller design. Int. Conf. on System Science and Engineering, p.227–232. [doi:10.1109/ICSSE.2010.5551749]

    Google Scholar 

  • Changizi, N., Rouhani, M., 2011. Comparing PID and fuzzy logic control a quarter car suspension system. J. Math. Comput. Sci., 2(3):559–564.

    Google Scholar 

  • Chantranuwathana, S., Huei, P., 1999. Adaptive robust force control for vehicle active suspension. Proc. IEEE Int. Conf. on Control Applications, p.442–447.

    Google Scholar 

  • Chung, S., Shin, H., 2004. High-voltage power supply for semi-active suspension system with ER-fluid damper. IEEE Trans. Veh. Technol., 53(1):206–214. [doi:10.1109/TVT.2003.819811]

    Article  MathSciNet  Google Scholar 

  • Codeca, F., Savaresi, S.M., Spelta, C., et al., 2008. Identification of an electro-hydraulic controllable shock absorber using black-block non-linear models. Proc. IEEE Int. Conf. on Control Applications, p.462–467.

    Google Scholar 

  • Corriga, G., Sanna, S., Usai, G., 1991. An optimal tandem active-passive suspension system for road vehicles with minimum power consumption. IEEE Trans. Ind. Electron., 38(3):210–216. [doi:10.1109/41.87589]

    Article  Google Scholar 

  • Crews, J.H., Mattson, M.G., Buckner, G.D., 2011. Multiobjective control optimization for semi-active vehicle suspensions. J. Sound Vibr., 330(23):5502–5516. [doi:10.1016/j.jsv.2011.05.036]

    Article  Google Scholar 

  • Delphi, 2005. Delphi Magneride. Available from http://www.motor-talk.de/forum/aktion/attachment.html?attachmentid=488981 [Accessed on May 22, 2011].

    Google Scholar 

  • Efatpenah, K., Beno, J.H., Nichols, S.P., 2000. Energy requirements of a passive and an electromechanical active suspension system. Veh. Syst. Dynam., 34(6):437–458. [doi:10.1076/vesd.34.6.437.2050]

    Article  Google Scholar 

  • Elmadany, M.M., Qarmoush, A.O., 2011. Dynamic analysis of a slow-active suspension system based on a full car model. J. Vibr. Contr., 17(1):39–53. [doi:10.1177/1077546309352828]

    Article  MATH  Google Scholar 

  • Fialho, I.J., Balas, G.J., 2000. Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis. Veh. Syst. Dynam., 33(5):351–370. [doi:10.1076/0042-3114(200005)33:5;1-Q;FT351]

    Article  Google Scholar 

  • Fialho, I.J., Balas, G.J., 2002. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans. Contr. Syst. Technol., 10(1):43–54. [doi:10.1109/87.974337]

    Article  Google Scholar 

  • Fijalkowski, B.T., 2011. Automotive Mechatronics: Operational and Practical. Springer, London.

    Book  Google Scholar 

  • Fischer, D., Isermann, R., 2004. Mechatronic semi-active and active vehicle suspensions. Contr. Eng. Pract., 12(11):1353–1367. [doi:10.1016/j.conengprac.2003.08.003]

    Article  Google Scholar 

  • Gao, G.S., Yang, S.P., 2006. Semi-active control performance of railway vehicle suspension featuring magnetorheological dampers. Proc. 1st IEEE Conf. on Industrial Electronics and Applications, p.1–5.

    Google Scholar 

  • Gao, H., Lam, J., Wang, C., 2006. Multi-objective control of vehicle active suspension systems via loaddependent controllers. J. Sound Vibr., 290(3–5):654–675. [doi:10.1016/j.jsv.2005.04.007]

    Article  Google Scholar 

  • Gavriloski, V., Danev, D., Angushev, K., 2007. Mechatronic approach in vehicle suspension system design. World Congr., 12:45–58.

    Google Scholar 

  • Genger, C., 2009. Active and Semi-active Suspension Control for Specific Point Isolation of Vehicles. MS Thesis, University of California, Davis, USA.

    Google Scholar 

  • Giorgetti, N., Bemporad, A., Tseng, H.E., et al., 2005. Hybrid model predictive control application towards optimal semi-active suspension. Proc. IEEE Int. Symp. on Industrial Electronics, p.391–398.

    Google Scholar 

  • Graves, K.E., Iovenitti, P.G., Toncich, D., 2000. Electromagnetic regenerative damping in vehicle suspension systems. Int. J. Veh. Des., 24(2/3):182–197. [doi:10.1504/IJVD.2000.005181]

    Article  Google Scholar 

  • Guglielmino, E., Sireteanu, T., Stammers, C.W., et al., 2010. Semi-active Suspension Control: Improved Vehicle Ride and Road Friendliness. Springer, London.

    Google Scholar 

  • Gysen, B.L.J., Janssen, J.L.G., Paulides, J.J.H., et al., 2009. Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Trans. Ind. Appl., 45(5):1589–1597. [doi:10.1109/TIA.2009.2027097]

    Article  Google Scholar 

  • Gysen, B.L.J., Paulides, J.J.H., Janssen, J.L.G., et al., 2010. Active electromagnetic suspension system for improved vehicle dynamics. IEEE Trans. Veh. Technol., 59(3):1156–1163. [doi:10.1109/TVT.2009.2038706]

    Article  Google Scholar 

  • Hać, A., 1987. Adaptive control of vehicle suspension. Veh. Syst. Dynam., 16(2):57–74. [doi:10.1080/00423118708968870]

    Article  Google Scholar 

  • Heiring, B., Ersoy, M., 2011. Chassis Handbook: Fundamental, Driving Dynamics, Mechatronics, Perspectives. Springer, p.590.

    Google Scholar 

  • Hrovat, D., 1997. Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10):1781–1817. [doi:10.1016/S0005-1098(97)00101-5]

    Article  MathSciNet  MATH  Google Scholar 

  • Isermann, R., 2006. Automotive mechatronic systems-general developments and examples. Automatisierungstechnik, 54(9):419–429.

    Article  Google Scholar 

  • Jamshidi, F., Shaabany, A., 2011. Robust control of an active suspension system using H 2 & H control methods. J. Am. Sci., 7(5):1–5.

    Google Scholar 

  • Jonasson, M., Roos, F., 2008. Design and evaluation of an active electromechanical wheel suspension system. Mechatronics, 18(4):218–230. [doi:10.1016/j.mecha tronics.2007.11.003]

    Article  Google Scholar 

  • Jones, W.D., 2005. Easy ride: Bose Corp. uses speaker technology to give cars adaptive suspension. IEEE Spectrum, 42(5):12–14.

    Article  Google Scholar 

  • Kaleemullah, M., Faris, W.F., Hasbullah, F., 2011. Design of robust H , fuzzy and LQR controller for active suspension of a quarter car model. 4th Int. Conf. on Mechatronics, p.1–6.

    Google Scholar 

  • Karnopp, D., 1983. Active damping in road vehicle suspension systems. Veh. Syst. Dynam., 12(6):291–311. [doi:10.1080/00423118308968758]

    Article  Google Scholar 

  • Karnopp, D., 1986. Theoretical limitations in active vehicle suspensions. Veh. Syst. Dynam., 15(1):41–54. [doi:10.1080/00423118608968839]

    Article  Google Scholar 

  • Karnopp, D., Margolis, D., 1984. Adaptive suspension concepts for road vehicles. Veh. Syst. Dynam., 13(3):145–160. [doi:10.1080/00423118408968772]

    Article  Google Scholar 

  • Karnopp, D.C., Crosby, M.J., Harwood, R.A., 1974. Vibration control using semiactive force generators. ASME J. Eng. Ind., 96(2):619–626. [doi:10.1115/1.3438373]

    Article  Google Scholar 

  • Kim, H., Hyun, S.Y., Park, Y., 2002. Improving the vehicle performance with active suspension using roadsensing algorithm. Comput. Struct., 80(18–19):1569–1577. [doi:10.1016/S0045-7949(02)00110-4]

    Article  Google Scholar 

  • Koch, G.P.A., 2011. Adaptive Control of Mechatronic Vehicle Suspension. PhD Thesis, Technical University of Munich, Munich, Germany.

    Google Scholar 

  • Kruczek, A., Stribrsky, A., Honc, J., et al., 2010. Controller choice for car active suspension. Int. J. Mech., 3(4):61–68.

    Google Scholar 

  • Kumar, M.S., Vijayarangan, S., 2006. Design of LQR controller for active suspension system. Ind. J. Eng. Mater. Sci., 13:173–179.

    Google Scholar 

  • Lai, C.Y., Liao, W.H., 2002. Vibration control of a suspension system via a magnetorheological fluid damper. J. Vibr. Contr., 8(4):527–547. [doi:10.1177/107754602023712]

    Article  Google Scholar 

  • Lam, Q., Wang, L., Zhang, N., 2013. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle. IEEE Intelligent Vehicles Symp., p.383–390. [doi:10.1109/IVS.2013.6629499]

    Google Scholar 

  • Leite, V.J.S., Peres, P.L.D., 2005. Pole location control design of an active suspension system with uncertain parameters. Veh. Syst. Dynam., 43(8):561–579. [doi:10.1080/0042311042000266702]

    Article  Google Scholar 

  • Li, H., Yu, J., Hilton, C., et al., 2013. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron., 60(8):3328–3338. [doi:10.1109/TIE.2012.2202354]

    Article  Google Scholar 

  • Lin, J.S., Ioannis, K., 1997a. Nonlinear design of active suspensions. IEEE Contr. Syst., 17(3):45–59. [doi:10.1109/37.588129]

    Article  Google Scholar 

  • Lin, J.S., Ioannis, K., 1997b. Road-adaptive nonlinear design of active suspensions. Proc. American Control Conf., p.714–718.

    Google Scholar 

  • Liu, H.M., Mok, T.K., Li, Y., et al., 2005. Comparison between GA and gradient descent algorithm in parameter optimization of UPFC fuzzy damping controller. Electr. Power Autom. Equipment, 25(11):5–10.

    Google Scholar 

  • Liu, L., Wang, B., 2008. Multi objective robust active vibration control for flexure jointed struts of stewart platforms via H and µ synthesis. Chin. J. Aeronaut., 21(2):125–133. [doi:10.1016/S1000-9361(08)60016-3]

    Article  Google Scholar 

  • Martins, I., Esteves, M., da Silva, F.P., et al., 1999. Electromagnetic hybrid active-passive vehicle suspension system. Proc. IEEE 49th Vehicular Technology Conf., p.125–133.

    Google Scholar 

  • Martins, I., Esteves, J., Marques, G.D., et al., 2006. Permanent-magnets linear actuators applicability in automobile active suspensions. IEEE Trans. Veh. Technol., 55(1):86–94. [doi:10.1109/TVT.2005.861167]

    Article  Google Scholar 

  • Möller, N., 2009. Porsche Engineering Magazine. Porsche Engineering, Germany, p.28.

    Google Scholar 

  • Nagai, M., 1993. Recent researches on active suspensions for ground vehicles. JSME Int. J. Ser. C, 36(2):161–170.

    Google Scholar 

  • Nurhadi, H., 2010. Study on Control of Bus Suspension System. Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS).

    Google Scholar 

  • Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006a. Active roll compensation for automotive applications using a brushless direct-drive linear permanent magnet actuator. 37th IEEE Power Electronics Specialists Conf., p.1–6. [doi:10.1109/PESC.2006.1712068]

    Chapter  Google Scholar 

  • Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006b. Design considerations for a semi-active electromagnetic suspension system. IEEE Trans. Magnet., 42(10):3446–3448. [doi:10.1109/TMAG.2006.879963]

    Article  Google Scholar 

  • Peter, H., 2012. ABC Active Body Control / MBC Magic Body Control. Available from http://500sec.com/abc-active-body-control-mbc-magic-body-control/ [Accessed on Apr. 12, 2011].

    Google Scholar 

  • Pyper, M., Schiffer, W., Schneider, W., 2003. ABC-Active Body Control. Landsberg/Lech: Verl. Moderne Industrie.

    Google Scholar 

  • Rajamani, R., 2011. Vehicle Dynamics and Control. Springer, p.325–355.

    Google Scholar 

  • Rajamani, R., Hedrick, J.K., 1995. Adaptive observers for active automotive suspensions: theory and experiment. IEEE Trans. Contr. Syst. Technol., 3(1):86–93. [doi:10.1109/87.370713]

    Article  Google Scholar 

  • Ramsbottom, M., Crolla, D.A., 1999. Simulation of an adaptive controller for a limited bandwidth active suspension. Int. J. Veh. Des., 21(4/5):355–371. [doi:10.1504/IJVD.1999.005590]

    Article  Google Scholar 

  • Ryu, S., Park, Y., Suh, M., 2011. Ride quality analysis of a tracked vehicle suspension with a preview control. J. Terramech., 48(6):409–417. [doi:10.1016/j.jterra.2011.09.002]

    Article  Google Scholar 

  • Salem, M., Aly, A.A., 2009. Fuzzy control of a quarter-car suspension system. World Acad. Sci., 5:258–263.

    Google Scholar 

  • Sam, Y.M., Hudha, K., 2006. Modelling and force tracking control of hydraulic actuator for an active suspension system. 1st IEEE Conf. on Industrial Electronics and Applications, p.1–6.

    Google Scholar 

  • Sam, Y.M., Shah, J.H., Osman, B., 2005. Modeling and control of the active suspension system using proportional integral sliding mode approach. Asian J. Contr., 7(2):91–98. [doi:10.1111/j.1934-6093.2005.tb00378.x]

    Article  Google Scholar 

  • Savaresi, S., Poussot-Vassal, C., Spelta, C., et al., 2010. Semi-active Suspension Control Design for Vehicles. Butterworth-Heinemann, Amsterdam, the Netherlands.

    Google Scholar 

  • Sharp, R.S., Crolla, D.A., 1987. Road vehicle system design—a review. Veh. Syst. Dynam., 16(3):167–192. [doi:10.1080/00423118708968877]

    Article  Google Scholar 

  • Shoukry, Y., El-Shafie, M., Hammad, S., 2010. Networked embedded generalized predictive controller for an active suspension system. Proc. American Control Conf., p.4570–4575.

    Google Scholar 

  • Smith, M.C., Walker, G.W., 2000. Performance limitations and constraints for active and passive suspensions: a mechanical multi-port approach. Veh. Syst. Dynam., 33(3):137–168. [doi:10.1076/0042-3114(200003)33:3;1-Y;FT137]

    Article  Google Scholar 

  • Strassberger, M., Guldner, J., 2004. BMW’s dynamic drive: an active stabilizer bar system. IEEE Contr. Syst., 24(4):28–29, 107. [doi:10.1109/MCS.2004.1316650]

    Article  Google Scholar 

  • Stribrsky, A., Hyniova, K., Honcu, J., et al., 2007. Energy recuperation in automotive active suspension systems with linear electric motor. Mediterranean Conf. on Control and Automation, p.1–5. [doi:10.1109/MED.2007.4433870]

    Google Scholar 

  • Sun, J., Wang, Y., Liang, H., 2010. Comparative study on vibration control of engineering vehicle suspension system. Int. Conf. on Intelligent Computation Technology and Automation, p.989–992. [doi:10.1109/ICICTA.2010.669]

    Google Scholar 

  • Sun, W., Zhao, Y., Li, J., et al., 2012. Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron., 59(1):530–537. [doi:10.1109/TIE.2011.2134057]

    Article  Google Scholar 

  • Sun, W., Zhao, Z., Gao, H., 2013. Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron., 60(9):3889–3896. [doi:10.1109/TIE.2012.2206340]

    Article  Google Scholar 

  • Tran, M.N., Hrovat, D., 1993. Application of gain scheduling to design of active suspensions. Proc. 32nd IEEE Decision and Control Conf., p.1030–1035.

    Google Scholar 

  • Venhovens, P.J.T., 1993. Optimal Control of Vehicle Suspensions. PhD Thesis, Delft University of Technology, Delft, the Netherlands.

    Google Scholar 

  • Venhovens, P.J.T., 1994. The development and implementation of adaptive semi-active suspension control. Veh. Syst. Dynam., 23(1):211–235. [doi:10.1080/00423119408969057]

    Article  Google Scholar 

  • Voelcker, J., 2008. The soul of a new Mercedes. IEEE Spectrum, 45(12):36–41. [doi:10.1109/MSPEC.2008.4687367]

    Article  Google Scholar 

  • Williams, R.A., Best, A., 1994. Control of a low frequency active suspension. Int. Conf. on Control, p.338–343. [doi:10.1049/cp:19940155]

    Chapter  Google Scholar 

  • Wu, W., Ma, L., Yang, Q., 2011. Active optimal control for multi-dim vibration damping device based on parallel mechanism. 2nd Int. Conf. on Mechanic Automation and Control Engineering, p.5531–5534.

    Google Scholar 

  • Xu, L., Guo, X., 2010. Hydraulic transmission electromagnetic energy-regenerative active suspension and its working principle. 2nd Int. Workshop on Intelligent Systems and Applications, p.1–5.

    Google Scholar 

  • Xue, X.D., Cheng, K.W.E., Zhang, Z., et al., 2011. Investigation on parameters of automotive electromagnetic active suspensions. 4th Int. Conf. on Power Electronics Systems and Applications, p.1–5.

    Google Scholar 

  • Yamashita, M., Fujimori, K., Uhlik, C., et al., 1990. H control of an automotive active suspension. Proc. 29th IEEE Conf. on Decision and Control, p.2244–2250. [doi:10.1109/CDC.1990.204024]

    Chapter  Google Scholar 

  • Zhang, Y., Alleyne, A., 2005. A practical and effective approach to active suspension control. Veh. Syst. Dynam., 43(5):305–330. [doi:10.1080/00423110412331282869]

    Article  Google Scholar 

  • Zhong, X., Ichchou, M., Gillot, F., et al., 2010. A dynamic-reliable multiple model adaptive controller for active vehicle suspension under uncertainties. Smart Mater. Struct., 19(4):045007. [doi:10.1088/0964-1726/19/4/045007]

    Article  Google Scholar 

  • Zin, A., Sename, O., Gaspar, P., et al., 2008. Robust LPV-H control for active suspensions with performance adaptation in view of global chassis control. Veh. Syst. Dynam., 46(10):889–912. [doi:10.1080/00423110701684587]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wajdi S. Aboud.

Additional information

Project supported by the Ministry of Education, Malaysia (No. ERGS/1/2012/TK01/UKM/02/4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboud, W.S., Haris, S.M. & Yaacob, Y. Advances in the control of mechatronic suspension systems. J. Zhejiang Univ. - Sci. C 15, 848–860 (2014). https://doi.org/10.1631/jzus.C14a0027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C14a0027

Key words

CLC number

Navigation