

Big Code: New Opportunities for Improving Software
Construction

Francisco Ortin*, Javier Escalada, Oscar Rodriguez-Prieto

University of Oviedo, Computer Science Department, c/Calvo Sotelo s/n, 33007, Oviedo, Spain

* Corresponding author. Tel.: +34 985 10 3172; email: francisco.ortin@gmail.com
Manuscript submitted June 30, 2016; accepted August 23, 2016.
doi: 10.17706/jsw.11.11.1083-1088

Abstract: An emerging research topic called big code has recently appeared. Big code is based on the idea

that open source code repositories can be used to create new kind of programming tools and services to

improve software reliability and construction. We discuss different fields of application of big code, and the

key issues to implement tools aimed at improving software construction following this approach. We

describe the existing works that have already used this idea to build tools for vulnerability detection,

software deobfuscation, automatic code completion for API usage, and efficient querying using detailed

source-code information. Then, we propose different fields of application and the key issues found. We

identify eight different fields where big code may be applied, and describe different examples for each field.

We also detect seven different issues that must be tackled when creating tools based on the big code

approach.

Key words: Big code, graph database, machine learning, probabilistic reasoning, program analysis

1. Introduction

In the last years, there has been an increasing interest in big data, namely processing and analyzing large

datasets. The objective of big data is to extract value from large datasets, such as the creation of predictive

models, generation of reports, data visualization, finding relationships between variables, and object

grouping (clustering). Big data is being used in many different fields such as medicine, finance, healthcare,

education, social networks and genomics.

At the same time, the use of open source code repositories (GitHub, SourceForge, BitBucket and CodePlex)

has significantly risen in the last decade. One example of this trend is the publication of the 10 millionth

GitHub repository. The first million repositories were created just under 4 years. The 10 millionth just took

48 days [1]. These massive codebases imply a unique opportunity for creating new kind of programming

tools and services to improve software reliability and construction, using machine learning and

probabilistic reasoning. Due to its similarity with big data, this research field has been termed “big

code” [2].

The main contributions of this paper are the description of the emerging topic of big code, and the new

opportunities it creates for improving software construction. To this end, we identify the existing work in

this field (Section 2), the expected fields of application of big code (Section 3), and different issues to be

considered in the usage of massive codebases (Section 4).

1083 Volume 11, Number 11, November 2016

Journal of Software

2. Existing Works

The Software Reliability Lab in the Department of Computer Science at ETH Zurich has produced several

notable results in big code using statistical reasoning. They created JSNice, a kind of deobfuscator that

predicts names of variables and built-in type annotations of JavaScript programs, using conditional random

fields (CRFs) [3]. They trained the CRF model with 10,517 projects from GitHub, predicting the correct

names for 63.4% of program identifiers and 81.6% for type annotations. Slang is another tool to perform

code completion for programs using APIs, reducing the problem of code completion to a natural-language

processing problem of predicting probabilities of sentences. They used both n-gram and recurrent neural

network models, obtaining the desired completion in the top 3 candidates in 90% of the cases. They also

investigated statistical machine translation from C# to Java, achieving 41% of the translated methods to be

semantically equivalent to the original ones [4].

The Machine Learning and Computer Security Research (MLSEC) at the University of Göttingen has also

developed different tools that process program representations to improve software security. In particular,

the Joern tool represents programs as code property graphs, a combination of abstract syntax trees (AST),

control flow graphs (CFG) and program dependency graphs (PDG), and stores them in a graph database [5].

That representation allows modeling templates of common vulnerabilities with graph traversals to identify

buffer and integer overflows, format string vulnerabilities, and memory disclosures. With that

infrastructure, they managed to identify 18 previously unknown vulnerabilities in the source code of the

Linux kernel.

The MLSEC has also used supervised learning algorithms for discovering vulnerabilities in source

code [6]. They take the ASTs of code with known vulnerabilities to extrapolate them by determining

structural patterns. Then, functions potentially suffering from the same flaw can be suggested to the analyst.

They applied this method to discover 10 zero-day vulnerabilities in 4 open-source projects [6]. Chucky is

another tool that exposes missing checks in vulnerable code, learning from the analysis of programs that do

not have those vulnerabilities [7]. Chucky found 12 previously unknown vulnerabilities in 2 popular

software projects.

Regarding the representation of programs, Urma and Mycroft argue that graph data models and their

associated query languages provide a unifying conceptual model, and an efficient scalable implementation

to store full source-code detail [8]. Based on this idea, Wiggle is a tool that stores overlapping graphs as a

mixture of AST, type information, CFG and data-flow levels. The experiments showed that Wiggle scales to

multi-million-line programs, and it is more expressive than source-code query languages [8].

3. Potential Fields of Application

We now discuss some fields of application of big code that we believe might be active topics of research in

the following years. We classify them regarding the main techniques to be used, and describe for each

classification some example problems worth solving.

 Statistical modelling methods. Statistical methods such as conditional random fields can be used to

extract useful information from existing applications, and provide statistically likely solutions to

problems that are difficult to solve with traditional rule based techniques [3]. These methods can be

used to provide code completion after analyzing recurrent idioms, perform automatic type

annotation of gradually typed languages [3], obtain semantic information of programs that use

contracts (Eiffel, Code Contracts and D) and improve deobfuscation –not only for variable names.

 Machine learning for the extrapolation of known patterns. Yamaguchi et al. [6] showed how ASTs of

programs showing a similar pattern can be embedded in a vector space to identify those patterns, and

then extrapolate them to a code base. This technique can be used, apart from vulnerability detection,

1084 Volume 11, Number 11, November 2016

Journal of Software

for predicting errors not detected by compilers, such as lack of exception handling in languages

without the throws descriptor, null reference exceptions, and race conditions. In general, we think

this technique may be used to extrapolate patterns of undesirable code.

 Statistical analysis of co-occurrence and anomaly detection. By analyzing high-quality code, a

probabilistic model can be built by computing the probability of co-occurrence of different elements

in the same source code pattern (e.g., in Java overriding hashCode also commonly requires

overriding equals [9]). Similarly, it can also be used for anomaly detection compared to the codebase

of high-quality programs (e.g., using a Java AutoCloseable object with neither a try-with-resources

statement nor a finally block). This technique was used by MLSEC to determine missing checks in

vulnerable source code [7], but it can be generalized to many different scenarios.

 Natural language processing (NLP). NLP techniques such as n-gram and recurrent neural network

models were used to synthesize sequences of calls to some APIs, together with their arguments [10].

The combination of NLP and statistical reasoning may be used for other tasks such as the automatic

creation of program test cases, default implementation of methods and functions, automatic

classification of programs behaviors by using latent semantic analysis [6], and sophisticated code

completion from program structures and source comments.

 Supervised learning. The program representation may be extended with other labeled information for

a set of training codebases, to later predict that labeled information. The inferred function may be

valuable to improve the software construction process. One example is improving the decompilation

process, learning from recurrent patterns that specific compilers use to generate binary code [11].

Another example is predicting the performance benefit of annotating the type of a variable in a

gradually typed language, using regression techniques [12].

 Knowledge-based systems. Both Joern and Wiggle (Section 2) represent programs as different kinds of

graphs in a graph database, and later perform queries using a domain-specific language (DSL)

provided by that database. They used this approach to detect vulnerabilities, covariant array

assignment, and the use of Java generic wildcards [8]. The valuable information extracted by

performing static program analysis (e.g., methods overriding another method, methods calling

another method, classes implementing one interface, and types using another type) can be extended

by a rule-based knowledge system, which in turn uses a DSL to gather that valuable information

stored in the graph database. With this approach, experts may create systems for numerous purposes,

such detecting non-refactored code, measuring software metrics, ensuring high-level guidelines like

the well-known Oracle and Carnegie Mellon Java guidelines [13], detecting typical semantic errors

not checked by the compiler [9], and identifying typical performance problems.

 Web-based collaborative systems. The previous rule-based knowledge system could be provided as a

website as JSNice [3], so that programmers may check the limitations of their code online. They could

also include specific knowledge as experts to be used in their own programs. In a collaborative

environment, these rules may even be promoted to the global system. The system may also be used as

a service provider, following the programming copilot metaphor proposed by Kite [14]. Besides, the

programs used in the collaborative system could also be incorporated in the system codebase.

 Unsupervised learning. It can be analyzed how different programming elements such as methods,

classes, packages and interfaces are classified, considering all the different features that can be

extracted from its representation. The groups created can be used for many different purposes:

discovering unknown software patterns, finding relationships between program elements, helping to

reform functionality that has become dispersed because of software evolution, identifying software

with related functionality, recommending source code patterns based on the program structures in

1085 Volume 11, Number 11, November 2016

Journal of Software

the same group, and program anomaly detection.

4. Issues to Be Considered

To achieve the identified fields of application of big code, the following issues need to be addressed.

1) Static program analysis. To gather detailed information about programs, static program analysis must

be performed. To this end, the information gathering process may be included as a plugin of an

existing compiler, extracting the analysis information. This process commonly requires considerable

computing resources.

2) Program representation. Programs can be represented with multiple different structures such as ASTs,

CFGs, PDGs, type graphs, and data-flow graphs. Besides, these graphs also overlap, since some nodes

may belong to different structures at the same time. A structured representation of programs

representing this information must be carefully defined, since it will be the knowledge base of the

system.

3) Efficient storage. The program representation described above should be stored in a database to

perform efficient queries. Both Wiggle and Joern use the Neo4j graph database. In Wiggle, storing 12

Java well-known projects took between 2 and 10 times longer than compiling it with javac.

4) Knowledge representation. The knowledge representation is based on queries against the program

representation. Therefore, a powerful and efficient query language must be used to retrieve this

knowledge. Besides, that language should also support knowledge inference and graph

transformations. Wiggle and Joern use, respectively, the Cypher and Gremlin query languages.

5) Embedding in vector space. The graph structures identified in the second point of this enumeration

represent a rich source of information. However, most of the machine learning algorithms cannot be

applied directly to this type of data, since they commonly use numerical vectors. A key issue is how

these graph structures are transformed into vectors, since they need to capture the structure of the

programs. The MLSEC group has experimented with different transformations for generalizing

vulnerability extrapolation [6].

6) Algorithm selection and runtime performance. Another issue to tackle is the algorithm to be used for

each problem. Besides the problem of selecting the appropriate algorithm, we also have to deal with

the computation requirements of each algorithm. Similar to big data, the information gathered by

statically analyzing massive codebases can produce impressive large datasets for training predictive

models.

7) Identifying high-quality software. In the previous section, we propose different fields of application

where the learning algorithm should be trained with high-quality software. A difficult task to

undertake is identifying those programs with the expected level of quality.

5. Conclusions

We have analyzed how the emerging big code research field can create new opportunities for building

programming tools and services to improve software reliability and construction. We think this research

line will be active in the following years, and we identify different fields of applications based on the works

that have recently emerged.

We are currently working on improving decompilation using machine learning [11], and predicting the

performance gain of adding type annotations to variables in a gradually typed program [12]. We also plan to

build a web-based collaborative system to support a rule-based expert system based on the knowledge

extracted from static program analysis, stored in graph databases.

Acknowledgment

1086 Volume 11, Number 11, November 2016

Journal of Software

This work has been funded by the European Union, through the European Regional Development Funds

(ERDF); and the Principality of Asturias, through its Science, Technology and Innovation Plan (grant

GRUPIN14-100).

References

[1] Doll, B. (2013). 10 million repositories. GitHub. Retrieved from

https://github.com/blog/1724-10-million-repositories.

[2] Defense Advanced Research Projects Agency. (2014). MUSE envisions mining "big code" to improve

software reliability and construction. Retrieved from

http://www.darpa.mil/news-events/2014-03-06a

[3] Raychev, V., Vechev, M., & Krause, A. (2015). Predicting program properties from "big code", in:

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (pp. 111-124.

[4] Karaivanov, S., Raychev, V., & Vechev, M. (2014). Phrase-based statistical translation of programming

languages. Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software, Onward! (pp. 173-184). ACM, New York, NY, USA.

[5] Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014). Modeling and discovering vulnerabilities with code

property graphs. Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP'14 (pp. 590-604).

IEEE Computer Society, Washington, DC, USA.

[6] Yamaguchi, F., Lottmann, M., & Rieck, K. (2012). Generalized vulnerability extrapolation using abstract

syntax trees. Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC'12 (pp.

359-368). ACM, New York, NY, USA.

[7] Yamaguchi, F., Wressnegger, C., Gascon, H., & Rieck, K. (2013). Chucky: Exposing missing checks in

source code for vulnerability discovery. Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, CCS'13 (pp. 499-510). ACM, New York, NY, USA.

[8] Urma, R., & Mycroft, A. (2015). Source-code queries with graph databases - with application to

programming language usage and evolution. Science of Computer Programming, 97, 127-134.

[9] Bloch, J. (2008). Effective Java (The Java Series) (2nd Edition). Prentice Hall PTR, Upper Saddle River, NJ,

USA.

[10] Raychev, V., Vechev, M., & Yahav, E. (2014). Code completion with statistical language models.

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI'14 (pp. 419-428). ACM, New York, NY, USA.

[11] Escalada, J., & Ortin, F. (2014). An adaptable infrastructure to generate training datasets for

decompilation issues. New Perspectives in Information Systems and Technologies, Springer International

Publishing, pp. 85-94.

[12] Takikawa, A., Feltey, D., Greenman, B., New, M. S., Vitek, J., & Felleisen, M. (2016). Is sound gradual

typing dead? Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL’16 (pp. 456-468) ACM, New York, NY, USA.

[13] CERT, Carnegie Mellon University. (2016). Java coding guidelines. Retrieved from

https://www.securecoding.cert.org/confluence/display/java/Java+Coding+Guidelines.

[14] Kite, Your program copilot. (2016). Retrieved from https://kite.com.

Francisco Ortin was born in 1973 and he is an associate professor of the Computer

Science Department at the University of Oviedo, Spain. He is the head of the

Computational Reflection Research Group (http://www.reflection.uniovi.es). He received

1087 Volume 11, Number 11, November 2016

Journal of Software

his BSc in computer science in 1994, and his MSc in computer engineering in 1996. In 2002 he was awarded

his PhD entitled A Flexible Programming Computational System developed over a Non-Restrictive Reflective

Abstract Machine. He has been the principal investigator of different research projects funded by Microsoft

Research and the Spanish Department of Science and Innovation. His main research interests include

dynamic languages, type systems, aspect-oriented programming, computational reflection, and runtime

adaptable applications.

Javier Escalada was born in 1988 and he is a full-time PhD student at the Computer Science

Department of the University of Oviedo, Spain. He received his BSc degree in computer

science in 2010. In 2011 he was awarded an MSc in computer security from Deusto

University, Bilbao. Then, We obtained an MSc in artificial intelligence in 2012 from the

Polytechnic School of Madrid. His PhD thesis is focused on creating a platform for detecting

binary patterns in programs using machine learning. That platform is currently used to

improve the information gathered by existing decompilers.

Oscar Rodriguez-Prieto was born in 1992 and he is a full-time PhD student at the

Computer Science Department of the University of Oviedo, Spain. He received his BSc

degree in software engineering in 2014. In 2015 he was awarded an MSc in artificial

University from the Spanish National Distance Education University (UNED). His PhD

thesis is aimed at using big code to improve software reliability and construction.

1088 Volume 11, Number 11, November 2016

Journal of Software

