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Abstract: XML message filtering and matching are important operations for the application layer XML 

message multicast. As a publish/subscribe system and a specific case of content-based multicast in the 

application layer, XML message multicast depends highly on the data filtering and matching processes. As 

the XML applications emerge, efficient XML message filtering and matching become more desirable. Many 

XML filtering techniques have been proposed in the literature. Most of those techniques do not address 

complex queries with predicates, twig patterns or branches; some require post-processing or a special 

coding scheme, which is either time consuming or becomes difficult for management for dynamic changes 

of user queries. This paper addresses the existing gap in the literature and proposes a new technique called 

BFilter which performs the XML message filtering and matching operation by leveraging branch points in 

both the XML publication document and user requests or queries. BFilter evaluates user queries that use 

backward matching branch points to delay further matching processes until branch points match in the 

XML publication document and the user query. Using the backward branch point matching technique, XML 

message filtering can be performed more efficiently as the probability of mismatching in the matching 

process is reduced. A number of experiments have been conducted and the results demonstrate that for 

complex queries, BFilter has a better performance than the well-known YFilter.  
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1. Introduction 

Filtering and matching of published documents or messages, and application layer multicasting are two 

critical operations in Web services-based publish/subscribe (pub/sub) systems. Efficient techniques for 

performing these operations are crucial for achieving high system performance, especially as the volume, 

variety, and velocity of data has been increasing quickly. Filtering and matching operations are needed to 

identify registered or interested subscribers for the published messages, whereas application layer 

multicast is needed for data dissemination to subscribers. To effectively support pub/sub systems, the 

construction and maintenance of the overlay structure are the main issues in application layer multicasting.  

Multicasting can be realized at different layers of the Internet architecture. In network layer multicast 

techniques, packets are replicated and forwarded by network routers. On the other hand, application layer 

multicast uses an overlay on top of the physical network for communication between hosts. Application 

layer multicast has some advantages over network layer multicast. First, it does not need to make changes 

at the router level, which makes implementation more flexible. Second, it can arbitrarily group receivers 
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from any location in the network. Network layer multicast, however, uses IP addresses to restrict receivers 

to certain subnets. This means that the receivers within a subnet are usually grouped geographically, which 

is not appropriate in the case of pub/sub systems, in which the receivers (subscribers) with a particular 

interest can be located anywhere in the network. 

Application layer multicast has a few disadvantages. First, the packets are sent along the application 

overlay layer from a source to a destination, instead of following the shortest path at the network layer. 

Thus, the path traversed by a packet may be longer in comparison to network layer multicast. Second, 

duplicated packets may occur at some links. Thus, the main challenge in application layer multicast is for 

end systems to construct effective overlay structures.  

In pub/sub systems, a subscriber registers a subscription to the pub/sub service and receives published 

messages that match the subscription. Intuitively, the sources (publishers) can allow their subscribers to 

retain whatever they want, and send all the data to all subscribers. This approach is definitely not efficient 

because there are too many duplicated data packets that reduce system throughput and waste network 

resources as well as increase the processing overhead for the intermediate nodes.  

Many research efforts have discussed multicast in the context of pub/sub systems, e.g., [1]–[17]. 

Generally speaking, there are two ways to carry out multicast in this area. The first is to identify the 

subscriber by using the subscription information, and then send appropriate data to these subscribers. Data 

matching can be performed either at the source or at some centralized brokers. The second method is to 

perform data matching on the fly. In this way, the source simply pushes the data into the network that has a 

multicast tree composed of routers or called brokers in this context. The application-layer routers or 

brokers on the tree have a filtering mechanism to dispatch proper subsets of the messages received to their 

children. The children in turn perform data matching and dispatching and forward the matched data to 

their children. This continues until the filtered data reaches the subscribers.  

The first aforementioned approach may use keyword-based multicast or distributed hash table-based 

multicast. Keyword-based multicast groups subscribers using the keywords in their subscriptions [2], [7] 

[18]-[22]. Distributed hash table-based multicast uses hash functions to assign keys to subscribers by using 

their subscriptions [23]. These methods are efficient in terms of delivery speed. However, the 

keyword-based approach is less expressive because the subscriptions contain only keywords. The 

distributed hash table approach is not content-aware. In both of these methods, data matching is based on 

the key or keywords but not the content. The second approach delivers data according to the content. The 

subscription description is used to perform the matching. The subscription can be presented either in an 

n-tuple containing n information spaces, or in XPath expressions [8], [24]–[26]. An XPath expression is used 

for addressing portions of a XML file. XPath is more expressive than n-tuple [24]–[26] and has been used in 

this research. 

A XML file is a tree-based structure for describing information. The data content is available between a 

start tag and an end tag. The pair of tags not only scopes the data it contains, but also describes the data, 

possibly with some constraints on the tags. One XML document has one root tag pair. The root tag pair can 

have child tag pairs and the children can have their own child tag pairs, and so on. This structure forms a 

tree with one single root. As an XML file is semi-structured, it naturally applies filters in the hierarchy to 

perform data matching and delivery. XML-based multicast can properly match and deliver messages to 

subscribers. However, because it is more difficult to index and identify the elements in the XML file, 

compared to the content-based message format, which can be considered to be an n-dimensional array 

containing keywords, the filtering process in each node is time consuming. Hence, the performance of 

XML-based multicast depends heavily on the approach used to process the XML message.  

A preliminary report described the basic idea of a novel XML message filtering algorithm—BFilter [27]. 
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(B represents branch points.) This paper examines various filtering approaches and discusses BFilter in 

details. BFilter realizes the tree structure in both XML documents and user requests with nested paths. A 

user request or query with nested paths is called complex query which is resource intensive for the filtering 

and matching operation. To mitigate the performance challenge for complex queries, BFilter conducts the 

XML message filtering and matching process by identifying branch points in both XML documents and user 

requests using a bottom-up approach. The main advantage of such an approach is that the filtering 

evaluation of user requests uses backward matching branch points to delay further matching, so that the 

probability of a mismatch is reduced and XML message filtering can be performed more efficiently.  

The measurement results from the current implementation show that BFilter performs significantly 

better than YFilter while handling complex queries. The performance improvement for BFilter obtained 

from a number of experiments can be as high as about 70% for some scenarios using complex queries. This 

is observed when the values of the five parameters (Query Depth, Number of branches, Probability of 

wildcard, Probability of ancestor/descendant relation and Number of predicates) used in the experiments 

are varied. In summary, the main contributions of the paper include: 

 A novel approach to handle complex queries without decomposition, which allows the matching of 

complex queries to be processed more efficiently. See Section 2 for more detailed description and 

comparison with existing approaches. 

 Emphasis on branch point matching during the bottom-up process to reduce the possibility of 

mismatch for performance improvement. 

The rest of the paper is organized as follows. Section 2 presents the background and related work. 

Section 3 discusses the backward matching branch point algorithm. Section 4 demonstrates the some 

experimental results. Finally, Section 5 concludes the paper. 

2. Background and Related Work 

There are two important operations performed in a XML pub/sub system: XML message filtering and 

matching, and XML message multicast. This paper focuses on techniques for XML message filtering and 

matching. A representative set of related work that focuses on XML filtering and matching is presented in 

this section.  

XFilter [24] is based on deterministic finite automata (DFA), which uses linked lists to store user requests 

and handle each request individually. It is capable of handling XPath relationship notations, such as 

ancestor/descendant (represented by a ‘//’ in XPath) as well as a wildcard ‘*’. Because it stores requests 

separately, the same segments of a different request cannot share storage space and have to be matched 

individually. XQRL [9] and XScan [11] are also DFA-based approaches. 

DFA has a potential state explosion problem due to its exponential growth in the number of XPath 

expressions. One approach to overcome this issue is to use lazy DFA [10]. With the lazy DFA technique, 

states and transitions are calculated at run time, not at the compile time. In other words, there is no need to 

calculate all the states in the beginning, hence, the number of states can be reduced. However, for 

complicated XML data, the number of states still grows exponentially [10]. To reduce the number of states, 

Zhao and Xia [38] proposed an approach that uses stream index and hash table to evaluate and skip invalid 

elements in XPath expressions for performance improvement. 

Another solution to mitigate the state explosion problem is to use nondeterministic finite automata 

(NFA). YFilter [29] uses NFA to emphasize prefix sharing for performance improvement. However, the 

ancestor/descendant relationship in complex queries introduces more matching states, which may also 

result in the number of active states increasing exponentially [30]. Post-processing is another feature of 

YFilter. To deal with queries with nested paths (complex queries), YFilter decomposes a query into simple 
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queries and matches them separately. For example, a complex query /a/*[c]/*/c will be split into /a/*/c 

(Q1) and /a/*/*/c (Q2). After NFA execution has been completed for the entire document, post-processing 

starts to verify if Q1 and Q2 are both matched and whether the first “*” is matched in the same place in the 

document. 

In contrast to YFilter, AFilter emphasizes suffix commonality to reduce mismatches [31]. The objective of 

AFilter is to overcome the disadvantage of YFilter by constructing user queries or requests as a directed 

graph (AxisView). The transition between two states is conditional for each request. It depends on the type 

of relationship between the corresponding element names for each state. In this way, the 

ancestor/descendant relationship can be treated as a self transition. The outgoing state is simply a waiting 

state. Thus the increment in the number of active states is not significant. 

AFilter uses a triggering mechanism to delay the matching process until a trigger condition is met. Each 

node in the directed graph corresponds to a label and each edge corresponds to a set of axis tests. Each 

edge is annotated with a set of axis assertions for verification. Unlike YFilter, which uses a stack to store 

matched active states, AFilter uses a set of named stacks to store matched states. The states are called 

objects because they also maintain pointers that allow tracing of previous matching states. Therefore, the 

state stacks actually store the matching paths. AFilter implements these data structures to backtrack the 

matching path whenever an end of request is triggered during the process of matching.  

Optionally, AFilter uses PRLabel-tree to leverage prefix sharing by caching path expressions based on the 

commonalities in their prefixes, and uses SFLabel-tree to enhance suffix sharing by caching path 

expressions based on their overlapping suffixes. AFilter does not explicitly deal with requests with nested 

paths, nor does it address attribute-based expressions and predicates. 

The hybrid algorithm [32] enhances performance from the viewpoint of engineering. It is intended to 

speed up the filtering process by taking advantage of both Yfilter and Afilter. The hybrid algorithm 

pre-processes the user requests and separates them into two groups. One group contains the so-called 

simple requests and the other contains the complex requests. A simple request here means that the request 

has no wildcard or ancestor/descendant relationship; otherwise, it is a complex request. The complex 

requests are sent to Afilter. Neither Afilter nor the hybrid algorithm explicitly deals with nested paths. The 

performance of the hybrid algorithm depends on the percentage of simple requests in the total user 

requests. However, the cost of switching the two underlying structures is unknown. Moreover, the cost of 

expanding its capability to handle a nested path is not predictable. This is because the decomposed 

requests may be either simple or complex.  

Chen et al. proposed a novel XML message filtering algorithm called GFilter [33]. In Gfilter, 

post-processing of complex queries is improved using Tree-of-Path (TOP) coding scheme [34] and the 

query is represented by the Generalized-Tree-Pattern (GTP) introduced by Chen el al. [35]. GFilter focuses 

on optimizing the path matching performance via a bottom-up approach, benefiting from the heuristics that 

the probability of mismatching at the leaf is higher than at higher levels, which results in faster filtering 

decision. However, the decomposition and post-processing is needed for handling complex queries.  

Sun et al. [36] proposed HFilter, a hybrid stream filtering method, that combines the lazy DFA and NFA 

techniques. The motivation of HFilter is based on the observations that NFA based approaches are more 

space efficient than lazy DFA based techniques, but lazy DFA based techniques could be more time efficient 

than NFA based methods. The main target of HFilter is deep and recursive XML data with low memory 

limitation. However, the large space consumption problem still exists, resulting in memory overflow and 

degradation of efficiency [35].  

SFilter [1] made use of query guide and simple integer stacks (as opposed to states stack used in YFilter) 

to achieve better performance in comparison to YFilter. A query guide represents all the path trees for the 
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path queries. However, SFilter focuses on linear paths with child and descendant axes against XML stream; 

predicates, twig queries (queries with twig patterns or branches), or nested paths are not considered in 

SFilter, which are recognized important features for XML documents. 

WFilter [30] utilizes a coding scheme that converts each query node into to a special internal 

representation. The approach can efficiently store and identify query nodes and their positions for the 

matching process. A comparison with YFilter showed significant performance gains. However, similar to 

SFilter, the approach only focuses on linear parent-child and ancestor-descendant relationships. Nest paths 

and queries with branches are beyond the scope of WFilter. 

iFiST [13], extended from FiST [12], encodes the XML document and XPath queries into Prüfer sequences. 

Similar to GFilter, iFiST also handles the matching via the bottom-up approach by using a subsequence 

matching algorithm for twig patterns. A subsequence is a linear pre-order path from the root to a leaf node. 

After all the subsequences of a twig pattern are matched, the second phase of iFiST is to perform 

post-processing to discard false matches by verifying the correctness at the branch nodes in the twig 

patterns of the document and the queries, as filtering subsequences alone may lead to false positives [13]. 

Adopting the Prüfer coding scheme is time efficient. However, a special coding scheme becomes difficult to 

manage for dynamic changes of queries.  

PFilter [15] is also a sequence-based filtering technique. It encodes XPath expressions into value-based 

sequences based on pre-order traversing of the query tree (from the root to leaf nodes). The objective is to 

identify related profiles for structure and content matching. The generated sequences are grouped into 

hash-based indices that can be processed concurrently. The results for a few experiments showed that 

PFilter could be up to 18% faster than YFilter. 

QFilter [37] was proposed to improve secure database access control. QFilter ensures that only 

authorized users have access to the authorized XML data. QFilter captures access control rules as NFA and 

performs pre-processing for each query expressed in XPath to determine if the query can be accepted or 

needs to be rewritten. The results show that QFilter has better performance than approach that has no 

access control, uses YFilter for post-processing, or handles static analysis. 

As the volume, variety, and velocity of data have been increasing significantly, an efficient XML filtering 

and matching technique has to consider all of these challenges. In summary, the main approaches reported 

in the literature use DFA, NFA, or a hybrid approach (i.e., lazy DFA + NFA, or NFA + a special coding 

scheme). DFA based approaches, including the hybrid method using lazy DFA, have   the space problem 

which become even more challenging as the volume of data increases dramatically. The performance of 

NFA based methods, e.g., YFilter, suffer due to the deep and recursive structure of complex queries. Some 

approaches improve the performance of YFilter, but they either do not address complex queries (e.g., 

predicates or queries with twig patterns or branches) or require a special coding scheme. As the variety of 

data also changes quickly, it becomes essential to address complex queries. On the other hand, using a 

special coding scheme has yet to demonstrate the effectiveness of high velocity of data changes, as 

recalculations need to be conducted with the coding scheme for changes. For NFA based approaches, either 

top-down, e.g., YFilter, or bottom-up techniques, e.g., GFilter and iFiST, have been proposed. As 

demonstrated in GFilter and iFiST, using a bottom-up technique is more efficient than a top-down method. 

This paper presents a new filtering technique called BFilter that mitigates some of the limitations of the 

existing work described in this section. The primary objective of BFilter is to facilitate matching of complex 

queries (with twig patterns or nested paths). Similar to iFiST, BFilter adopts the holistic matching principle, 

i.e., a twig pattern of a complex document is not divided into multiple linear paths and processed for 

matching separately. But iFiST requires the post-processing step for branch node verification. PFilter 

removes the post-processing operation. Moreover, iFiST and PFilter either use a coding scheme or 
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hash-based index for sequences of paths from the root to leaf nodes. While the performance of iFiST and 

PFilter may be improved using those coding schemes, the cost of keeping track of dynamic changes of 

queries could be high. BFilter also eliminates the post-processing phase of YFilter. BFilter differs from 

PFilter that adopts a top-down approach for matching evaluation, whereas BFilter, similar to GFilter and 

iFiST, uses a bottom-up approach for the matching evaluation. Furthermore, BFilter starts the matching 

evaluation from the lowest-level branch nodes instead of leaf nodes used in GFilter and iFiST, and the 

approach does not decompose a complex query into simple queries for the matching process. As a result, 

BFilter can efficiently perform the filtering and matching task. Section 3 explains the rationale behind the 

filtering and matching process, and discusses BFilter in details. 

3. Bfilter    Backward Matching Using Branch Point 

BFilter is a novel XML message filtering algorithm for XML message filtering and matching. BFilter 

effectively deals with user requests with complex queries by leveraging branch points in both XML 

document and user requests. It uses backward matching of branch points to evaluate user requests. A 

matching process is delayed until branch points in both the XML document and the user request match. 

Thus, XML message filtering can be performed more efficiently as the probability of mismatching is reduced. 

BFilter not only matches queries backwards, but also matches branch points backwards. The match of 

branch points is preconditioned for further matching of a complex query. Since BFilter treats a complex 

query as a whole, no post-processing is needed for complex queries. 

3.1. Technique Overview 

BFilter treats a complex request as a unit without having to decompose it to simple queries. Similar to 

YFilter, BFilter utilizes the tree structure for XML documents and user queries. In BFilter, a tree is 

composed of three parts, as illustrated in Fig. 1: branch points, including the root and nodes that have more 

than one child node; branches connecting two branch points; and branches that have only one end attached 

at a branch point while the other end is free. A branch that connects two branch points is known as a 

Transit Branch; other branches are called Tangling Branches. 

 

 

Fig. 1. A tree structure of a XML document or user query [27]. 

 
In Fig. 1, there are two transit branches and four tangling branches. The two transit branches are a/b/c 

and c/d. The transit branch a/b/c connects branch points a and c. The transit branch c/d connects branch 

points c and d. The four tangling branches are d/e, d/f, c/g/h and a/i/j/k/l. If a XML query matches a 

document, the branch points in the request must match the corresponding branch points in the XML 

  

Branch Points: a, c and d 

Transit Branches: a/b/c and c/d 

Tangling Branches: d/e, d/f, c/g/h and a/i/j/k/l  
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document.  

BFilter matches queries from the end to the front of a request. The matching process starts only when 

both a document branch point and a request branch point have been matched. Only when the branch point 

is matched will its tangling branches and the transit branches (if they exist) are checked. In other words, 

the matching of branches is delayed until the branch point they attach to is matched. 

The following description explains why BFilter is more efficient using branch point matching operations 

than other filtering techniques. Given a user query Q with a nested path and a XML publication document, 

let the probability of matching of Q be P(Q). Because YFilter matches a query from the front to the end, we 

have: 

 
P(Q) = P(front) × P(rest | front), 

 
where P(front) is the probability of matching of the front part of Q and P(rest | front) is the probability of 

matching of the rest of Q when the front is matched. Similarly, AFilter matches a query from the end to the 

front: 

 
P(Q) = P(end) × P(rest | end), 

 
where P(end) is the probability of matching of the end part of Q, and P(rest | end) is the probability of 

matching of the rest of Q when the end is matched. 

 
Because BFilter matches a query from the last branch point to the front of the query, we have  

 

 

In real XML messages, a tag name has a higher probability of appearance at a higher level than at a lower 

level in a query. In other words, the probability of a match of the front part of a query is higher than that of 

its end part, which indicates that a match for the front part of a query (which is more generic) may not lead 

to a successful match for the end part (typically more specific). This observation motivates a backward 

matching (bottom-up) approach used in XML filters, including AFilter, GFilter as well as BFilter. It implies 

that, for a particular query, if the match of its last element(s) is successful during backward matching, the 

probability of a match of its remaining part is higher than the case in which the match of its front element(s) 

is successful during forward matching. This heuristic can be explained through the following example, in 

which a user is requesting information about the Systems and Computer Engineering department at 

Carleton University in the domain of Canadian secondary schools: Canada/University/Carleton/Systems 

and Computer Engineering. A simplified example of a XML document of Canadian Post-Secondary Schools is 

shown below: 

 

      <Canada> 
<University> 

    <Carleton> 
< Systems and Computer Engineering/>    

</Carleton> 
    <Toronto> 

<Electrical and Computer Engineering/> 
</Toronto> 

</University> 
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P(Q) = P(last branch) × P(rest | last branch),

where P (last branch) is the probability of matching of the last branch point of Q and P(rest | last branch) is 

the probability of matching of the rest of Q when the last branch is matched.



  

<College> 
<Algonquin> 

<ESL Language School/> 
</Algonquin> 

</College> 
</Canada> 

 

Because the top level tag of the message “Canada” is the most generic element and will appear in all 

messages, the probability of a match of the first element of the request is 100%. The second level tag 

“University” is likely to appear in about half of the messages in the domain because, unlike in the example, 

where the message includes both “University” and “College” at the second level, some messages may 

contain only “University” or “College”. So the probability of a match of the second element of the request is 

about 50%. As the third tag of the message, “Carleton” will appear in fewer messages than the tag 

“University”. Thus the probability of a match of the third element of the request will be lower than the 

element “University”. Similarly, the probability of a match of the fourth element “Systems and Computer 

Engineering” will be lower than that of the element “Carleton”. Thus, the probability of a match of an 

element at the higher level is usually higher than that at the lower level. So P (front) is greater than P (end). 

Furthermore,   

 
P (last branch) = P (branch point matched and it is a branch point in XML document)        (1) 

 

 = P (branch point matched) × P (it is a branch point in XML document)            (2) 

  
Note that the two events (branch point matched) and (it is a branch point in XML document) are 

independent. Further, P (branch point matched) is approximately the same as P (end) because the branch 

point is the last one which is close to the end element of the request. On the other hand, the number of 

branch points in any XML document is at most half of the total number of tags, so P (it is a branch point in 

XML document) is at most 0.5. Thus P (last branch) will be less than P (end). Therefore, 

 
P (rest | last branch) > P (rest | end) > P (rest | front)                      (3) 

 
The three types of matching approaches, branch point backward matching (BFilter), backward matching 

(AFilter and GFilter), and forward matching (YFilter), start matching from the last branch point, the last 

element, and the first element of a query, respectively. After the first matching step succeeds, the 

probabilities of matching for the three approaches correspond to P(rest | last branch), P(rest | end) and 

P(rest | front), respectively. Mismatching is a scenario where the matching fails after the first step(s) 

succeeds. Hence, the probabilities of mismatching for the three types of approaches–branch point 

backward matching, backward matching, and forward matching–are given by 1 - P(rest | last branch), 1 - 

P(rest | end) and 1 - P(rest | front), respectively. From equation (3), we can see that the probability of 

mismatching of branch point backward matching, e.g., 1 - P(rest | last branch), proposed in BFilter is less 

than that in backward matching, e.g., 1 - P(rest | end), adopted by AFilter and GFilter), and the probability of 

mismatching of backward matching in turn is less than that in forward matching, e.g., 1 - P(rest | front), 

used in YFilter. In other words, the probability that mismatching that will occur in BFilter is expected to be 

the lowest of the three. 

Mismatching in the XML message matching process causes the filter to spend time on evaluating queries 

that will ultimately fail. The lower the probability of mismatching, the greater the likelihood that processing 

of unmatched queries will be finished earlier in the matching process. Reducing the mismatching 
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probability is supposed to increase efficiency of filtering. 

3.2. Query Representations 

In BFilter, a complex query is represented with sub-queries that are separated by branch points. Fig. 2 

illustrates an example with three queries, Q1, Q2, and Q3, in BFilter. Each query is composed of one of more 

sub-queries. Each sub-query starts at a branch point and has one or more paths. A sub-query is named as 

Q{m , n }, where m is the index of the complex query that the sub-query belongs to, and n is the index of the 

sub-query.  

 
Fig. 2. Example query [27]. 

 

For instance, in Fig. 2, Q1 is a simple query; its root is element a which is also a branch point by definition, 

see Section 3.1, and is presented with a double circle. Q1 has a single path /a/b/c. Q2 is a complex query 

that has one branch point (element a which is the root) and two paths /a/d and /a/b/c. Q3 is also a complex 

query with three branch points, a, b, and d. Q3 is represented by three sub-queries, Q{3,0}, Q{3.1} and 

Q{3,2}. 

A sub-query has two pointers, one pointing to its parent and another to its child. If a sub-query is the first 

one in a complex query (with index zero), its parent is null; if a sub-query is the last one, its child is null.  

3.3. Architecture of BFilter 

Fig. 3 shows the high-level architecture of BFilter. When the user queries are read in, the XPath Parser is 

responsible for parsing them into query objects and sending these queries to the Query Index Tree. Query 

Index Tree stores these queries in a data structure that uses a hash table-based approach to implement NFA. 

The SAX XML Parser is event-based XML parser [31] and a component reused from YFilter. The XPath 

Parser is derived from YFilter. In YFilter, a complex query is decomposed into simple queries. The XPath 

Parser reconstructs the decomposed queries into one unit so that the Query Index Tree can index them as a 

whole. The Query Index Tree is derived from YFilter’s Query Index by adding additional functionalities to 

index complex queries and store branch point information. 

When parsing a XML document, the “start document” and “end document” events are generated at the 

beginning and the end of the document respectively. A “start element” event is generated when a start tag is 

read. This event contains the tag’s name and attributes. An “end element” event is generated when an end 

tag is read. This event is related to the “start element” event generated by the start tag corresponding to 

this end tag. It contains the name of the corresponding start tag and closes the segment marked by the start 

and end tag pair in the document. A “characters” event is generated when content between a pair of tags is 

read. This event carries the content as a string. 

BFilter leverages branch points in both the XML document and the user request or query. It uses 
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backward matching branch points to evaluate user requests. The XML document Branch Point Detector is 

responsible for reporting a branch point when a document is read, by using the algorithm described in the 

next section. When a branch point occurs in a document, it is pushed into the Document Branch Stack. The 

Queries Branch Points Stack holds the branch points of queries in the form of a Query Index Tree. The Query 

Index Tree has a Runtime Stack to store the states of NFA. During the matching process, the Query Index Tree 

will push the current active states for all queries onto the Run Time Stack. This operation is the same as 

performed in the YFilter. The difference is that the Query Index Tree also stores the branch point 

information of all queries in the hash table-based structure, so the queries’ branch points can be identified 

from the current active states stored in the hash table-based structure. The branch points found will be 

pushed onto the Queries Branch Points Stack.  

 User Queries 

XPath 

Parser 

Bfilter 

XML Data Stream 

XML Doc 

Branch Point 

Detector 

Query Index 

Tree 

 

Matching 

Algorithm 

Document 
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Fig. 3. Architecture of BFilter. 

 

The main functionalities of BFilter that differ from YFilter are listed and described below. 

3.3.1. Handle the stacks 

As each tag is read in, it is pushed onto (start tag) or popped from (end tag) the run Time Branch Stack. 

The elements in the run Time Branch Stack are used to find branches of the document and match the 

tangling branches.  

As each branch point is detected in either the document or the requests/queries index, it is pushed onto 

the corresponding Document Branch Stack or Queries Branch Points Stack. When an element is popped out 

from the run Time Branch Stack (as the end tag of the element is read in), if a branch point that is associated 

with this element exists in the two stacks, the branch point is popped out from them, and the matching is 

performed for this branch point. 

3.3.2. Detect branch points in document 

By using the stacks, the identification of branch points of queries in Query Index Tree is processed by 

using preorder traversal in the document tree (when a start tag is read); the identification of branch points 

in a XML document is performed during an inorder traversal of the document tree; the matching of branch 

points is processed during  a postorder traversal of the document tree (when end tags are read). 

If a sequence of end tags follows a start tag that is at the same level as the previous one, the current top 

element on the RunTimeBranch Stack is a branch point. In Fig. 4, the sample document stream is 

a/b/c/d/d/c/e/e/b/f/g/g/f/a. Branch points are represented with double circles. A tag name with an 
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underscore means that the tag is an end tag. When a start tag is read in, a node representing this tag is 

pushed onto the runtime stack. When an end tag is read, the corresponding node is popped out from the 

runtime stack. At the bottom of the figure, it shows the status changes of the runtime stack from left to right. 

When the first tag, a, is read in, node a is pushed onto the runtime stack. Now the runtime stack has one 

node – a. When tag b is read, node b is pushed onto the top of the stack. After tag c and d are read in and 

node c and d are pushed onto the stack, the end tag of d is read in, so the d node is popped out from the 

stack. Then node c is popped out when end tag c is read in. When start tag e is read in, the branch point b is 

detected because e immediately follows a pop-out of c. In the same way, the root a is detected when start 

tag f is read in after node b is popped out from the stack.         

 
Fig. 4. Branch point identification – An example. 

 

3.3.3. Process branch point matching 

BFilter treats a complex query as a whole during the matching process. In BFilter, a complex query is 

represented by using sub-queries that are separated by branch points of the complex query. Each 

sub-query is rooted at a branch point and has one or more paths. A sub-query has only one branch point 

which is its root. So a complex query is represented as a linked list of sub-queries in which the first 

sub-query rooted at the root of the complex query is at the head of the list. For instance, if a complex query, 

Q, has three branch points, namely the root, branch point 1 and branch point 2, it will be represented by 

sub-query 0, sub-query 1 and sub-query 2 rooted at the root, branch point 1 and branch point 2, 

respectively. Notice that a simple query is represented as one sub-query that has only one path. In BFilter, 

when we say a query, it usually indicates a sub-query not a complex query. 

When a branch point is popped out from the Document Branches Stack and the QueryBranches Stack, (see 

Fig. 3), if the branch point exists in both stacks, it means that this branch point is a match between the 

document and the queries that have this branch point. Therefore, the matching operation is performed for 

these queries. Otherwise, there are two possibilities: the branch point exists only in the Document Branches 

Stack or in the Query Branches Stack, but not both. In the first scenario, the element popped out is not a 

branch point in the queries; therefore nothing needs to be done. In the second case, the queries that have 

this branch point as root are simply marked as unmatched and no further matching is needed. When 

processing a match for a query that has this matched branch point, if its descendants are not matched, the 

query is marked as unmatched. Otherwise, the matching for all its branches will be performed. 

As discussed earlier, BFilter processes the matching operation for a query only when its branch point 

finds a match in the document. The order of branch point matching is conducted from the lower level to the 

higher level, but the determination of a match is always made at the higher level. If the result is unmatched, 

all the descendants of the query are marked as unmatched and no further matching operation is needed. 
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3.4. Algorithm 

BFilter consists of two main procedures. The first procedure, as depicted in Fig. 5, is to handle the start tag 

event during the filtering process. The second procedure, as presented in Fig. 6, is used to identify matching 

branches when a matched branch point is found. Fig, 7 depicts the filtering algorithm [27]. The two stacks, 

documentBranches and queryBranches, are used to hold the branch points of documents and queries, respectively. 

The other stack, called runTimeBranch, is used to hold the current elements’ branch of the document.  

 

Procedure: HandlingStartTag(Document tag e) 

//get current state in gIndex for e

Send e to gIndex for states lookup;

            For each current state c

If c is branch point for query q in Q

push (e, q) onto queryBranches;  

 If c is accepting state for query q in Q

            If q has no predicates on this path

                  Make the path as matched;

Else

//delay the matching until   

//the branch point is matched.

Save branch in the node;

End if;

End if;

      End for;

End Procedure;

 
Fig. 5. Handling start tag [27]. 

Procedure MatchingBranches()

For each matched query q, do

       If q’s child is not matched

                       //no matching is needed

                                    Set q as not matched;

                      Else

                        Process matching on all branches of q;

                                 If q is failed in matching

                                    //reset states of all sub-queries

                                                Set sub-queries as unmatched; 

End if;

End if;

End for;

End Procedure;
 

Fig. 6. Matching branches [27]. 

 

Filtering Algorithm

Input: QueryIndex gIndex 

           Stack runTimeBranch

        Stack documentBranches   

            Stack queryBranches  

          Incoming element e

List CurrentQueries Q

Init:

       gIndex and Q is populated by user requests

runTimeBranch = Empty;

documentBranches = Empty;

queryBranches = Empty;

        

While incoming element e is not the end of document

If e is start element then

            Push e onto runTimeBranch; 

                        If document branch point is detected

                                    Push the top of runTimeBranch onto documentBranches;

End if;

Call Procedure HandlingStartTag(e);                  

                       Else

         Pop e from runTimeBranch;

                                    //a branch point in queries matches a branch point in document

If e is a branch point in queryBranches and documentBranches 

                                    Call Procedure MatchingBranches();

Remove from documentBranches and queryBranches;

                                    Else if e is a branch point in queryBranches     

//no matched branch point in document, simply set

//unmatched

                       For each matched query q for this branch point, do

                    Set q and its sub-queries as unmatched;

End for;

                       Remove from queryBranches;

                                  Else if e is a branch point in documentBranches

   // no matched branch point in queries, do nothing

Remove from documentBranches;

End if;

End if;

End while;

End Algorithm;

 

Fig. 7. Filtering algorithm [27]. 
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The first if statement shown in Fig. 7, tests if a start element or tag is read in. When a start tag is read in, 

the element is pushed onto the runTimeBranch stack. If a branch point is also detected, the top of the 

runTimeBranch stack will be copied to the documentBranches Stack and all the queries associated with the 

branch point will be pushed onto the queryBranches stack.  

When the element’s end tag arrives, the element is popped out from the runTimeBranch Stack. When an 

element sent to the queryIndex Tree reaches an accepting state for a path of a sub-query, the portion of the 

current elements’ branch, which is from the element that triggers the root of the sub-query to the current 

arriving element, will be saved to the sub-query as a candidate for a match of its path. 

The following concrete example demonstrates how the BFilter algorithm works. This example consists of 

five queries, Q1 to Q5, and it also shows the sub-queries and associated paths for each query. For instance, 

Q2 is composed of two sub-queries, Q{2,0} and Q{2,1} rooted at element a and element b, respectively. Fig. 

8 illustrates an aggregated query tree for those five queries along with the query index and the path 

information. The aggregated query tree is represented as a state machine, i.e., each node in the tree 

represents a state and each element of a XML query is an input.  

 
 Q1: /a/b/e 

o Q{1,0}root=a, p0=a/b/e 
 Q2: /a/b[/c]/e 

o Q{2,0}root=a, p0=a/b 
o Q{2,1}root=b, p0=/b/e, p1=/b/c 

 Q3: /a//c[/e]/d 

o Q{3,0}root=a, p0=/a//c 
o Q{3,1}root=c, p0=/c/d, p1=/c/e 

 Q4: /a/*[/b]/c 

o Q{4,0}root=a, p0=/a/* 
o Q{4,1}root = *, p0=/*/c, p1=/*/b 

 Q5: /b/f/g 

o Q{5,0}root=b, p0= b/f/g 
 

 
Fig. 8. An aggregated query tree and query index for Q1–Q5 (adapted from [27]). 

 
Query Q1 is simple and is represented as only one sub-query: Q{1,0}. The indexing starts from its root 

element a which reaches state 2, as shown in Fig. 8. State 2 is then marked as a branch point, represented 

with a double circle, of Query 1, in particular, the root of Q{1,0}. (The root is a branch point; see the 

definition of branch points in Section 3.1.) Q{1,0} has only one path, e.g., p0. After the last element of the 

path reaches state 5, this state is marked as Q{1,0,p0} which is the accepting state for path p0 of Q{1,0}. 
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Query Q2 consists of two sub-queriesQ{2,0} and Q{2,1}. Q{2,1} has two branches starting from state 3. 

State 2 is marked as the branch point of Q{2.0} and Q{2,0} is the parent of Q{2,1}. State 4 and state 5 are 

marked as accepting states for the two paths of Q{2,0}, e.g., Q{2,1,p0} and Q(2,1,p1}, respectively.  

Similarly, Query Q3 is composed of two sub-queries, Q{3,0} and Q{3,1}. The indexing starts from Q{3,0} 

which is the parent of Q{3,1}. Because Q{3,0} has no tangling branch, its transit branch is indexed right 

away at the beginning. The transit branch contains an ancestor/descendant relationship between elements 

a and c; hence state 6 with a self-loop is created for this relationship. The symbol “ε” means that the 

transition needs no input to enter state 6. After the transit branch is indexed, state 7, which is the state of 

the last element of the transit branch c, becomes the start state for indexing Q{3,1}. When indexing for 

Q{3,1} begins, the start state is marked as a branch point for Q{3,1}. Because Q{3,1} has two tangling 

branches, they are indexed one by one. State 8 and state 9 are then marked as accepting states for the two 

branches, respectively. Query Q4 is also a complex query with a wildcard * and is indexed in the same way 

as Query Q3. Q4 has two branch points, e.g., state 2 and state 10. 

Query Q5 is a simple query, but it starts with element b. The purpose is to illustrate that the query tree 

potentially could have many branches even from the beginning. Further, the same element appears at 

different positions in a query, e.g., element b as the 2nd node in Q1 and Q2 in comparison to its 1st position in 

Q5, could result in very dissimilar structure.  

 

 
(a) 

 
(b) 

Fig. 9. Execution in Bilter: an illustration [27]. 

 

To demonstrate the stack operations for Bfilter, we assume that the incoming XML document stream is 

a/b/c/d/d/c/e/e/b/a, where the underscored letters are the end tags. Note that the branch representing Q5 
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in Fig. 8 is not considered in this example, since the XML document stream starts with element a, but Q5 

starts with element b, which results in a mismatch. Fig. 9(a) depicts the execution in the query index tree 

and the changes of the status of the Runtime Stack which is used to hold active states during matching 

process. Fig. 9(b) shows the changes of the statuses of documentBranches and queryBranches. Notice that a 

dummy element should be pushed onto both stacks if no branch point corresponding to a start tag is found. 

This is to make the branch point matching in the two stacks easy by simply looking at the top elements in 

both stacks. The process of pushing dummy elements onto the stacks is not shown in Fig. 9(b) for brevity. 

Fig. 9(a) depicts the changes of the status of the Runtime Stack. This Runtime Stack is a part of the query 

index tree; it is used to hold active states during the matching process. 

At the beginning the Runtime Stack is empty. When the first element, a, is read in, state 2 is reached in the 

queryIndex Tree and is pushed onto the Runtime Stack. State 2 matches four branch points associated with 

element a of the queries previously aggregated in the tree. These four branch points are the first 

sub-queries of Q1, Q2, Q3 and Q4 and are represented as Q{1,0}, Q{2,0}, Q{3,0} and Q{4,0}, respectively. 

These branch points are wrapped as a unit which is associated with the element a so that they can be found 

when an end tag of element a is read. Because the first element is also the root of the XML document, a node 

associated with element a is pushed onto the documentBranches Stack. 

When element b arrives, three states are active. First, there is a transition of b from state 2 to state 3, 

after which state 3 becomes active. Second, because state 6 is the next state of state 2 that requires no input, 

state 6 is also active. Finally, the transition of “*” from state 2 to state 10 matches any tag name so that state 

10 is active as well. Thus, state 3, state 6 and state 10 are pushed onto the Runtime Stack based on the 

queryIndex Tree. Because states 3 and 10 are branch points of Q{2,1} and Q{4,1}, the two branch points are 

pushed onto the queryBranches Stack that are associated with element b. At this stage element b has not 

been detected; thus we do not know whether or not it is a branch point in the document. However, it will be 

detected before the end tag of b is read [27].  

When element c is read, states 4, 7, 12 and 6 are reached from previous states 3, 10 and 6. These states 

are pushed onto the Runtime Stack. State 6 is automatically added because it needs no input. States 4 and 

12 are accepting states of Q{2,1,p1} and Q{4,1,p0}, thus, the current branch in the runTimeBranch Stack is 

saved in the query object for Q{2,1} and Q{4,1} as a candidate of match for the path 1 of Q{2,1} and path 0 

for Q{4,1}, respectively. Because state 7 is a branch point of Q{3,1}, Q{3,1} is pushed onto the 

queryBranches Stack. After element d is read in, states 9 and 6 are pushed onto the Runtime Stack. The 

current branch is saved in Q{3,1}, because state 9 is the accepting state of Q{3,1,p0}. 

When the end tag of d, e.g., d, is read in the top states (9 and 6) are simply popped out from the Runtime 

Stack. When the end tag c arrives, top states 4,7,12 and 6 are popped out from the Runtime Stack. Because 

element c has a corresponding branch point in queryBranches Stack but not in documentBranches Stack, the 

corresponding branch point is popped out from queryBranches and Q{3,1} is marked as unmatched. No 

matching will be performed for the sub-query Q{3,1} at this point because element c is not a branch point in 

the document. 

When element e is read in, state 5 is reached from state 3. The current branch is saved as a match 

candidate for corresponding paths Q{1,0} and Q{2,1} respectively. Because element e follows a sequence of 

pop operations (due to end tags), the element b, which is on the top of the runTimeBranch Stack before the 

element e is pushed, it is detected as a branch point of the document according to the branch point 

detection algorithm. Thus b is pushed onto the documentBranches Stack. After the end tag of e is read in, the 

top of the Runtime Stack is popped out. 

When the end tag of b is read in, the top three states on the Runtime Stack are active and popped out first. 

Because element b has associated branch points in both the documentBranches Stack and queryBranches 
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Stack, Q{2,1} and Q{4,1} find matches in the document. Thus the matching process starts for Q{2,1} and 

Q{4,1} after the branch points are popped out from both stacks. Because the two paths of Q{2,1} have 

match candidates, Q{2,1} is marked as matched. Notice that this example does not include predicates on 

paths. If a predicate exists, the matching process has to evaluate all predicates; only matching the path is 

not enough. Because the Q{2,1} is matched, the current branch from the root of Q{2,0} to the root of Q{2,1} 

is saved in Q{2,0} as a match candidate of the transit branch of Q{2,0}. If for example Q{2,1} is not matched, 

the algorithm does not save the candidate for Q{2,0}, because a parent query cannot match if its child query 

is not matched. Q{4,1} is different from Q{2,1}, because its path 1 has no candidate. So Q{4,1} is simply 

marked as unmatched at this point. 

Finally, when the end tag of a, e.g., a, is read in, BFilter finds a match of branch points in the 

documentBranches Stack and queryBranches Stack. The four branch points, namely Q{1,0}, Q{2.0}, Q{3,0} 

and Q{4,0}, match branch point a in the document. Because the child query Q{4,0} is unmatched, Q{4,0} is 

simply marked as unmatched without executing the matching process. Q{1,0} is simple because it has only 

one path and is marked as matched. Because the child query of Q{2,0} is matched, Q{2,0} is marked as 

matched after the match of its transit branch succeeds. Similarly the Q{3,0} is marked as unmatched 

because its child is unmatched. At the end of this process, BFilter checks whether a query is matched or not 

by looking at its root in the sub-query representation. Thus Q1 and Q2 are matched in this example. 

 As highlighted in [27], the matching process only starts when a root of a sub-query is popped out from 

the queryBranches Stack. Whenever a match is determined for a sub-query, no matter whether the result is 

matched or not, all match candidates of the sub-query are deleted. If the result is unmatched, all the 

descendants of the sub-query are marked as unmatched. 

This example demonstrates the difference between YFilter and BFilter. BFilter matches queries 

backwards and the matching process only starts when branch points match in both the document and the 

queries. For queries Q1, Q2, Q3 and Q4 in the example, YFilter will execute the matching process at each 

accepting state for the corresponding queries that are decomposed from the four queries. In particular, Q3 

will be decomposed into two simple queries Q3.1 (/a//c/d) and Q3.2 (/a//c/e); Q4 will be decomposed 

into two simple queries Q4.1 (/a/*/c) and Q4.2 (/a/*/b). From the queryIndex Tree we can see that states 9 

and 12 will be the accepting states for Q3.1 and Q4.1, respectively. In the case of YFilter, when the two 

states are reached, the matching process occurs. However, no matching is performed for Q3 and Q4 in 

BFilter, because the branch points are not matched (a and b in the document stream, a and c in Q3, and a 

and * in Q4). In the case of a document having more content after the end tag of element b is read. For 

example, the document stream, a/b/c/d/d/c/e/e/b/a, has more content between b and a, and if this extra 

part matches Q3.2 or Q4.2, YFilter not only processes matching for Q3.2 or Q4.2, but also conducts 

post-processing to verify these decomposed queries and will eventually discover that Q3.1 and Q3.2, as well 

as Q4.1 and Q4.2, are not matched in the same place in the document. The post-processing in cases like 

these for YFilter is unnecessary and processing time is wasted.   

Unlike YFilter, BFilter cleans up all candidates for the current sub-queries as well as their descendants 

when the corresponding branch point in the document is read over. BFilter only keeps match candidates for 

the current portion of the XML document. Thus, if a sub-query and its descendants are matched, it needs 

not do anything when the new portion of the document arrives. Otherwise, the matching of branch point 

restarts from the root of the last sub-queries in the new portion of the document. From this example we can 

see that BFilter is more efficient in dealing with complex queries than YFilter. 

4. Experimental Results 

This section describes the performance measurement results for a prototype implementation of BFilter. 
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As discussed earlier, BFilter is built on top of YFilter implementation to reuse existing software components. 

This implementation is suitable for comparing the filtering algorithms that is the main focus of this paper 

The BFilter prototype was implemented using Java 1.6, and run on a PC with an AMD 1.6 GHz processor 

and 1.0 Gb of main memory running the Windows Vista operating system. The Java virtual machine 

memory size was set to 256Mb. The data type used in the experiments was the same as in YFilter: News 

Industry Text Format (NITF) described in [29]. ToXGene [39] was used to generate the XML document. A 

total of ten documents were used in this experiment. The query generator in the YFilter test suite [29] was 

used to generate the queries. The following provides the definitions of all parameters and performance 

metrics used in the performance measurement. 

 Filtering Cost is the total time (ms) needed to filter the input documents. It is the time period that 

starts from reading in the start tag of the root of the first XML document from the SAX event-based 

XML parser, and ends when all documents are filtered and the results of the user requests are 

obtained. In the experiments filtering cost was used to compare the performance of the filtering 

algorithms. 

 Query Depth (L) is for a sequence of element names separated by “/” and “//” (which stand for 

parent/child relationship and ancestor/descendent relationship, respectively). The number of 

element names determines the query depth. For a complex query, query depth is the depth of its 

longest path. 

 Number of Predicates (P) is the total number of predicates in a query. An element name in a user 

request may contain predicates. When matching such a query, both the element name and its 

predicates have to find a match in the XML document. 

 Number of Nested Paths (NP) is the number of nested paths in a complex query. A simple query 

has no nested path.  

 Probability of ancestor/descendant (//) is the probability that the ancestor/descendant 

relationship appears in a query. The ancestor/descendant relationship creates a self-loop state in 

NFA and can increase the number of active states during matching. This parameter is used to 

measure how sensitive the performance of an algorithm is to an increase in the number of 

occurrences of “//”.  

 Probability of wildcard (*) is the probability that “*” appears in a query as an element name. The 

wildcard “*” matches any element from a XML document being filtered and thus the number of 

active states can increase with an increase of the probability of “*”. This parameter is used to 

measure how sensitive an algorithm is to an increase of the number of occurrences of “*”. 

A number of experiments have been conducted and their results are presented in the subsequent 

subsections. 

4.1. Test Case 1    Branch Point Mismatching 

This case demonstrates a scenario in which a complex query cannot achieve a branch point matching in a 

XML document. The query and XML document are shown in Fig. 10. 

This query is complex. Its last branch point is w, having two branches “/b” and “/c”. However, all the 

three nodes labeled w in the XML document are not branch points. After the start tags nitf, head, a, b, w and 

c are read in sequentially, the end tags c and w follows. At this point the node w (id = “9”) is detected. 

Because it is not a branch point in the document, the matching for the last branch point w in the query fails. 

Similarly, the other two nodes labeled w with id = “99” and id = “9” in the document also fail to match the 

query’s branch point. Thus, the matching of the elements at higher levels of the query has never been 

performed in BFilter. When Yfiter processes this filtering, it decomposes the query into three simple 
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queries: 

  
/nitf[@change.time=1]/head[@id=9]/a/c                
/nitf[@change.time=1]/head[@id=9]/a/b/w/b 
/nitf[@change.time=1]/head[@id=9]/a/b/w/c 
 

 

Fig. 10. The sample query and XML document. 

 

Because each decomposed simple query can find a match in the document, YFilter spends time on 

matching each of them and finally discovers they are not matched in the same place in the document. Fig. 

11 shows the comparison of the filtering time for the two filters. Because the filtering time for this test case 

is small, hence we perform the test case 20 times, 40 times, 60 times and 80 times. The results indicate that 

BFilter is more efficient than YFilter in the case of branch point mismatching. 

 

 
Fig. 11. Comparison of Yfilter and Bfilter for test case 1. 

 

4.2. Test Case 2    Test of Queries without a Branch point 

This case is used to demonstrate a scenario in which the current implementation of BFilter is slower than 

YFilter while handling only simple queries. This is because the current implementation of BFilter reuses the 
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components in YFilter and reconstructs the classes on top of them to meet its needs. It has no performance 

gain to offset the overhead in the case of simple queries. A different implementation of BFilter that does not 

use the YFilter components is expected to avoid this issue. 

Fig. 12 shows a comparison of the filtering time for various numbers of queries used in the matching. The 

criteria used to generate queries are shown in the figure: the probability of “*” and “//” are 20% and 0, 

respectively. The number of predicates (P) is 6, the number of branches is 0, and the query depth (L) is 6. 

The number of queries generated varies from 500 to 2000. None of the queries has branches. 

Although the result in Fig. 12 is for a particular set of criteria, the variation of the parameters in the 

criteria does not change the result in the case of simple queries. Considering the fact that BFilter is more 

efficient than YFilter in dealing with complex query, we believe the current implementation has room for 

improvement. 

 
The probability of * = 0.2; // = 0; P = 6; Branches = 0; L = 6 

 
Fig. 12. Comparison of Yfilter and Bfilter for test case 2. 

 

4.3. Test Case 3    Random Documents and Queries 

This section presents experiments and results using different configurations for YFilter and BFilter. All 

the experiments are based on NITF documents and NITF queries generated randomly using the generator 

described [29], but the same documents and queries are used for both YFilter and BFilter. Table 1 and 

Table 2 demonstrate the filtering time, including specific values for the different parameters used for each 

experiment. The value for NP, the number of nested paths, is either 1 or 2 for the experiments to evaluate 

queries that are modest complex. The effect of NP is illustrated in Section 4.4.2.  

 

 
Table 1. Filtering Time (ms) for L = 6, * = 0.2, // = 0, P = 3, NP = 1 

 1000 queries 2000 queries 

XML docs size BFilter YFilter BFilter YFilter 

5 KB 10 10 5 5 

10 KB 15 10 15 15 

33 KB 20 25 25 25 

193 KB 45 45 55 55 

 

Table 2. Filtering Time (ms) for L = 6, * = 0.2, // = 0, P = 3, NP = 2 
 1000 queries 2000 queries 

XML docs size BFilter YFilter BFilter YFilter 
5 KB 10 10 10 10 

10 KB 10 10 15 15 
33 KB 25 30 25 25 

193 KB 45 50 50 65 
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Because the documents and queries are randomly generated, there is no close correlation for the 1000 

queries and the 2000 queries generated. Hence, there is no close correlation for the results for 1000 and 

2000 queries. As the results indicate, BFilter has an equal or lower filtering time in most cases observed 

from our experiments. 

4.4. Measurement Results for Different Query Attributes 

This section presents the effect of five different parameters on the performance of BFilter and YFilter. The 

selected values of each parameter are outlined below: 

 Query depth (L): 3, 6. 

 Number of nested paths (NP): 0, 1, 2, 3, 4, 5. 

 Probability of wildcard (*): 0, 0.1, 0.2, 0.4. 

 Probability of ancestor/descendant relation (//): 0, 0.1, 0.2, 0.4,        

 Number of predicates (P): 0, 2, 5, 10. 

A total of ten XML documents were generated and used in experiments. The default level of these 

documents is 6. A query cannot find a match if its depth is greater than 6, so the selected values for the 

query depth are 3 and 6. Since the number of nested paths cannot be greater than the maximum value of 

the query depth in a query, the number of nested paths is varied from 0 to 5. The probabilities of wildcard 

and ancestor/descendant relation range from 0 to 0.4. The number of predicates varies from 0 to 10. The 

ranges of parameters used in the experiments are apt for analyzing the relative performance of BFilter and 

YFilter. Because the total number of permutations of the five variables is very large, one parameter is 

varied at a time in each of the experiments. The number of queries generated by each group of values from 

the five parameters is set as 100. 

4.4.1. The effect of the query depth 

The purpose of this experiment is to determine the effect of query depth on the filtering time. In this 

experiment, the number of nested paths is varied from 0 to 5, and two parameter sets are used: 

Set 1: the probabilities of “*” and “//” are 0, the number of predicates (P) is 2, and the query depth (L) is 

6.    

Set 2: the probabilities of “*” and “//” are 0, the number of predicates (P) is 2, and the query depth (L) is 

3.    

Fig. 13 displays two graphs. Fig. 13(a) uses the parameter set 1, and shows the result when the query 

depth is 6. Fig. 13(b) uses the parameter set 2, and shows the result when the query depth is 3. 

In both Fig. 13(a) and 13(b) BFilter demonstrates a better performance in comparison to YFilter when 

the number of nested paths is larger than 0. Fig. 13(a) shows that the improvement in performance for 

BFilter increases significantly with an increase in the number of nested paths in the parameter set 1. For 

instance, when NP = 5, the results for BFilter and YFilter are about 8ms and 15ms, respectively, which has a 

large performance gap. When the number of nested paths increases, the probability of branch point 

matching decreases. Thus, the processing time for matching is reduced in BFilter, and hence BFilter’s 

filtering cost decreases. 

Fig. 13(b) shows that in the cases where query depth L is 3, the number of nested paths has no significant 

effect on the filtering cost after it reaches 3. This is because the query generator is a reused component 

from YFilter which can create at most one branch at each level of a query. YFilter does not deal with 

recursive nested paths (a branch containing another branch). If the query depth is 3, the query generator 

still only creates 3 nested paths for a query even though the number of nested paths (NP) is set to be 

greater than 3. So the query depth (L) will be set as 6 for the remaining experiments. 
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Fig. 13. The effect of the query depth (a) Set 1; (b) Set 2. 

 

 
Fig. 14. The effect of the number of nested path [27]. 

 

4.4.2. The effect of the number of nested paths 
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In this experiment, the number of nested paths is varied from 0 to 5. There are four groups of 

comparisons that use different sets of parameters as shown in Fig. 14. 

Fig. 14 contains two graphs. Each graph shows two groups of comparisons. Fig. 14(a) presents the results 

for group 1 and 2. Fig. 14(b) presents the results for group 3 and 4. In every group of comparison, BFilter 

performs better than YFilter except when the number of nested paths equals zero; in other words, when the 

queries are simple. This is because the current implementation of BFilter reuses the components in YFilter 

and reconstructs the classes on top of the YFilter components. It has no performance gain to offset the 

overhead in the case of a simple query. 

In YFilter, when the number of nested paths increases the number of simple queries decomposed from 

complex queries also increases. This is because YFilter decomposes a complex query by creating a simple 

query for each nested path. Therefore, YFilter’s filtering cost tends to increase because it needs to do more 

work during post- processing to verify the separated query as a whole. In the case of BFilter, because the 

number of nested paths increases, the probability of branch point matching decreases, as explained in 

Section 3.1. Thus, the processing for matching is reduced in BFilter, and hence BFilter’s filtering cost 

decreases [27]. The gap of filtering time for YFilter and BFilter generally increases as the number of nested 

paths increases. The performance gain for BFiliter can be large in percentage when NP is 4 or 5 for complex 

queries. 

 

 
Fig. 15. The effect of the probability of “//” [27]. 

 

4.4.3. The effect of the probability of “//” 

In this experiment, the probability of “//” that appears in the queries is varied from 0 to 40%. There are 

four groups of comparisons that use different sets of parameters as shown in Fig. 15. 

BFilter uses NFA to implement query indexing as YFilter does. The increase of the number of “//” in 

queries causes an exponential increase in the number of active states in the NFA. Both of YFilter and BFilter 
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suffer from this overhead. However, the method that BFilter uses to perform matching from the underlying 

NFA is different from YFilter. 

There are two graphs in Fig. 15. Each graph shows two groups of comparisons. Fig. 15(a) presents the 

results for group 1 and 2. Fig. 15(b) presents the results for group 3 and 4. The results show that BFilter is 

faster than YFilter in all cases when the number of nested paths, e.g., NP, is not zero. When NP = 0, the 

results for YFilter are better than that of BFilter, as shown in Fig. 15(a). 

As mentioned above, the current BFilter implementation reuses the query index tree of YFilter. It suffers 

the same overhead as explained in YFilter due to the large number of active states produced by ‘//’. This 

can be seen from the figure: the filtering cost of both YFilter and BFilter increases when the probability of 

ancestor/descendant relationship ‘//’ increases [27]. However, BFilter gains in the matching process but 

not in the query indexing. When the technique of backward matching branch point is used in BFilter, 

although the number of active states is large in Runtime Stack in the NFA, these active states may not 

actually trigger the matching operation. If a branch point of a query cannot find match, all of the active 

states rooted at this branch point will simply be popped out from the stack. 

 

 
Fig. 16. The effect of the probability of “*”. 

 

4.4.4. The effect of the probability of “*” 

In this experiment, the probability of “*” that appears in the queries is varied from 0 to 40%. There are 

four groups of comparisons that use different sets of parameters as shown in Fig. 16. 

The effect of the probability of “*” in queries on the NFA is similar to that of “//”. An increase in the 

number of “*”also causes the number of active states to increase because a “*” matches any tag from the 

document. Each tag creates an active state on the Runtime Stack. However, it does not lead to an 

exponential increase in the number of active states in the NFA. 

There are two graphs in Fig. 16. Each graph shows two groups of comparisons. Fig. 16(a) presents the 

results for group 1 and 2. Fig. 16(b) presents the results for group 3 and 4. Similar to results presented in 
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Fig. 15, the results show that BFilter is faster than YFilter in all cases except when the number of nested 

paths is zero. 

The results also demonstrate that when the percentage of wildcard ‘*’ increases, the filtering cost of both 

YFilter and BFilter increases. This is because the wildcard matches any incoming tag from a XML document 

so that both YFilter and BFilter need to do more work due to the increase in number of active states. The 

extra work slows down the matching process. 

5. Conclusions and Future Research 

Many XML filtering and matching techniques have been proposed. As the volume, variety, and velocity of 

data increase considerably, the efficiency becomes a crucially important. We proposed a novel XML filtering 

and matching algorithm, BFilter, which performs XML message filtering and matching by leveraging branch 

points in both XML documents and user requests or queries. BFilter matches branch points backwards in a 

bottom-up fashion to defer further matching processes until branch points in both the XML document and a 

user query match. Unlike the well-known YFilter, BFilter matches requests with branches without having to 

decompose them. It treats a complex query as a whole, and no post-processing is needed for a complex 

query. In comparison to other XML filter techniques, BFilter not only performs backward matching (which 

is more efficient than a top-down approach), but also detects and utilizes branch point matching as a 

precondition for further steps. In other words, the matching of query branches is delayed until the branch 

point they attach to is matched. In this way, BFilter has a high probability of detecting mismatches earlier in 

the matching process. Thus, as illustrated in theoretical analysis, XML message filtering in BFilter can be 

performed more efficiently in comparison to the other algorithms. We have also demonstrated by the 

experimental results that BFilter has better performance than that of YFilter. Further, in general, the 

performance gain for BFilter increases, as the queries become more complex. 

The measurement results from the current implementation show that BFilter performs better than 

YFilter while handling complex queries. Because the current BFilter implementation used in this research is 

built on the top of the YFilter implementation, BFilter shares some of the characteristics of the YFilter 

implementation that was used in this research. The gain of BFilter is not from the specific implementation 

used in this paper, but from the filtering algorithm based on the novel concept of backward branch point 

matching introduced in this research. In case all the queries generated are simple, BFilter is slower than 

YFilter, which is due to the overheads from wrapping of the existing components of YFilter that are reused 

in the current implementation of BFilter. One future direction is to conduct reengineering of YFilter design 

and implementation, so that only the necessary components for BFilter are used for higher efficiency. 

 While performing matching, BFilter filters a document part by part. Thus, BFilter can specify the 

matched parts of a document for a particular query. This adds an option for upstream filters to deliver the 

appropriate parts of a document to downstream filters in a pub/sub system. The potential benefit is lower 

processing time for shorter messages for subsequent brokers or subscribers. The approach warrants 

further research. 
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