

On the Security Analysis of PBKDF2 in OpenOffice

Xiaochao Li 1, Cuicui Zhao1, Kun Pan1, Shuqiang Lin1, Xiurong Chen1, Benbin Chen1, Deguang
Le1, Donghui Guo1*

1 Xiamen University, Xiamen, 361005, P. R. China.

*Corresponding author. Email: dhguo@xmu.edu.cn
Manuscript submitted November 26, 2013; accepted September 20, 2014.

Abstract: Password-based KDF2 (PBKDF2) is widely used in file authentication mechanism and file

encryption which could produce a derived key more than 160 bits long. In this paper, the security of

PBKDF2 algorithm and its implementation in OpenOffice are analyzed in two modes: CSP-secure mode

(Chosen Single Parameter) and CMP-secure mode (Chosen Multiple Parameters). The theoretical security of

PBKDF2 is proved in CSP-secure mode by using Game-Playing technology to quantify the upper bound of

adversary’s advantage. However, a security flaw is explored in CMP-secure mode. This paper presents three

proposals to address the security flaw. With the theoretical derivation, the actual safety of the OpenOffice

encrypted file has been discussed under the latest developments for GPU-accelerated key recovery attack

capability.

Key words: Key derivation functions, provable security, PBKDF2, adversary’s advantage.

1. Introduction

During the communication, electronic transaction and data storage, authentication scheme [1], [2] is

usually utilized to prevent an encrypted file from unauthorized access and faked message. Compared with

other physical and biological characteristics of the authentication schemes, password-based message

authentication scheme is widely employed [3]. Generally speaking, passwords chosen from a relatively

small space (or have a low entropy) is vulnerable to exhaustive password-search attacks and dictionary

attacks. Hence, password-based key derivation functions are used to resist these attacks which transform a

non-uniformly distribution source of raw keying material to cryptographically strong secret keys. The

techniques which enhance the security of password authentication scheme have been specified in industry

standards such as PKCS#5 [4], PKCS#12 [5], IETF, etc. However, little work has been done on the security

analysis of password-based KDFs. In 2005, even though Frances F. Yao and Yiqun L. Yin gave a security

definition of PBKDF1 and derived the advantage of adversary in [6], the security analysis on PBKDF2 was

not presented yet.

Password-based KDF2, specified by NIST [7] and IETF, which has been commonly used in OpenOffice,

WAP2, TrueCrypt etc., was studied in this correspondence, as well as the illustration that the construction of

KDF has insecure weakness against certain attack mode in spite that the passwords were chosen largely

enough and the underlying hash function was reliable. With the assumptions that the underlying iterated

hash function (HMAC) was random, the adversary’s advantage between PBKDF2 and random function were

quantized by using game-playing technique. In addition, combined with parallel computing capability of

GPU, a series of passwords recovery tests were conducted.

Journal of Software

116 Volume 10, Number 2, February 2015

2. Authentication Scheme and KDF

2.1. Key Derivation Function

Key derivation functions (KDFs) are deterministic algorithms that are used to derive cryptographic key

from a secret value, such as a password, Diffie-Hellman shared secret or some non-uniformly random

source material [8], [9]. Generally, a Password-Based KDF is defined as 𝐾 ← 𝐾𝐷𝐹(𝑝, 𝑠, 𝑐𝑡𝑥, 𝑙),

where:

p is a private password. The space of all possible private passwords denoted by PSPACE and the

probability distribution of password is assumed to be public;

s is a salt value, chosen from a set of possible salt values;

ctx is a public known context variable chosen from a context space CSPACE;

l denotes the length of derived key;

K is the derived cryptographic key in length of l bits.

Password-Based Cryptography Specification (PKCS#5) [4] specifies two standardized KDFs, namely,

PBKDF1 and PBKDF2. With much more secure and complicated structure, PBKDF2 is widely used in

information security industry. In PBKDF2, by applying a function PRF (in [7], [10] recommended HMAC

with any approved hash function like HMAC-SHA1, HMAC-MD5, HMAC-RIPMED), an n-bit cryptographic key

is derived from a password p, a random known value s (called salt) and iteration count c, represented by

key=PBKDF(PRF, c) (p, s, n). The process is described in Table 1.

Table 1. The Algorithm of PBKDF2

Parameters and Symbol:

hLen Digest size of the hash function.

𝑈𝑖 Intermediate variable

CEIL(𝑥) The ceiling of 𝑥 is the smallest integer that is greater than or equal to 𝑥.

∥ Concatenation

⨁ Bit-wise exclusive -or.

T<0,1…,r-1> The truncation of the binary string T that retains its first r bits.

Inputs:

𝑝 Password.

𝑠 Salt.

𝑛 Length of derived key in bits, at most (232-1)× hLen.

𝑃𝑅𝐹 HMAC with an approved hash function.

𝑐 Iteration count.

Output:

key derived key in 𝑛 bits.

Steps:

1. if (𝑛 > (232 − 1) × ℎ𝐿𝑒𝑛)

2. Return an error indicator and stop

3. ℎ = 𝐶𝐸𝐼𝐿(𝑛/ℎ𝐿𝑒𝑛)

4. 𝑟 = 𝑛 − (ℎ − 1) ∗ hLen

5. for 𝑖 = 1 to ℎ Do

6. 𝑇𝑖 = 𝑈0 = 𝑃𝑅𝐹(𝑝, 𝑠𝑎𝑙𝑡||𝑖);

7. for 𝑗 = 1 to 𝑐 Do

8. 𝑈𝑗 = 𝑃𝑅𝐹(𝑝, 𝑈𝑗−1)

9. 𝑇𝑖= 𝑇𝑖⨁𝑈𝑗

Note that, salt 𝑠 and iteration count 𝑐 are publicly known, except for the secret password 𝑝. The salt 𝑠 is

Journal of Software

117 Volume 10, Number 2, February 2015

random and is used to create a large set of possible keys corresponding to a given private password.

Usually, the length of derived key 𝑛 in a file authentication scheme is fixed by the file format. Thus, the

form of KDF can be converted into 𝑘𝑒𝑦 = 𝑃𝐵𝐾𝐷𝐹𝑐(𝑝, 𝑠)𝑛. In the ODF [11] (open document file) of

OpenOffice, the underlying hash function is HMAC-SHA-1, and key derivation process is to apply the

underlying hash function for 1024 iterations with the input password 𝑝, the 16-byte salt 𝑠, then extract the

first 128-bit as a key for Blowfish decryption algorithm.

2.2. The Security Definition of KDF

In the light of provable security theory, an adversary’s indistinguishable advantage [12] is used to define

algorithm discrepancy between the security of a KDF and an ideal random function, which assures that the

cryptographic keys generated by the KDF are indistinguishable from truly random binary strings of the

same length. In game-playing technique, the KDF is secure if the adversary who wins the game has a

non-negligible probability advantage over the random function.

The construction of key derivation function was primarily focused and the underlying hash function was

regarded as a black-box transformation in this paper. Bellare mentioned that HMAC can be seen as a PRF in

[13] and gave a new proof under the sole assumption that the compression function is a PRF in [14], which

motivates us to represent the underlying function HMAC as a random oracle 𝐻.

The attack model represents the capability of the active adversary. From the attack’s point of view, a

typical usage scenario of a password-based KDF in the encryption file format is that the salt 𝑠 and the

iteration count 𝑐 are both known and the derived key may become known through the file format

extraction. The attacker usually does not have control of 𝑠 or 𝑐, but in certain scenarios they can be

chosen.

Depending on attacker’s capability [15], two strong security definitions, Chosen Single Parameter (CSP)

and Chosen Multiple Parameters (CMP) were introduced. In CSP mode, adversary A can make queries with

fixed parameters for adaptive attacks. While, in the CMP mode, A can make queries with the stronger attack

capability of choosing any public parameters such as salt 𝑠, iteration count 𝑐, derived key length 𝑛 etc.

Definition 1. CSP-secure/CMP-secure

In CSP-secure mode, adversary A can inquire the Oracle about a return value with an input 𝑥 and can

win the following distinguishing game with probability larger than 1/2+ within 𝑡 queries. At the same

time, in CMP-secure mode, adversary A can query the Oracle on choosing any public inputs 𝑠, 𝑐, 𝑛.

1) Select a password 𝑝 R 𝑃𝑆𝑃𝐴𝐶𝐸,𝑠 R 𝑆𝑆𝑃𝐴𝐶𝐸, 𝑐 R 𝐶𝑆𝑃𝐴𝐶𝐸, 𝑛 R 𝑁𝑆𝑃𝐴𝐶𝐸.

2) A bit b R {0,1} is chosen at random. If b = 1, attacker A is provided with the output of KDF, else A is

given a random string of 𝑛 bits.

3) for 𝑖 = 1, … , 𝑡′ ≤ 𝑡:

if CSP-secure adversary A chooses 𝑥𝑠 makes query to oracle 𝐻 and gets the response 𝐻(𝑥𝑠);

if CMP-secure adversary A chooses 𝑠𝑖 ,𝑐𝑖 ,𝑛𝑖 then makes query to the whole progress and gets the

response 𝐾𝐷𝐹𝑐𝑖(𝑝𝑖 , 𝑠𝑖)𝑛𝑖
 ;

4) Step 3 is repeated for up to 𝑡 queries

5) A outputs a bit 𝑏′ ← {0,1}. It wins if 𝑏′ = 𝑏.

3. The Security Proof of PBKDF2

From PBKDF2 algorithm in Table 1, we can find the derived key is consist of a concatenation with

iteration values 𝑇𝑖 , and each 𝑇𝑖 is independent from each other. The iteration values (𝑇1, 𝑇2, … , 𝑇ℎ)

computes in a counter mode [16] and the value of ℎ is usually 1 or 2 in practice. Hence, we take a scenario

ℎ = 1 for simplicity and give a security proof of PBKDF2.

Journal of Software

118 Volume 10, Number 2, February 2015

3.1. CSP Security Mode

According to the CSP-security definition discussed above, we design two attack experiments 𝐹𝐴 and 𝐺𝐴

specific to key = PBKDF𝑐(𝑝, 𝑠)𝑛 and {0,1}∗ ⟶ {0,1}𝑛 in Fig. 1. The adversary A obtains a 𝑛 − 𝑏𝑖𝑡𝑠 string

𝑦0 which can be a key derived from PBKDF2 or a random string. To complete the game, A guesses whether

𝑦0 is the key or a random string by making at most 𝑡 queries to the oracle F. If A guesses that 𝑦0 is a

cryptographic key then A sends 1 as the outcome, otherwise, A sends 0.

Step1 𝑠𝑎𝑙𝑡, 𝑐, 𝑛 are fixed

Step2 Choose 𝑝0 ← |𝑃𝑆𝑃𝐴𝐶𝐸| randomly

Step3 if 𝑏 = 0, y0 ← {0,1}𝑛, else 𝑦0 ← 𝑃𝐵𝐾𝐷𝐹𝑐(𝑝0, 𝑠)𝑛

Step4 𝑠 ← 0

Step5 repeat

Step6 A chooses 𝑥𝑠 and is given H(𝑥𝑠)

Step7 𝑠 ← 𝑠 + 1

Step8 Until 𝑠 reaches the maximum number of query 𝑡

Step9
A outputs 1 if he believes that 𝑦0 is a cryptographic key, else

outputs 1.

Fig. 1. Attack experiments 𝐹𝐴 and 𝐺𝐴.

The experiments 𝐹𝐴 and 𝐺𝐴 are the realization of KDF and a random function respectively. The

advantage of adversary A in distinguishing experiments 𝐹𝐴 and 𝐺𝐴 is defined as:

𝐴𝑑𝑣𝐹,𝐺
𝑝𝑟𝑓(𝑡) = | 𝑃𝑟[𝐴𝐹 = 1] − 𝑃𝑟[𝐴𝐺 = 1] | (1)

We note oracle (or black-box) as a subroutine to which A has access. Adversary A has no control on how

the answer is computed, nor can A see the inner workings of the subroutine. According to the attack

experiments 𝐺𝐴 and 𝐹𝐴, We defined two games 𝑅0 and 𝑅1in Fig. 2. The set Y contains all distinct values of

𝐻(𝑥) for which 𝑥 has been queried and the initialization values are {𝑘0, 𝑦0}. The only difference between

𝑅0 and 𝑅1 is that game 𝑅0 contains the assignment 𝑦 = 𝑦0, which is underlined in step 4.6. Step 4

simulates the adversary’s queries on oracle . Two flags 𝑏𝑎𝑑1 and 𝑏𝑎𝑑2 are set when certain “bad” event

occurs.

In Game 𝑅1, the answers of any query to oracle H are generated randomly. From the view point of

adversary, attack experiment 𝐺𝐴 and Game 𝑅1 are equivalent and 𝑃𝑟[𝐴𝐺 = 1] = 𝑃𝑟𝑅1
[𝐴 = 1], where

𝑃𝑟𝑅1
[𝐴 = 1] denotes the probability of adversary A’s output to be 1 in Game 𝑅1. In random oracle PBKDF is

treated as PRF, there is no difference between 𝑦0 ← 𝑃𝐵𝐾𝐷𝐹𝑐(𝑝0, 𝑠)𝑛 in attack experiment 𝐹𝐴 and

𝑦0 ← {0,1}𝑛 in Game 𝑅0. In Game 𝑅0’s step 4.6, when query value 𝑥𝑠 equals to 𝑈𝑐−1 and the query index

increases to 𝑐, the answer 𝑦 to query oracle H will be 𝑦0 ← PBKDF𝑐(𝑝0, 𝑠)𝑛, where 𝑦0 is set at Step 2.

For any other query values, oracle H will return a random value. Thus attack experiment 𝐹𝐴 and Game 𝑅0

are equivalent, and the success probability of A is the same. Therefore, the advantage of PBKDF2 can be

defined as:

𝐴𝑑𝑣𝐴
𝑝𝑟𝑓(𝑡) = |𝑃𝑟𝑅0

[𝐴 = 1] − 𝑃𝑟𝑅1
[𝐴 = 1]| (2)

Journal of Software

119 Volume 10, Number 2, February 2015

Step1 Set 𝑠𝑎𝑙𝑡, 𝑐, 𝑛

Step2 Choose 𝑝0 ← |𝑃𝑆𝑃𝐴𝐶𝐸| and 𝑦0 ← {0,1}𝑛,𝑖 = 0

Step3 𝑘0 = salt ∥ int(1), 𝑌 ← {𝑘0, 𝑦0}

Step4 On the 𝑠𝑡ℎ query, 𝐴 chooses 𝑥𝑠

4.1 𝑦0 ← {0,1}𝑛

4.2 if 𝑦 ∉ 𝑌, then 𝑌 ⟵ 𝑌⋃{𝑦}

4.3 else 𝑏𝑎𝑑1 = 1

4.4
if (𝑖 == 0 &&𝑥𝑠 == 𝑘0) {𝑈𝑖 ← 𝑦, key ← 𝑈𝑖, 𝑖 =
𝑖 + 1}

4.5 Else if (0 < 𝑖 < 𝑐&&𝑥𝑠 == 𝑈𝑖−1)

 {𝑈𝑖 ⟵ 𝑦, key ⟵ 𝑈𝑖⨁𝑘𝑒𝑦, 𝑖 = 𝑖 + 1}

4.6 Else if(𝑖 == 𝑐&&𝑥𝑠 == 𝑈𝑐−1)

 𝑏𝑎𝑑2 = 1

 if 𝑏 = 1 𝑘𝑒𝑦 ⟵ 𝑦0

4.7 𝐻𝑝0
(𝑥𝑠) ⟵ 𝑦, return key

Step5 Repeat step 4 for up to 𝑡 queries.

Fig. 2. Game 𝑅0 and 𝑅1.

Let 𝐵𝑎𝑑 = 𝑏𝑎𝑑1 ∪ 𝑏𝑎𝑑2, if neither bad event occurs, return values are exactly the same for A in both

games 𝑅0 and 𝑅1 according to the fundamental lemma of game playing in [17]. Furthermore, each 𝑏𝑎𝑑

event occurs with the same probability in the two games.

𝑃𝑟𝑅0
[𝐴 = 1|𝐵𝑎𝑑] = 𝑃𝑟𝑅1

[𝐴 = 1|𝐵𝑎𝑑] (3)

𝑃𝑟𝑅0
[𝐵𝑎𝑑] = 𝑃𝑟𝑅1

[𝐵𝑎𝑑] (4)

Based on a standard probability argument in [17], the two games 𝑅0 and 𝑅1 are satisfied with

identical-until-bad-is-set condition. Therefore,

𝐴𝑑𝑣𝐴
𝑝𝑟𝑓(𝑡) ≤ Pr𝑅0

[𝐵𝑎𝑑] = Pr𝑅1
[𝐵𝑎𝑑] (5)

In the game 𝑅1, when 𝐵𝑎𝑑 is set, either step 4.3 or step 4.6 in Fig. 2 is set to 1, respectively. According to

the proposition of “Union Bound” [2], we have

𝑃𝑟𝑅1
[𝐵𝑎𝑑] = 𝑃𝑟𝑅1

[𝑏𝑎𝑑1 ∪ 𝑏𝑎𝑑2] ≤ 𝑃𝑟𝑅1
[𝑏𝑎𝑑1] + 𝑃𝑟𝑅1

[𝑏𝑎𝑑2] (6)

The query process in step 4.3 is firstly choosing a 𝑛 − 𝑏𝑖𝑡𝑠 string 𝑦 randomly and then testing whether

it is contained in set Y. If not, it will be added into Y every time until 𝑡𝑡ℎ. If the random string 𝑦 collides

with the values in the set Y, 𝑏𝑎𝑑1 is set. Therefore, the probability of that 𝑏𝑎𝑑1 occurs can be divided into

two parts. One part is similar to a birthday problem and the probability marked as 𝑃0 is

𝑃0 = 1 − 𝑒𝑥𝑝(−𝑡(𝑡 − 1)/2𝑛+1) < 𝑡2/2𝑛+1 (7)

Another part is the collision probability of the t oracle values (𝑥1, 𝑥2, ⋯ , 𝑥𝑡) with initial values {𝑘0, 𝑦0}.

And collision probability of any two elements is 𝑃𝑟(𝑐𝑜𝑙𝑖,𝑗) = 1/2𝑛, 𝑖 ≠ 𝑗. So,

𝑃𝑟𝑅1
[𝑏𝑎𝑑1] ≤ (𝑡2/2 + 2𝑡)/2𝑛 (8)

Journal of Software

120 Volume 10, Number 2, February 2015

For 𝑡 ≥ 4, since (𝑡2/2 + 2𝑡)/2𝑛 ≤ 𝑡2/2𝑛,

𝑃𝑟𝑅1
[𝑏𝑎𝑑1] ≤ 𝑡2/2𝑛 (9)

In order to calculate the boundary of 𝑃𝑟𝑅1
[𝑏𝑎𝑑2], the step 4.3 is deleted in Game 𝑅1 to derive Game 𝑅2,

shown in Fig. 3, provided that event 𝑏𝑎𝑑1 doesn’t occur. Then an equation could be obtained as follows,

𝑃𝑟𝑅2
[𝑏𝑎𝑑] = 𝑃𝑟𝑅1

[𝑏𝑎𝑑2] (10)

Step1 Set 𝑠𝑎𝑙𝑡, 𝑐, 𝑛

Step2 Choose 𝑝0 ← |𝑃𝑆𝑃𝐴𝐶𝐸| and 𝑦0 ← {0,1}𝑛,𝑖 = 0

Step3 𝑘0 = salt ∥ int(1)

Step4 On the 𝑠𝑡ℎ query, 𝐴 chooses 𝑥𝑠

4.1 𝑦0 ← {0,1}𝑛

4.4
if (𝑖 == 0 &&𝑥𝑠 == 𝑘0) {𝑈𝑖 ← 𝑦, key ← 𝑈𝑖, 𝑖 = 𝑖 +
1}

4.5 Else if (0 < 𝑖 < 𝑐&&𝑥𝑠 == 𝑈𝑖−1)

 {𝑈𝑖 ⟵ 𝑦,𝑘𝑒𝑦 ⟵ 𝑈𝑖⨁𝑘𝑒𝑦, 𝑖 = 𝑖 + 1}

4.6 Else if (𝑖 == 𝑐&&𝑥𝑠 == 𝑈𝑐−1)

 𝑏𝑎𝑑 = 1

4.7 𝐻𝑝0
(𝑥𝑠) ⟵ 𝑦, return key

Step5 Repeat step4 for up to 𝑡 queries.

Fig. 3. Game R2.

The Game 𝑅2 is oblivious because it doesn’t use anything about how the oracle H responses were made

in order to compute𝑏𝑎𝑑, except the input sequence 𝑥0, 𝑥1, ⋯ 𝑥𝑡−1. So the random oracle in Step4 will be

replaced by a for-loop within 𝑡 queries using coin–fixing theorem in [17], shown in Fig. 4. According to

coin-fixing lemma,

𝑃𝑟𝑅2
[𝑏𝑎𝑑] ≤ 𝑃𝑟𝑅3

[𝑏𝑎𝑑] (11)

which assumes that the query sequence 𝑥0, 𝑥1, ⋯ 𝑥𝑡−1 can reach the maximization of 𝑃𝑟𝑅3
[𝑏𝑎𝑑].

Step1 Set 𝑠𝑎𝑙𝑡, 𝑐, 𝑛

Step2 Choose 𝑝0 ← |𝑃𝑆𝑃𝐴𝐶𝐸| and 𝑦0 ← {0,1}𝑛,𝑖 = 0

Step3 𝑘0 = salt ∥ int(1)

Step4 for 𝑠 = 0 𝑡𝑜 𝑡 − 1 Do

4.4
if (𝑖 == 0 &&𝑥𝑠 == 𝑘0) {𝑈𝑖 ← {0,1}𝑛 key ← 𝑈𝑖 , 𝑖 =
𝑖 + 1}

4.5 Else if (0 < 𝑖 < 𝑐&&𝑥𝑠 == 𝑈𝑖−1)

 {𝑈𝑖 ⟵ {0,1}n, 𝑘𝑒𝑦 ⟵ 𝑈𝑖⨁𝑘𝑒𝑦, 𝑖 = 𝑖 + 1}

4.6 Else if (𝑖 == 𝑐&&𝑥𝑠 == 𝑈𝑐−1)

 𝑏𝑎𝑑 = 1

 end for

Fig. 4. Game R3.

Step 4 in Fig. 4 indicates that adversary A can’t cross any middle calculation to derive 𝑘𝑒𝑦 or guess the

intermediate state 𝑈𝑖 directly. Thus the best method is exhaustive key search attack. Specifically, firstly a

Journal of Software

121 Volume 10, Number 2, February 2015

password 𝑝 is chosen from |𝑃𝑆𝑃𝐴𝐶𝐸|at random. Then the initial value 𝑈0 is generated with the

password and salt. Finally each returned value from oracle is combined by xor operation until the end of 𝑡

queries. As a result, Game 𝑅3 can calculate the derived keys of [𝑡/𝑐] passwords. Since the probability of

𝑝 = 𝑝0 is 1/|PSPACE|, in the t times queries, the probability of 𝑥𝑠 equals 𝑈𝑐−1 is less than [𝑡/𝑐]/|PSPACE|,

displayed in

𝑃𝑟𝑅3
[𝑏𝑎𝑑] ≤ [𝑡/𝑐]/|𝑃𝑆𝑃𝐴𝐶𝐸| (12)

Since 𝑃𝑟𝑅2
[𝑏𝑎𝑑] ≤ 𝑃𝑟𝑅3

[𝑏𝑎𝑑], 𝑃𝑟𝑅2
[𝑏𝑎𝑑] = 𝑃𝑟𝑅1

[𝑏𝑎𝑑2], so

PrR1
[bad2] ≤ [𝑡/𝑐]/|PSPACE| (13)

Inserting (6), (9), (13) into (5) gives

AdvA
prf(𝑡) ≤ [𝑡/𝑐]/|PSPACE| + 𝑡2/2𝑛 (14)

3.2. CMP Security Mode

PBKDF2 was intended to provide more security for the exclusive-ors adds an extra layer of protection. In

CMP security mode, attacker has full control of the salt and iteration count. Hence, the relations among keys

seem slightly more complicated, but this relationship among keys opens the door to dictionary attacks.

Let 𝑠 be any salt value selected by attacker from 𝑆𝑆𝑃𝐴𝐶𝐸 and let 𝑐1, 𝑐2, 𝑐3 be three consecutive

iteration counts. Then, we have:

𝑦1 = 𝑘𝑑𝑓(𝑝, 𝑠, 𝑐1) = 𝑈0⨁𝑈1⨁ ⋯ ⨁𝑈𝑐1
 (15)

𝑦2 = 𝑘𝑑𝑓(𝑝, 𝑠, 𝑐2) = 𝑈0⨁ ⋯ ⨁𝑈𝑐1
⨁𝑈𝑐2

 (16)

𝑦3 = 𝑘𝑑𝑓(𝑝, 𝑠, 𝑐3) = 𝑈0⨁ ⋯ ⨁𝑈𝑐1
⨁𝑈𝑐2

⨁𝑈𝑐3
 (17)

According to the xor operator, we have

𝑦1⨁𝑦2 = 𝑈𝑐2
 (18)

𝑦2⨁𝑦3 = 𝑈𝑐3
 (19)

This yields the following relation among the three keys: 𝑦2⨁𝑦3 = 𝐻𝑝(𝑦1⨁𝑦2)). This relationship would

become a fatal weakness in the practical application. The powerful attacker could establish a look up table

for all possible passwords, and compute the corresponding sequence 𝑈0, 𝑈1, ⋯ , 𝑈𝑐. When adversary queries

the oracle, with the relationship, the intermediate variables 𝑈𝑖 which should not be shown to anyone can

be derived from the look up table. It is not hard for attacker to get the password 𝑝 and any intermediate

value 𝑈𝑖 bypass the c times iteration. This lead to inefficiency of the iteration count 𝑐, therefore, the

introduction of c does not improve the security of PBKDF2 in this mode.

4. New Proposals for Strong Security PBKDF2

In the preceding section, the analysis implies that PBKDF2 is secure as long as the adversary’s

computational resource is far less than 𝑐|𝑃𝑆𝑃𝐴𝐶𝐸| in CSP-secure mode. The security cannot be guaranteed

Journal of Software

122 Volume 10, Number 2, February 2015

since adversary can influence multiple parameters in CMP attack mode.

Based on our analysis, in CMP-secure mode, the KDF should be constructed in a way that the values of

𝑦 = 𝐾𝐷𝐹(𝑝, 𝑠, 𝑐), for different 𝑝, 𝑠, and 𝑐, are nearly independent of each other. Certainly, there are

various ways to achieve this goal. Mei Zou introduces “i||” in [1], which we propose as following:

𝑦 = 𝐾𝐷𝐹(𝑝, 𝑠, 𝑐) = 𝑈0⨁𝑈1⨁ ⋯ ⨁𝑈𝑐 (20)

where 𝑈1 = 𝑃𝑅𝐹(𝑝, 𝑠 ∥ 𝑖) and 𝑈𝑖 = 𝑃𝑅𝐹(𝑝, 𝑖 ∥ 𝑈𝑖−1) for 𝑖 = 2, … , 𝑐.

Secondly, Yao propose a construction which includes iteration count explicitly as an input to the hash

function H [6]. So we introduce the KDF as:

𝑦 = 𝐾𝐷𝐹∗(𝑝, 𝑠, 𝑐) = 𝐻𝑐(𝑝, 𝑈𝑖 ∥ 𝑐) (21)

The concatenation of iteration count 𝑐 with intermediate 𝑈𝑖 contributes to the independent values of

KDF for different 𝑝, 𝑠, and 𝑐.

Thirdly, Hugo Krawczyk takes a more conservative approach via “feedback mode” in the HKDF design[8],

each iteration is applied to the result of previous iteration, which not only minimizes correlation but also

avoids low input variability and adds unpredictability to the PRF inputs, Thus, we propose the third KDF is:

𝑦 = 𝑋𝐾𝐷𝐹(𝑝, 𝑠, 𝑐, 𝑛) = 𝑇1 ∥ 𝑇2 ∥ ⋯ ∥ 𝑇ℎ (22)

where the value 𝑇𝑖 is defined as follows:

𝑇𝑖 = 𝑈0⨁𝑈1⨁ ⋯ ⨁𝑈𝑐 (23)

When 𝑖 = 0, 𝑈0 = 𝑃𝑅𝐹(𝑝, 𝑠𝑎𝑙𝑡 ∥ 𝑖), when 𝑖 = 1, … , ℎ, 𝑈0 = 𝑃𝑅𝐹(𝑝, 𝑠𝑎𝑙𝑡 ∥ 𝑖 ∥ 𝑇𝑖−1), and

𝑈𝑗 = 𝑃𝑅𝐹(𝑝, 𝑈𝑗−1) (24)

XKDF achieves stronger security while preserving the same efficiency as existing KDFs.

5. Data and Analysis

In the ODF (OASIS Open Document Format) [11] of OpenOffice, the underlying hash function is

HMCA-SHA-1. The derived key is a 128 − 𝑏𝑖𝑡𝑠 Blowfish cryptographic key. The iteration count value 𝑐 is

1024 and the salt is a 128 − 𝑏𝑖𝑡𝑠 random string. We use 𝑙 to denote the bit length of the password, so

the password space is |𝑃𝑆𝑃𝐴𝐶𝐸| = 2𝑙, then after A makes 𝑡 times queries to the random oracle, from (14)

the advantage of PBKDF2 in OpenOffice satisfies:

𝐴𝑑𝑣𝐴
𝑝𝑟𝑓(𝑡) ≤

𝑡

2𝑙+𝑙𝑜𝑔2
𝑐 +

𝑡2

2128 (25)

We can draw four conclusions as followed:

1) When 𝑡 ≪ 𝑐 ∗ |𝑃𝑆𝑃𝐴𝐶𝐸|, the adversary A’s advantage of PBKDF2 is negligible, the PBKDF is secure in

OpenOffice authentication scheme.

2) The introduction of the iteration count 𝑐 increases the workload of exhaustive password search nearly

𝑐 times. In OpenOffice, the iteration count is 1024, so the password length stretches from l-bit to

l+10-bit.

Journal of Software

123 Volume 10, Number 2, February 2015

3) In brute force attack, two approaches could be used, one is exhaustive password space and the other is

the cryptographic key space. When 𝑙 + 𝑙𝑜𝑔 2
𝑐 ≥ 𝑛, the time consuming with first approach is more

than the second’s. In OpenOffice authentication scheme, 𝑛 is 128, when the length of the password 𝑥

is larger than 15 − 𝑏𝑦𝑡𝑒,𝑙 + 𝑙𝑜𝑔 2
𝑐 = 8𝑥 + 𝑙𝑜𝑔 2

1024 > 128

. The exhaustive password space attack is

superior over the latter.

4) Compared with the upper bound of the attack advantage in PBKDF1 [18], the security of PBKDF2 in

OpenOffice doesn’t improved.

The above result implies that, the security of the encrypted file in OpenOffice is mainly depends on the

adversary A’s computational power and users’ password space.

Nowadays, GPU (Graphics Processing Unit) is widely used in cryptography due to its parallel

computational grid structure. CUDA is one of the platform and programming model invented by NVIDIA

[19]. The mainstream of general purpose computing card NVIDIA GeForce GTX580 and NVIDIA GeForce

GTX280 can calculate SHA-1 670 M times/s, and 229 M times/s by experiments respectively [20]. We

assume that users’ commonly used passwords character set contains a~z, A~Z, 0~9, an blank space and a

question mark which is 64 characters in total. In Table 2, the time cost of different passwords length on four

different GPU cards are shown, which a series of exhaustive search attacks on the user’s password space are

conducted. According to the table, we recommend that a secure password should be chosen from a mixed

up character set of numbers, letters, and special symbols, and the length of a password should be longer

than 7.

Table 2. The Time Cost of Password Exhaustive Search Attack in OpenOffice

Password
Length

The Set of
Password

Time Cost of Attack on OpenOffice

GTX280 GTX470 GTX480 GTX580

6 0~9 1.77m 56.13s 42.656s 36.29s

6 a~z 8.55h 4.51h 3.43h 2.91h

7 0~9 17.82m 9.41m 7.15m 6.08m

7 a~z 9.27d 4.89d 3.72d 3.16d

7 0~9 a~z A~Z 11.14y 5.88y 4.47y 3.8y

8 0~9 a~z A~Z 690.81y 364.8y 277.21y 235.82y

6. Conclusion

In this paper, the security of PBKDF2 algorithm and its implementation in OpenOffice are analyzed in CSP

secure mode and CMP secure mode. With game-playing technique we quantize adversary’s advantage in

CSP-secure mode. And we present three proposals to address PBKDF2 security flaw in CMP-secure mode.

Based on our analysis and experimental results, we conclude that the security of PBKDF2 in OpenOffice

doesn’t improve. Regarding to computational power, the security of password authentication scheme in

OpenOffice will sustain by using larger character set and password length at least 7.

Acknowledgment

This study is supported by Fujian Provincial Department of Science & Technology(No.2010H6026) ，

NSFC(No.61274133) and the Science and Technology Project of Quanzhou City (No.2012Z83).

References

[1] Zou, M., Wu, H. W., Zhou, J., & Li, X. C. (2012, April). Security analysis of key derivation function in file

authentication scheme. Journal of Computer Engineering, 38(8), 101-104.

Journal of Software

124 Volume 10, Number 2, February 2015

[2] Katz, J., & Lindell, Y. (2007). Introduction to Modern Cryptography: Principles and Protocols. CRC Press.

[3] Chen, J., Zhou, J., Pan, K., Lin, S. Q., Zhao, C. C., & Li, X. C. (2013). The security of key derivation functions

in WINRAR. Journal of Computers, 8(10).

[4] RSA Laboratories. (2006). PKCS#5 v2.1: Password-based cryptography standard. Retrieved from

http://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf.

[5] RSA Laboratories. (2012). PKCS#12: Personal Information Exchange Syntax. Version 1.1.

[6] Frances, F., Yao, Y. Q., & Yin, L. (2005). Design and analysis of password-based key derivation functions.

Proceedings of Topics in Cryptology — CT-RSA 2005, Lecture Notes in Computer Science, 3376 (pp.

245-261). San Francisco, CA, USA.

[7] Turan, M. S., et al. (2010). Recommendation for password-based key derivation. NIST Special

Publication, 800, 132.

[8] Krawczyk, H. (2010). Cryptographic extraction and key derivation: The HKDF scheme. Proceedings of

30th Annual International Cryptology Conference (pp. 631-648).

[9] Krawczyk, H. (2008). On extract-then-expand key derivation functions and an HMAC-based KDF.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8254&rep=rep1&type=pdf

[10] Chen, L. (2008). Recommendation for key derivation using pseudorandom functions. NIST Special

Publication, 800, 108.

[11] Wheeler, D., Durusau, P., Rathke, E., & Weir, R. (2011). Open document format for office applications

(OpenDocument) v1.2. OASIS Standard, Oasis, 10(1), 19-28.

[12] Wu, W. L., Feng, D. G., & Zhang, W. T. (2009). Design and Analysis of Block Cipher (2nd ed.). Beijing:

Tsinghua Press.

[13] Bellare, M., & Goldwasser, S. (2008). Lecture Notes on Cryptography.

[14] Bellare, M. (2006). New proofs for NMAC and HMAC: Security without collision-resistance. Advances in

Cryptology-CRYPTO 2006 (pp. 602-619). Springer Berlin Heidelberg.

[15] Wen, C. C., et al. (2012). A framework for security analysis of key derivation functions. Proceedings of

8th International Conference on Information Security Practice and Experience (pp. 199-216). Hangzhou,

China: Springer Verlag.

[16] Scarfone, K., & Souppaya, M. (2009). Guide to enterprise password management (draft). NIST, 800, 118.

[17] Bellare, M., & Rogaway, P. (2004). The game-playing technique. International Association for

Cryptographic Research (IACR) e-Print Archive, 331.

[18] Zhou, J., Chen, J., Pan, K., et al. (2012). On the security of key derivation functions in office. Proceedings

of 2012 International Conference on Anti-Counterfeiting, Security and Identification (pp. 1-5). Taipei.

[19] Cuda, C. (2013). Programming guide 5.0. NVIDIA Corporation.

[20] GPU speed estimations. Retrieved from http://golubev.com/gpuest.htm.

Xiaochao Li received his bachelor degree in electrical engineer from Beijing Institute of

Technology in 1992, the master degree in mechanics and electrical engineer from Xiamen

University in 1995 and the Ph.D. degree in physics from Xiamen University in 2004. From

2005-2008, he did his postdoctoral research in the School of Electronic Engineering, XiDian

University. From 2010 to 2011, he was a visiting scholar at the Department of Electrical and

Computer Engineering, North Carolina State University, USA. He is currently an associate

professor in Xiamen University and his research areas include information security and mixed-signal IC

design.

Journal of Software

125 Volume 10, Number 2, February 2015

Cuicui Zhao was born in Xinjiang province, China. She received her B.E. degree from

Xiamen University, Xiamen, China, in 2011. She is currently pursuing the M.E. degree with

the major of electronic engineering in Xiamen University. Her research interests include

information security and network security.

Kun Pan was born in Fujian province, China. He received his B.E. degree from Xiamen

University, Xiamen, China, in 2011. Currently he is a master student in the College of

Information Science and Technology, Xiamen University, Xiamen, China. His primary research

area is focused on information security and information encryption.

Shuqiang Lin was born in Fujian province, China. He received his B.E. degree from Xiamen

University, Xiamen, China, in 2011. Currently he is a master student in the College of

Information Science and Technology, Xiamen University, Xiamen, China.

Xiurong Chen was born in Fujian province of China. She was graduated from the North

University of China, Taiyuan, Shanxi, China, in 2012. So far, she is a master student in the

College of Information Science and Technology, Xiamen University, Xiamen, Fujian, China.

Benbin Chen was born in Fujian, China. He received his B.E. degree on computer science

from Changsha University of Science & Technology, China, in 2004. And he received his M.S.

degree is software from Xiamen University, in 2008. He is currently working toward the

Ph.D. degree in Xiamen University. His research interests include embedded system.

Deguang Le was born in Fujian, China. He received his Ph.D. degree (with honors) from

Xiamen University, China in 2006. He now works as a teacher in the College of Engineering

in HuaQiao University. His research interests lie in information security and next generation

internet.

Donghui Guo was born in Fujian, China. He received his B.E. degree in radio physics in

Physics Department, Xiamen University, China (1984-1988). And he received the M.S.

degree and PhD degree in semiconductor, Physics Department, Xiamen University, China, in

1991 and 1994, respectively. Now he works as a professor in Information Science and

Technology Institute in XMU and his research interests include IC design, computer

network, neural network, mirco/nano device, BioMEMS.

Journal of Software

126 Volume 10, Number 2, February 2015

app:ds:professor

