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Abstract: Software fault prediction is a process which predicts that the software modules are faulty or not 

by using the software metrics and some soft computing methods. Software metrics are divided into two 

main categories such as object-oriented and method-level metrics.  While class relationships and 

dependencies are covered by object-oriented metrics, behaviors of the classes can be also measured by 

method-level metrics. Actually, the complementary relationship between these metric groups is focused in 

this study and different predictive models are built by using different parameter sets. Each parameter set 

includes some object-oriented and some method-level metrics. Furthermore, Mamdani style fuzzy inference 

system (FIS) is employed here to predict faultiness. In contrast to data-driven methods, FIS does not require 

historical or previous data for modeling. In fact, it is a rule-based approach and rules are extracted with the 

help of domain experts. In this study, the dataset which consists of the method-level and the class-level 

metrics’ values that are collected from KC1 project of PROMISE repository is employed and most successful 

model whose performance is 0.8181 according to the evaluation criteria (the area under receiver operating 

characteristics (ROC) curve (AUC)) is built with the parameters of “coupling between object”, “line of code” 

and, “cyclomatic complexity”.  
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1. Introduction 

Nowadays, software projects are enormous and they consist of a great deal of modules which have a lot of 

business rules; additionally there are many developers who work for these software projects. So, it is 

difficult to manage the projects and produce qualified products. The qualified software products must 

produce expected results. For this reason, the software products must be faultless as far as possible. At 

present, while developers are coding, the testing activities or code reviews are performed to reduce the 

fault amount of the software. The testing activities and code reviews are time consuming tasks for the large 

software projects and require more resource such as developers and testers. It is not possible to test every 

path of the software or review the whole code with the current resource of the project. So, the modules 

which are fault-prone must be specified. At this point, software fault prediction systems have critical role to 

determine whether software module is fault-prone or not. Thus, it makes easier for the project team to 

detect the fault-prone modules before faults occur. In addition to this, software fault prediction provides to 

identify software parts which are candidate for refactoring. In other words, software fault prediction 

systems can find complex or badly coded modules by using software metrics such as cyclomatic complexity, 
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coupling between objects etc. So that, these software parts can be re-written and simplified. In this way, 

software fault prediction helps allocate more effort and time on these specified modules. 

Up to now, to perform fault detection, many intelligent methods have been used like Artificial Neural 

Networks - ANN (i.e. [1], [2]), Support Vector Machines – SVM (i.e. [3]), Naive Bayes – NB (i.e. [4], [5], [6], [7]) 

and Random Forests – RF (i.e. [5], [8], [6]). The common point of the methods mentioned above is that all of 

them are data driven and used for classification problems like software fault prediction. Although there are 

some differences between them, the obtained model can be accepted as a mathematical function which 

associates inputs with the corresponding outputs. Actually, each model has the ability of learning by using 

its free parameters and training samples are used to adjust values of them. Since the learning stage is 

guided by the training samples, this approach can be called as learning from examples. As a result, model 

can learn only what it can learn from training samples. Thus, it can be said that data driven methods aim to 

make predictions by using domain dependent data. This means that there must be a dataset about the same 

or similar project to build software prediction system. Afterwards, dataset is split into train and test sets, 

model is built, training and testing process of the model are performed and, the performance of the model is 

evaluated. These methods which are mentioned above produce successful results as shown in the 

referenced studies because they learn the all rules from data automatically. However, they are not clear. In 

other words, they learn the rules but they don’t represent them to the users. The models which are built 

with the data-driven methods provide only the faultiness information of the modules and hide the reasons 

of the faultiness. So, the project team cannot know how to prevent the faulty codes. In contrast to this, the 

rules of the FIS model are explicit and adjusted by the domain experts. 

In this application path, resulted predictive models are customized according to the employed training 

dataset. For this reason, a prediction model which is built on a selected project may not be able to be used 

for another project because the model learns specific context of the project, not the general context of the 

projects. As a result, the prediction model must be trained again and again for each project. Also, the 

training phase is a time-consuming process. But more importantly, the data driven methods needs the 

historical or previous data to perform their task. However, it is not possible every time to collect the data of 

the software modules especially at the beginning of the project because of unavailability of the source code. 

In this study, we aimed to overcome these drawbacks by using Mamdani-style FIS which uses fuzzy rules 

to represent general context of the faultiness in software projects. In other words, we implemented 

software fault prediction by using expert opinion presented in the “if-then” rules. To perform the 

experiment, we used the object-oriented software metrics and the method-level software metrics together 

to observe complementary relationship between them. The KC1 project [9] of PROMISE repository [10] was 

used as the dataset and AUC which is very popular for this research area [11], [12] is utilized as the 

evaluation criteria. 

2. Related Works 

Several studies which are about software fault prediction and use different soft computing methods are 
summarized below. 

Vandecruys et al. aimed to predict the software faults by mining the software [13]. For this purpose, they 

used AntMiner+ which is a kind of data mining technique. After using the some data preprocessing methods 

such as oversampling, discretization and input selection, they applied AntMiner+ and then compared the 

performance of the model with the performances of the models which were built with C4.5, logistic 

regression and SVM. In the study of Czibula, Marian and Czibula; relational association rules mining which 

was a kind of classification method was used for defect prediction [14]. The irrelevant metrics were 

eliminated by preprocessing. Catal and Diri investigated the effect of the dataset size, metrics sets, and 

feature selection techniques on software fault prediction problem [5]. The methods which they investigated 
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can be given as NB, RF, J48, Immunos1, Immunos2, CLONALG, AIRS1, AIRS2 and AIRSParallel. The metrics 

which they used were McCabe’s, Halstead’s and object-oriented metrics. Finally, they claimed that the most 

important factor was the soft computing method which was used to build the software fault prediction 

model. Moreover, the performance of the prediction algorithm was affected by the dataset size. The most 

meaningful object-oriented metric was coupling between objects and the most irrelevant object-oriented 

metric was the depth of the inheritance tree. Mahaweerawat, Sophatsathit, Lursinsap and Musilek 

developed a novel model named MASP to determine the faults in the object-oriented software systems and 

achieved accuracy as 90% [15]. Gondra researched which software metric was more important for fault 

prediction by using ANN and SVM [16]. In addition to this, he compared the results of the ANN and SVM 

models. According to the study, SVM classified the software modules correctly with the rate of 87.4% while 

ANN did the same job with the rate of 72.61%. Zimmermann, Premraj and Zeller predicted the software 

faults on Eclipse which was an integrated development environment by using file-level, method-level and 

class-level metrics [17]. The accuracy values which they achieved in the study were between 0.612 and 

0.789. Zhou and Leung made software fault prediction experiments on KC1 dataset of NASA by employing 

NB, RF and Nearest Neighbor algorithms [6]. They found that the metric of coupling between object was the 

most useful metric for the fault prediction and the metrics of inheritance depth and lack of cohesion in 

methods were the most meaningless metrics. Menzies, DiStefano, Orrego and Chapman made an 

experiment on dataset of PROMISE repository by using NB and method-level metrics for the software fault 

prediction [18]. The achieved recall value for the model was 55%. Catal surveyed 90 papers about software 

fault prediction [11]. According to this survey, the software metrics were separated into 6 groups: 

method-level, class-level, file-level, component-level, process-level and different quantitative values level 

metrics. Between the years 1990 and 2007, the method-level metrics were used mostly. The most popular 

evaluation criteria was AUC. Like the same manner, Radjenovic, Hericko, Torkar and Zivkovic investigated 

the studies which were about software fault prediction [19]. The survey involved the studies which are 

between 1991 and 2011. To investigate the software metrics and to discuss the suitability of them for the 

fault prediction were the goals of this survey. According to survey, class-level metrics were more successful 

than the method-level metrics. Thwin and Quah applied ANN by using the object-oriented metrics for 

software quality prediction [1]. The object-oriented metrics were quite suitable for software quality and 

maintenance effort prediction. Kanmani, Uthariaraj, Sankaranarayanan and Thambidurai made a software 

fault prediction application of regression neural network with the object-oriented metrics [2]. Basili, Briand 

and Melo investigated the suitability of Chidamber-Kemerer’s metrics set for the software fault prediction 

[20]. They concluded that the metric set was suitable. In addition to this, coupling between objects, 

response for a class and weighted methods per class were the most significant metrics in the 

object-oriented metrics for the software fault prediction problem. Erturk and Sezer used FIS to predict 

software faults for the first time [21]. They used datasets in PROMISE repository and McCabe’s metrics set. 

They found that the effect of essential complexity metric wasn’t important for the software fault prediction 

model and achieved AUC value as 0.7304. Erturk and Sezer used FIS with the object-oriented metrics to 

predict software faults for the first time [22]. Although the size of the dataset (KC1) was small, the model 

produced a successful AUC result (0.8047). Moreover, it was shown that lack of cohesion in methods and 

depth of inheritance were not as significant as coupling between objects, response for a class and weighted 

methods per class. 

3. Method and Experiments 

FIS presents a rule-based approach and the rules are extracted with the help of fuzzy logic and the 

domain experts. According to fuzzy logic, each element belongs to a set with a particular membership 

759 Volume 10, Number 6, June 2015

Journal of Software



  

degree [23]. The basic element of FIS is linguistic variables which can have linguistic values and fuzzy rules 

are organized with linguistic variables by domain expert. Actually, each linguistic value corresponds to a 

fuzzy set. Generally, measured or observed input parameters are in crisp format and they are mapped to 

fuzzy sets by using a membership function. The output of membership function is a membership degree 

(µA(x)) which denotes belonging degree of crisp value “x” to fuzzy set “A” and its value can be in the interval 

of values between 0 and 1. Because of overlapping between fuzzy sets, some crisp values may belong to two 

fuzzy sets at the same time and this enables us to be close with style of human thinking. For example, if the 

threshold to be accepted as “tall” person is specified as “170 cm”, we cannot accept the “169 cm” as a “short” 

absolutely. In this example, “height” is a linguistic variable, “tall” and “short” are fuzzy sets (linguistic 

values), “170 cm” and “169 cm” are crisp values and, µtall(169) and µshort(169) are the belonging degrees 

of “169 cm” to the “tall” and “short” fuzzy sets. 

In our study, the values of the software metrics were used as crisp inputs and collected from PROMISE 

repository; the software metrics were accepted as input linguistic variables and they have 3 possible 

linguistic values or fuzzy sets: low(L), moderate(M) and high(H). The faultiness is accepted as output 

linguistic variable and it has 2 possible linguistic values: low(L) and high(H). To handle fuzziness at the 

maximum level, membership function of faultiness is organized with maximum overlapping between fuzzy 

sets. The domain experts are the two authors who have experience on software engineering. They specify 

the ranges of fuzzy sets (ranges of linguistic values of the metrics) and the fuzzy rules. 

The phases of FIS can be changed according to the type of the FIS model. In this experiment, 

Mamdani-style FIS [24] is used. Mamdani-style FIS comprises of four phases: fuzzification, rule evaluation, 

aggregation and defuzzification. 

1) Fuzzification: The crisp inputs are mapped with the fuzzy inputs by using the membership 

functions. The membership function has some properties like shape, ranges which should be 

adjusted by the domain experts. In the experiment, the triangle-shaped membership function is used 

and the ranges of the fuzzy sets can be obtained from Table 1. The zero values (the first two points of 

L fuzzy sets and the first points of M fuzzy sets) are standard for the lowest values of the metrics. The 

last points of M fuzzy sets and the last two points of H fuzzy sets are the maximum values of the 

metrics approximately. Finally, the other metric values (the middle points of the M fuzzy sets and the 

first points of the H fuzzy sets) are the optimum values which separate the faulty and faultless 

modules. 

2) Rule evaluation: In this phase, fuzzy rules which are constituted by the domain experts are fired. 

The typical fuzzy rule base resembles classical “If-Then” rules. They can include logical operators 

such as “and-or-not” and fuzzy output of each rule is calculated here. In other words, firing strength 

of each rule is calculated in this phase and we used “min” operator for this purpose. The rule set of 

the most successful model of the study is given in Table 2. The rules are generated according to the 

domain experts who have experience on the software metrics. The generated rules are transferable 

from one project to another because the rules are general for the all software projects. For example; 

if a class is high coupled with the other classes (CBO is high) and has too many lines (loc is high), it 

has high risk to be faulty (faultiness is high). 

3) Aggregation: The individual fuzzy outputs which are calculated in the second phase are aggregated 

to produce single fuzzy output of the model. For this purpose, the “max” operator is applied in this 

phase. 

4) Defuzzification: The produced single fuzzy output is converted to the crisp output. The centroid 

technique – center of gravity (COG) is used for this task in this study. Other methods could be 

employed such as max method which calculates the crisp output as the membership degree of fuzzy 

760 Volume 10, Number 6, June 2015

Journal of Software



  

set which has the largest. 

 

Table 1. Ranges of Employed Membership Functions for Input Parameters 

 
 

Table 2. Fuzzy Rules of the Best Model 
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In this experiment, we used two kinds of software metrics: object-oriented and method-level metrics. The 

object-oriented metrics are also known as class-level metrics. In other words, they are meaningful at 

class-level. For example, the depth of inheritance tree describes the level in the class hierarchy for a class 

[25]. However, the method-level software metrics can be calculated at method-level or class-level. In this 

experiment, the values of method-level metrics which are collected at class-level are used. By this way, it is 

aimed to observe the complementariness of these two kinds of software metrics. In this context, the used 

metrics are explained below: 

 Coupling between objects (CBO): It describes the dependency degrees between the classes [25]. When 

the value of the metric increases, maintainability and testability decrease. 

 Line of code (loc): The count of the significant code lines [26]. 

 Cyclomatic complexity (v(g)): If the each arrow is thought as an edge (e) and the each statement is 

thought as a vertex (v) in the flow graph of the source code, the cyclomatic complexity is calculated 

according to the formula below [26]: 

2)(  negv                                   (1) 

 Unique operators (µ1): The count of unique operators in the source code. The operators can be +, -, 

return, max and so on [27]. 

 Total operators (N1): The count of all operators in the source code [27]. 

CBO is the most popular object-oriented metric in this research area [22]. In the same way, loc and v(g) 

are more important than the other McCabe metrics [21]. For these reasons, the metrics were selected for 

the experiment. Because µ1 and N1 represent the complexity of the software by counting the operators, we 

also chose them for the second part of the experiment to compare them with the other method-level 

metrics (v(g) and loc). 

In PROMISE repository, KC1 project is the only project which has both object-oriented and method-level 

metrics. So, the project is used as the dataset for the experiment. We aren’t interested in the quality 

problems of the data and do not apply any cleaning techniques. There are four versions of the method-level 

metrics of KC1 project: maximum value, minimum value, average value and total value. For this experiment, 

the maximum values and the total values are preferred. The language of KC1 project is C++ and 59% of its 

modules include faults. 

In this study, AUC was used as the evaluation criteria because AUC is threshold-free and produces more 

reliable results. AUC is the most successful evaluation criteria to compare the performance of the modeling 

[28] and, it is very popular for this research area [11], [12]. In addition to this, to compare the results of the 

study with the results of the other studies, AUC is preferred for this study because AUC is used mostly in the 

other studies. For a good classification, the AUC value must be close to the value of 1. If AUC is smaller or 

equals to 0.5, it can be said that the prediction task fails. 

In this study, we had several purposes. First of all, we wanted to observe the result of the software fault 

prediction model when we used the method-level metrics and the object-oriented metrics together. 

Previously, we had used FIS with object-oriented and McCabe metrics separately for the software fault 

prediction model and achieved successful results [21], [22]. We thought that these metrics must be 

complement because the both of the metric set should be taken into account for a maintainable, reliable and 

testable software product. If we look something from a different standpoint, the classes consist of the 

attributes and the behaviors or methods. For this reason, each class contains method-level properties in 

reality. In other words, it is not enough for an object-oriented software to evaluate only the object-oriented 

metrics or only the method-level metrics within the context of software fault prediction problem. So, we 

chose the most important metrics from the studies of [21], [22]: CBO, loc and v(g). We have not used 
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Halstead’s method-level metrics so far. Thus, we also chose Halstead’s operator metrics which are primitive 

metrics, and related to the logical complexity. The chosen Halstead’s metrics are the closest ones to the 

cyclomatic complexity metric because the operator metrics count the operators like “or”, “and”, “+”, “-”, “max”, 

“min” which can be used in the statements like “if”, “while” that effect the cyclomatic complexity. We didn’t 

think of using derived Halstead’s metrics because the derived metrics don’t provide more information than 

the primitive ones provide and also using primitive and derived Halstead’s metrics together could cause 

correlation. In this way, we wanted to perform two experiments whose the metric sets were: CBO-loc-v(g) 

and CBO-loc-µ1-N1. However, KC1 dataset has 4 values for method-level metrics to transform them to 

class-level as we have mentioned before. For example, the values of v(g) for a class is calculated for each 

method of the class and the minimum, the maximum, the average and the sum v(g) values of the methods 

are collected for the class. The calculation is done for the all method-level metrics to transform them to 

class-level in the KC1 dataset. We thought that the maximum or sum values could be useful because 

minimum and average metric values provide less information. And finally we decided to make 4 

experiments for software fault prediction: 

1) FIS model with CBO – sum loc – sum v(g) 

2) FIS model with CBO – max loc – max v(g) 

3) FIS model with CBO – sum loc – sum µ1 – sum N1 

4) FIS model with CBO – max loc – max µ1 – max N1 

The most successful result (AUC: 0.8181) belongs to the second experiment and the first experiment has 

the second most successful result (AUC: 0.817). According to these results, it can be said that the FIS models 

can produce quite significant prediction results when object-oriented and method-level metrics are used 

together. The all achieved results can be found in Table 3 and the ROC curve of the second experiment is 

shown in Fig. 1. The effect of the maximum and sum values of the method-level metrics to the prediction 

model is quite little. The maximum values produce a little more successful AUC values. 

 

Table 3. AUC Values of Experiments 

Metrics AUC 

CBO – sum loc – sum v(g) 0.817 

CBO – max loc – max v(g) 0.8181 

CBO – sum loc – sum µ1 – sum 
N1 

0.773 

CBO – max loc – max µ1 – max 
N1 

0.7747 

 

 

Fig. 1. Result ROC curve. 
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When the results of this study are compared with the results of similar studies which used datasets from 

PROMISE repository and FIS model for fault prediction, it can be seen that the AUC value (0.8181) of this 

study is more successful than the results of the studies which use object-oriented metrics [22] (AUC: 0.8047) 

and method-level metrics [21] (AUC: 0.7304). According to these results, the object-oriented software 

metrics and method-level metrics are complementary for software fault prediction problem. Additionally, 

obtained results of this study are competitive with the studies which use data-driven methods for make 

prediction (i.e., [5] (RF - AUC: 0.79); [7] (NB – AUC: 0.79), [8] (Bootstrap Aggregating – AUC: 0.82); [29] 

(Multi-nominal Multivariate Logistic Regression – AUC: 0.79)). As a result, FIS is a plausible solution method 

to be used for software fault prediction. 

4. Conclusions 

The object-oriented metrics are very important for the quality of the software projects which are 

developed with the object-oriented programming languages. Beside these metrics, the importance of the 

method-level metric is pretty much for the software quality because the classes consist of methods. So, we 

thought that there might be a complementary relationship between these metric sets and aimed to observe 

this relationship. In this study, object-oriented software metrics and method-level software metrics are 

used together to accomplish the goal mentioned above. The achieved result (AUC=0.8181) shows that the 

assertion which object-oriented software metrics and method-level software metrics have complementary 

relationship is true. 

The software fault prediction has not been commonly employed practically in software development 

process because the prediction models are not developed as plugins or tools for the integrated development 

environments. In the future, we plan to develop a FIS based prediction tool which can run in the 

development environment by including or excluding the selected software metrics. According to us FIS is 

most suitable prediction method because of its expert based approach. Moreover, we will study on the 

software metrics sets such as McCabe’s, Halstead’s and object-oriented metrics in detail to show the 

corresponding code parts of the metrics to be able to highlight the faultiness possibility while coding. 
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