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Abstract: An emerging research topic called big code has recently appeared. Big code is based on the idea 

that open source code repositories can be used to create new kind of programming tools and services to 

improve software reliability and construction. We discuss different fields of application of big code, and the 

key issues to implement tools aimed at improving software construction following this approach. We 

describe the existing works that have already used this idea to build tools for vulnerability detection, 

software deobfuscation, automatic code completion for API usage, and efficient querying using detailed 

source-code information. Then, we propose different fields of application and the key issues found. We 

identify eight different fields where big code may be applied, and describe different examples for each field. 

We also detect seven different issues that must be tackled when creating tools based on the big code 

approach. 

 

Key words: Big code, graph database, machine learning, probabilistic reasoning, program analysis 

 
 

1. Introduction 

In the last years, there has been an increasing interest in big data, namely processing and analyzing large 

datasets. The objective of big data is to extract value from large datasets, such as the creation of predictive 

models, generation of reports, data visualization, finding relationships between variables, and object 

grouping (clustering). Big data is being used in many different fields such as medicine, finance, healthcare, 

education, social networks and genomics. 

At the same time, the use of open source code repositories (GitHub, SourceForge, BitBucket and CodePlex) 

has significantly risen in the last decade. One example of this trend is the publication of the 10 millionth 

GitHub repository. The first million repositories were created just under 4 years. The 10 millionth just took 

48 days [1]. These massive codebases imply a unique opportunity for creating new kind of programming 

tools and services to improve software reliability and construction, using machine learning and 

probabilistic reasoning. Due to its similarity with big data, this research field has been termed “big 

code” [2]. 

The main contributions of this paper are the description of the emerging topic of big code, and the new 

opportunities it creates for improving software construction. To this end, we identify the existing work in 

this field (Section 2), the expected fields of application of big code (Section 3), and different issues to be 

considered in the usage of massive codebases (Section 4). 
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2. Existing Works 

The Software Reliability Lab in the Department of Computer Science at ETH Zurich has produced several 

notable results in big code using statistical reasoning. They created JSNice, a kind of deobfuscator that 

predicts names of variables and built-in type annotations of JavaScript programs, using conditional random 

fields (CRFs) [3]. They trained the CRF model with 10,517 projects from GitHub, predicting the correct 

names for 63.4% of program identifiers and 81.6% for type annotations. Slang is another tool to perform 

code completion for programs using APIs, reducing the problem of code completion to a natural-language 

processing problem of predicting probabilities of sentences. They used both n-gram and recurrent neural 

network models, obtaining the desired completion in the top 3 candidates in 90% of the cases. They also 

investigated statistical machine translation from C# to Java, achieving 41% of the translated methods to be 

semantically equivalent to the original ones [4]. 

The Machine Learning and Computer Security Research (MLSEC) at the University of Göttingen has also 

developed different tools that process program representations to improve software security. In particular, 

the Joern tool represents programs as code property graphs, a combination of abstract syntax trees (AST), 

control flow graphs (CFG) and program dependency graphs (PDG), and stores them in a graph database [5]. 

That representation allows modeling templates of common vulnerabilities with graph traversals to identify 

buffer and integer overflows, format string vulnerabilities, and memory disclosures. With that 

infrastructure, they managed to identify 18 previously unknown vulnerabilities in the source code of the 

Linux kernel. 

The MLSEC has also used supervised learning algorithms for discovering vulnerabilities in source 

code [6]. They take the ASTs of code with known vulnerabilities to extrapolate them by determining 

structural patterns. Then, functions potentially suffering from the same flaw can be suggested to the analyst. 

They applied this method to discover 10 zero-day vulnerabilities in 4 open-source projects [6]. Chucky is 

another tool that exposes missing checks in vulnerable code, learning from the analysis of programs that do 

not have those vulnerabilities [7]. Chucky found 12 previously unknown vulnerabilities in 2 popular 

software projects. 

Regarding the representation of programs, Urma and Mycroft argue that graph data models and their 

associated query languages provide a unifying conceptual model, and an efficient scalable implementation 

to store full source-code detail [8]. Based on this idea, Wiggle is a tool that stores overlapping graphs as a 

mixture of AST, type information, CFG and data-flow levels. The experiments showed that Wiggle scales to 

multi-million-line programs, and it is more expressive than source-code query languages [8]. 

3. Potential Fields of Application 

We now discuss some fields of application of big code that we believe might be active topics of research in 

the following years. We classify them regarding the main techniques to be used, and describe for each 

classification some example problems worth solving. 

 Statistical modelling methods. Statistical methods such as conditional random fields can be used to 

extract useful information from existing applications, and provide statistically likely solutions to 

problems that are difficult to solve with traditional rule based techniques [3]. These methods can be 

used to provide code completion after analyzing recurrent idioms, perform automatic type 

annotation of gradually typed languages [3], obtain semantic information of programs that use 

contracts (Eiffel, Code Contracts and D) and improve deobfuscation –not only for variable names. 

 Machine learning for the extrapolation of known patterns. Yamaguchi et al. [6] showed how ASTs of 

programs showing a similar pattern can be embedded in a vector space to identify those patterns, and 

then extrapolate them to a code base. This technique can be used, apart from vulnerability detection, 
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for predicting errors not detected by compilers, such as lack of exception handling in languages 

without the throws descriptor, null reference exceptions, and race conditions. In general, we think 

this technique may be used to extrapolate patterns of undesirable code.  

 Statistical analysis of co-occurrence and anomaly detection. By analyzing high-quality code, a 

probabilistic model can be built by computing the probability of co-occurrence of different elements 

in the same source code pattern (e.g., in Java overriding hashCode also commonly requires 

overriding equals [9]). Similarly, it can also be used for anomaly detection compared to the codebase 

of high-quality programs (e.g., using a Java AutoCloseable object with neither a try-with-resources 

statement nor a finally block). This technique was used by MLSEC to determine missing checks in 

vulnerable source code [7], but it can be generalized to many different scenarios. 

 Natural language processing (NLP). NLP techniques such as n-gram and recurrent neural network 

models were used to synthesize sequences of calls to some APIs, together with their arguments [10]. 

The combination of NLP and statistical reasoning may be used for other tasks such as the automatic 

creation of program test cases, default implementation of methods and functions, automatic 

classification of programs behaviors by using latent semantic analysis [6], and sophisticated code 

completion from program structures and source comments.  

 Supervised learning. The program representation may be extended with other labeled information for 

a set of training codebases, to later predict that labeled information. The inferred function may be 

valuable to improve the software construction process. One example is improving the decompilation 

process, learning from recurrent patterns that specific compilers use to generate binary code [11]. 

Another example is predicting the performance benefit of annotating the type of a variable in a 

gradually typed language, using regression techniques [12]. 

 Knowledge-based systems. Both Joern and Wiggle (Section 2) represent programs as different kinds of 

graphs in a graph database, and later perform queries using a domain-specific language (DSL) 

provided by that database. They used this approach to detect vulnerabilities, covariant array 

assignment, and the use of Java generic wildcards [8]. The valuable information extracted by 

performing static program analysis (e.g., methods overriding another method, methods calling 

another method, classes implementing one interface, and types using another type) can be extended 

by a rule-based knowledge system, which in turn uses a DSL to gather that valuable information 

stored in the graph database. With this approach, experts may create systems for numerous purposes, 

such detecting non-refactored code, measuring software metrics, ensuring high-level guidelines like 

the well-known Oracle and Carnegie Mellon Java guidelines [13], detecting typical semantic errors 

not checked by the compiler [9], and identifying typical performance problems.  

 Web-based collaborative systems. The previous rule-based knowledge system could be provided as a 

website as JSNice [3], so that programmers may check the limitations of their code online. They could 

also include specific knowledge as experts to be used in their own programs. In a collaborative 

environment, these rules may even be promoted to the global system. The system may also be used as 

a service provider, following the programming copilot metaphor proposed by Kite [14]. Besides, the 

programs used in the collaborative system could also be incorporated in the system codebase. 

 Unsupervised learning. It can be analyzed how different programming elements such as methods, 

classes, packages and interfaces are classified, considering all the different features that can be 

extracted from its representation. The groups created can be used for many different purposes: 

discovering unknown software patterns, finding relationships between program elements, helping to 

reform functionality that has become dispersed because of software evolution, identifying software 

with related functionality, recommending source code patterns based on the program structures in 
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the same group, and program anomaly detection. 

4. Issues to Be Considered 

To achieve the identified fields of application of big code, the following issues need to be addressed. 

1) Static program analysis. To gather detailed information about programs, static program analysis must 

be performed. To this end, the information gathering process may be included as a plugin of an 

existing compiler, extracting the analysis information. This process commonly requires considerable 

computing resources. 

2) Program representation. Programs can be represented with multiple different structures such as ASTs, 

CFGs, PDGs, type graphs, and data-flow graphs. Besides, these graphs also overlap, since some nodes 

may belong to different structures at the same time. A structured representation of programs 

representing this information must be carefully defined, since it will be the knowledge base of the 

system.  

3) Efficient storage. The program representation described above should be stored in a database to 

perform efficient queries. Both Wiggle and Joern use the Neo4j graph database. In Wiggle, storing 12 

Java well-known projects took between 2 and 10 times longer than compiling it with javac. 

4) Knowledge representation. The knowledge representation is based on queries against the program 

representation. Therefore, a powerful and efficient query language must be used to retrieve this 

knowledge. Besides, that language should also support knowledge inference and graph 

transformations. Wiggle and Joern use, respectively, the Cypher and Gremlin query languages.  

5) Embedding in vector space. The graph structures identified in the second point of this enumeration 

represent a rich source of information. However, most of the machine learning algorithms cannot be 

applied directly to this type of data, since they commonly use numerical vectors. A key issue is how 

these graph structures are transformed into vectors, since they need to capture the structure of the 

programs. The MLSEC group has experimented with different transformations for generalizing 

vulnerability extrapolation [6]. 

6) Algorithm selection and runtime performance. Another issue to tackle is the algorithm to be used for 

each problem. Besides the problem of selecting the appropriate algorithm, we also have to deal with 

the computation requirements of each algorithm. Similar to big data, the information gathered by 

statically analyzing massive codebases can produce impressive large datasets for training predictive 

models.  

7) Identifying high-quality software. In the previous section, we propose different fields of application 

where the learning algorithm should be trained with high-quality software. A difficult task to 

undertake is identifying those programs with the expected level of quality.  

5. Conclusions 

We have analyzed how the emerging big code research field can create new opportunities for building 

programming tools and services to improve software reliability and construction. We think this research 

line will be active in the following years, and we identify different fields of applications based on the works 

that have recently emerged. 

We are currently working on improving decompilation using machine learning [11], and predicting the 

performance gain of adding type annotations to variables in a gradually typed program [12]. We also plan to 

build a web-based collaborative system to support a rule-based expert system based on the knowledge 

extracted from static program analysis, stored in graph databases. 
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