

559 Volume 12, Number 7, July 2017

Journal of Software

Toward an Architecture for Comparing UML Design
Models

Lucian José Gonçales*, Kleinner Farias, Vinícius Bishoff, Matheus Segalotto

Interdisciplinary Postgraduate Program in Applied Computing (PIPCA), University of Vale do Rio dos Sinos
(UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil.

* Corresponding author. Email: lucianjosegoncales@gmail.com
Manuscript submitted January 10, 2017; accepted March 8, 2017.
doi: 10.17706/jsw.12.7.559-569

Abstract: Academia and industry are increasingly concerned with producing general-purpose model

comparison techniques to support many software engineering activities, e.g., clone detection or model

composition. However, the current methods fail to provide flexible and reusable architectures, a

comprehensive understanding of the critical composition activities, and guidelines about how developers

can use and extend them. These limitations are one of the reasons why state-of-the-art techniques are often

unable to aid the development of new comparison tools. To overcome these shortcomings, this paper,

therefore, proposes a flexible, component-based architecture for aiding the development of comparison

techniques. Moreover, an intelligible comparison workflow is proposed to support developers to improve

the understanding of significant comparison activities and their relationships.

Keywords: Model comparison tool, model driven architecture, software architecture, unified modeling
language.

1. Introduction

The comparison of software design models plays a central role in many software engineering activities,

e.g., identifying clone models to assure the right authorship [1], detecting architectural patterns in design

models [2], enhancing the retrieval of UML diagrams [3], computing the similarity between overlapping

parts of design models to merge them [4]. For example, in the context of distributed software development,

virtual teams might use comparison techniques to grasp how similar evolving design models are, or even

helping to reconcile conflicting parts of design models that have been overly changed in parallel.

The term comparison of design models can be briefly defined as being the process of identifying

equivalence relations between the content of design models. One way of quantifying the degree of

equivalence would be calculating the similarity between such models. That is, the similarity degree is

responsible for measuring a correspondence relation between model elements.

Many comparison techniques have been proposed in the last decades, e.g., Epsilon [5], MADMatch [6],

WebDiff [7], and RCVDiff [8]. However, the state-of-the-art techniques of model comparison are designed

based on rigid architecture. Which means that such techniques enable the addition of new features, but

require a significant amount of effort to do so. In part, this extra effort is because of the need to restructure

the entire application code to implement change requests. For this reason, developers often give up using

existing approaches, creating new techniques and tools from scratch. Usually, developers spend a lot of time

for implementing functions that are not related to their actual demands (e.g., defining comparison workflow)

560 Volume 12, Number 7, July 2017

Journal of Software

instead of only focusing on the comparison problem at hand. Developers could perform integrations

manually, but the practice of comparing and integrating models is still considered tedious, time-consuming,

and error-prone. In [9], the authors highlight that a team of three analysts spent 130 man-hours to merge

25% of two variants of an end-to-end process model. In this sense, the current techniques fail on supporting

model comparison in a versatile, flexible way.

Therefore, this article proposes UMLSim-Arch, a flexible architecture to support a hybrid comparison

approach. The UMLSim-Arch was structured based on the design-for-change principle so that it is easy to

use or extend. In this sense, an elicit set of features related to model comparison and modularized into

architectural components. Developers might benefit from using UMLSim-Arch typically when performing

development tasks, like computing the similarity or identifying the overlapping parts between UML class

diagrams. Through the identification of highly similar design model elements, developers can invest their

development efforts into grasping and reconciling the conflicting parts of design models, which could be

converted into model inconsistencies, thereby improving comparison usefulness and precision.

This paper is organized as follows. Section 2 presents the related word. Section 3 shows the proposed

architecture. Section 4 gives some insight about technologies that can be used to implement this

architecture in practice. Finally, Section 5 presents the conclusions and future work.

2. Related Work

This section describes the related works studies, which are summarized in Table 1. To the best of our

knowledge, this study is the first to explore architectural issues as a critical step to support model

comparison in mainstream software projects. We have observed that both academia and industry have

proposed several architectures for model comparison tools in the last decades (e.g., [5], [6], [7], [8], [10]). In

[5], authors propose ECL, the Epsilon Comparison Language. This ECL enables developers to personalize

comparison algorithms for adapting them to the specific metamodels. In [7], the authors propose a web tool

for detecting model differences, so-called WebDiff. They propose an architecture to organize services

related to model comparisons, such as parse of the input models and the computation of the similarity

degree. For this, they specified a multilayer architecture to accommodate these services and user interface's

components. In [8], the authors propose the RCVDiff, a tool to identify model differences. The authors are

concerned with producing a common architecture for supporting the representation, visualization, and

calculation of the differences of input models. In [10], the authors propose the SiDiff, framework. This

framework has a kernel that enables developers to extend and adapt the metamodel, the differences

algorithms, and the user’s interfaces.

However, none of them has proposed modular, flexible architectures for supporting the creation of model

comparison tools in practice. They do not make explicit the supported features or even the possible

combinations of features that need to be established to create a valid configuration of technique.

Many studies have been proposed in the field of the model composition such as [9], [11], [12]. Specifically,

in [11], authors propose a flexible, strategy-based process for model composition approaches. Their

approaches are flexible because users can configure the tool to maximize results. It is strategy-based

because it composes elements based on the syntactic and semantic strategies. Similarly, the authors in [12]

propose a modular and flexible architecture focused on model composition. The model comparison in this

work is responsible for mapping the commonalities that will be integrated into the composed output model.

Therefore, the comparison step in this article is rigid and not customizable because authors implemented it

in a single module.

Furthermore, many tools for model comparison were developed using multi-strategy approach to reach a

more precise similarity value. It was observed that authors had implemented similar strategies such as

561 Volume 12, Number 7, July 2017

Journal of Software

MADMatch [6], UMLDiff [13], and Al-Khiaty tool [14]. For example, Al-Khiaty tool and MADMatch have two

comparison aspects in common, i.e., both evaluate the entity names, and neighbors of elements. In addition,

both MADMatch and UMLDiff evaluate structural criteria in the similarity degree. This evidence shows that

authors did not reuse the aspects present in previous approaches. Instead, they end up developing

duplicated strategies from scratch. Consequently, developers could apply this effort to focus on the

implementation of novel aspects instead of developing the strategies present in earlier works.

Table 1. Resume of the Related Works

Articles Type of

Architecture

Context Year Purpose Architecture

Details

Epsilon [5] It does not

specify.

Model

comparison

2008 Authors propose a language

for developers specify the

properties that must be

evaluated to identify the

commonalities of input

models

Proposes a

programming

Language for model

comparison.

MADMatch [6] Focus on

propose a

multi-strategy

comparison

tool

Model

comparison

2013 Authors propose

MADMatch, a tool to

compare class diagrams

using genetic algorithms.

Calculates the

Similarity based on

neighbors, semantic

differences, and class

names.

Webdiff [7] It defines

neither a

modular

architecture,

nor

variability

points.

Model

comparison

2011 Authors proposes an web

differencing tool, called

WebDiff, They proposes an

architecture to organize the

services related to model

comparison, such as parsing

the input models and the

similarity calculation

Specifies a

multilayer

architecture.

However, it Is not

modular.

RCVDiff [8] It does not

specify.

Model

comparison

2011 Authors propose the

RCVDiff, a tool for model

differencing.

The authors

concerned in

produce a common

architecture for

supporting the

representation,

visualization, and

calculation of

differences of input

models

SiDiff [10] Architecture

based on

interfaces,

Model

comparison

2008 Authors propose the SiDiff,

framework. This framework

enables developers to build

comparison tools. It has a

kernel that enables

developers to personalize

the metamodel, the

differentiation algorithms,

and the user’s interfaces.

Specifies a

monolithic Kernel

that provides

interfaces.

Developers

implement these

interfaces the

functions.

Flexible

approach [11]

Flexible

process for

model

composition.

Model

Composition

2009

Authors propose a flexible

strategy-based process for

model composition

approaches. Their approach

is flexible because users can

configure the tool to

maximize results. It is

strategy-based because it

Proposes a model

composition

workflow to

standardize the

compositions

process and guide

developers to add

new features

562 Volume 12, Number 7, July 2017

Journal of Software

3. UMLSim-Arch

This section presents the proposed architecture to support model composition of design models. For this,

we describe characteristics of the UMLSim-Arch through four perspectives, including process, logical,

development, and deployment one [15]. The following sections describe each aspect of this architecture.

These perspectives are described as follows. Section 3.1 presents the model comparison workflow of the

the UMLSim-Arch’s. Section 3.2 presents the coherent vision as a feature model. Section 3.3 introduce the

development perspective as a component diagram. Finally, Section 3.4 presents the deployment vision

showing the architecture layers.

3.1. Intelligible Workflow for Model Comparison

Fig. 1 shows the proposed intelligible workflow for model comparison, which presents the activities

performed, the artifacts generated, and the results produced. In total, the workflow has four phases that are

carefully described as follows:

(1) Analysis phase: this step ensures the compatibility and identifies some inconsistencies of input

models. The first step of this phase checks whether the types of the input models correspond. Next, it

verifies whether the input models are valid [16]. The process finishes if both input models do not

reach these requirements. This ensures the execution of the comparison process only if the models

meet these basic requirements.

(2) Comparison phase: the main purpose of this step is to compare the input models in a systematic way

to determine the similarity between the elements of input models [17][18]. The inputs of this step

are the synonym dictionary, the comparison strategies, and the threshold. This process considers four

criteria to calculate the similarity degree. These criteria specifically are: (1) Syntactic [11], the

technique evaluates the structure of the visual language; (2) Semantic [6], the technique evaluates the

meaning of the terms; (3) Structural [12], the approach evaluates the similarity of the aspects of the

hierarchy, such as the kind of relationship and neighbors; and (4) Metrics [19][16], the technique

evaluates the similarity based on quantitative attributes, such as the number of methods, and classes.

composes elements based

on the syntactic and

semantic strategies.

Farias et. al.

2015 [12]

Defines a

modular and

flexible

architecture

for model

composition

Model

Composition

2015 The model comparison in

this work is responsible to

map the commonalities to

compose them in the output

model. Therefore, the

comparison step in this

work is rigid and not

customizable because is

implemented in a single

module.

Authors proposes a

modular and flexible

architecture focused

on model

composition

UMLDiff [13] An algorithm

to calculate

structural

similarities

Model

Comparison

2010 Authors propose the

UMLDiff, a tool that

generates the models based

on the source code, and

compares their differences.

Calculates the

Similarity based on

structural, and

entities names

Al-kiaty [14] Focus on

develop

multi-strategy

comparison

tool

Model

Comparison

2014 Authors develop a tool for

calculate the similarity

degree between UML Class

Diagram

Calculates the

Similarity based on

neighbors, semantic

differences, and class

names.

563 Volume 12, Number 7, July 2017

Journal of Software

The user defines the comparison strategy choosing the aspects the calculation should consider the

relevance they have in the similarity. User assigns a weight to adjust the relevance of each aspect. Two

input elements are equivalent when the degree of similarity between them is equal to or greater than

the threshold [11]. In addition, this step produces three outputs. The first output is a similarity

matrix, indicating the degree of similarity (ranging from 0 to 1) between the elements of the input

model. The second output is a description of the equivalent elements between the input models, MA

and MB. Finally, the last output is a description of the nonequivalent elements of input models, MA and

MB.

(3) Visualization phase: the main objective is to represent the equivalences according to the output data

produced in the previous step. The modular aspect of this stage enables the adaptability of this

comparison process to many contexts. The default strategy of this step shows a similarity matrix. This

output applies in the context of model composition, where the process merges elements of the input

models above the threshold. Also, developers could adjust the output to highlight the differences to

identify and track inconsistent changes between input models.

(4) Persistence phase: this step stores the results obtained. The application can save the results in the

form of states or operations. When the results are state-based, the tool saves the full diagram. The

state-based techniques perform the activities based on the state. Next, the operation-based result

stores the modifications made from one diagram to another, i.e., operations such as added, deleted,

changed are permanently persisted. These operations apply for techniques on the versioning context

to undo or transform one diagram to another.

3.2. Feature Model of UMLSim

The feature models present a general vision of the functions and characteristics of an application. It

organizes a software product line, and then developers can produce various combinations of software

according to their needs. Three reasons explain the adoption of this architecture. First, previous works [11],

[20], [21] highlight that the need for reusable architectures to support and guide the production of new

software development tools, as the technologies are constantly evolving. Second, the feature diagram

represents the domain of model comparison in a modular way. Finally, the feature's diagram ensures the

derivation of different products, since it contains several points of variability related to analyzing,

comparing, visualizing, and persisting strategies. In this way, the proposed architecture provides the

fundamental characteristics for the model comparison.

Fig. 2 shows a simplified representation of the features model of UMLSim. The points of variability of the

visualization and persistence features are absent in this figure due to the space constraints. We designed

the UMLSim architecture to ensure the required resources according to the comparison process described

in Fig. 1. Therefore, developers must implement the required characteristics of analysis, comparison,

visualization, and persistence features to generate a comparison tool. Finally, the developer must

implement or adapt at least one or more comparison criteria.

3.3. Architectural Components of UMLSim

Fig. 3 shows the components that implement each feature in Fig 2. Therefore, this diagram relates the

elements of Fig. 3 to the characteristics presented in Section 3.2. The small squares located on the edges of

the components represent the mapping between the features to the respective elements. For example, the

letter “C” at the top of the Semantic component (Fig. 3) indicates this component implements the Semantic

feature (Fig. 2). Thus, the feature's design is component-based, and each feature is equivalent to a single

element. The aspect-oriented programming enables the encapsulation of the features. This method allows

developers are creating modularized design elements and reuse of previously implemented features.

564 Volume 12, Number 7, July 2017

Journal of Software

Fig. 1. Model comparison workflow.

Fig. 2. Feature diagram of the UMLSim.

565 Volume 12, Number 7, July 2017

Journal of Software

Fig. 3. Component diagram of UMlsim.

The project of the architecture conceived these components using three characteristics. First, they are

standalone modules that encapsulate the behavior of elements that are responsible for implementing one

(or more) resources. Second, they perform roles depending only on the interaction between their own

elements. This means that the component performs the expected behavior according to their self-contained

resources. Finally, they have their own provided interfaces. For example, to implement a new comparison

strategy, the new component must require the comparison strategy (P) interface, and implement a new

interface with UMLSim ENGINE. Another example is the addition of a new semantic comparison approach.

For this, users should only require the interface of the semantic component. Furthermore, Fig. 3 focuses on

the presentation of elements of a group of elements, where each element is a block performing a single role

during the model comparison process.

3.4. Architectural Layers of UMLSim

The multilayer architecture of Fig. 4 shows the logical perspective of the UMLSim-Arch. Also, it also

illustrates the organization of crosscutting concerns (e.g., persistence and logging) as represented by the

feature’s diagram. The architecture of this tool has five layers that are below described:

(1) Presentation Layer: it describes the application interface, receives the input data needed to perform

the comparison process, then transfers those results to the application layer;

(2) Application layer: this layer is equivalent to the UMLSim tool's engine. It is responsible for managing

the comparison process. It performs a pivotal role coordinating the requests for the operators in the

process of comparison of the input models;

(3) Variability layer: it is responsible for implementing the variation points individually. Therefore, it is

composed of the aspects that weave the individual behaviors to each element of the models (business

rules layer) to the comparison operators (application layer). In practice, the aspects include in the

operator's alternative or optional behaviors, which corresponds to the strategies and their rules;

(4) Business rule layer: it contains the family of algorithms that implement UMLSim comparison

operators, i.e., syntactic, semantic, structural, and design metrics. These algorithms calculate the

similarity degree between input models, MA and MB;

(5) Infrastructure Layer: it accommodates functions for handling the execution of exceptions, data access,

persistence, and data logs. These features are crosscutting concerns applied during the comparison

process.

566 Volume 12, Number 7, July 2017

Journal of Software

Fig. 4. Layer diagram of UMLSim.

4. Implementation Details

We have used the UMLSim-Arch to develop model comparison tools as an Eclipse plug-in. The main goal

of UMLSim is to calculate the similarity between input models according to the process described in Section

3.1. The UMLSim tool was implemented using the Eclipse modeling technologies, such as EMF [22], UML2

[23], GEF [24], and UML2 tools [25] libraries.

The AspectJ [26] plug-in will be used to implement the tool’s variability points, i.e., this plugin provides

support to the aspect-oriented programming for ensuring the tool's flexibility. Next, the project obtains

metrics from the SDMetrics API [27]. The libraries are necessary to facilitate the manipulation of diagrams,

which are descriptions in XML. For example, the UML2 tool API interprets the information of the file tags

described in XMI (XML for design models), transforms them into a compatible set of data, and then enabling

the manipulation of the elements as objects in the Java language.

Fig. 5 presents an overview of the UMLSim prototype, where the uppercase letters from A to F represent

the description of the following components: Package Explorer (A) organizes the input files in a tree

structure; (B) The outline tab that shows a big-picture of the compared models; (C) the input models; (D)

the console tab displaying the results from the similarity matrix; (E) The model's properties, i.e., the

meta-model properties of the input models; (F) the editing palette that provides tools to the user correct

and adjusts the input models before the comparison. Finally, the red and blue colors point the

correspondences and the respectives similarity degree.

Fig. 5. Prototype of the UMLSim tool.

567 Volume 12, Number 7, July 2017

Journal of Software

5. Conclusions and Future Work

This paper introduced a modular and flexible architecture for supporting the development of model

comparison tools. This architecture was conceived aiming the reuse of the aspects between developers, and

to provide a way to users adapt the comparison techniques according to the domain level. Moreover, a

model comparison process was also developed aiming to guide developers to comprehend the essential

comparison activities and their relationships more correctly. In addition, this work reported the

implementation details of the UMLSim tool, a comparison tool for design models based on the

UMLSim-Arch.

The next step in this research is to carefully evaluate the UMLSim tools by performing case studies to

measure the precision and accuracy of the comparisons. Furthermore, the future investigations should seek

to answer some questions such as: (1) do developers invest significantly more effort to develop a

comparison technique from scratch than using the UMLSim? (2) How effective is this tool to compare

complex UML design models? Lastly, this work represents the first step in a more ambitious agenda on

better supporting the elaboration of model comparison techniques.

Acknowledgment

This work was funded by Universal project – CNPq (grant number 480468/2013-3).

References

[1] Stepha, M., & Cordy, J. R. (2016). Model-driven evaluation of software architecture quality using model

clone detection. Proceedings of the 2016 IEEE International Conference on in Software Quality, Reliability

and Security (pp. 92-99).

[2] Dong, J., Sun, Y., & Zhao, Y. (2008). Design pattern detection by template matching. Proceedings of the

2008 ACM Symposium on Applied computing (pp. 765-769).

[3] Adamu, A., & Zainoon, W. (2016). A framework for enhancing the retrieval of UML diagrams.

Proceedings of the International Conference on Software Reuse (pp. 384-390). Limassol, Cyprus.

[4] Farias, K., Garcia, A., Whittle, J., Chavez, C. V. F. G., & Lucena, C. (2014). Evaluating the effort of

composing design models: a controlled experiment. Software and Systems Modeling, 14(4), 1349-1365.

[5] Kolovos, D. S. (2009). Establishing correspondences between models with the epsilon comparison

language. Proceedings of the European Conference on Model Driven Architecture-Foundations and

Applications (pp. 146-157).

[6] Kpodjedo, S., Ricca, F., Galinier, P., Antoniol, G., & Gueheneuc, Y. G. (2013). Madmatch: Many-to-many

approximate diagram matching for design comparison. IEEE Transactions on Software

Engineering, 39(8), 1090-1111.

[7] Tsantalis, N., Negara, N., & Stroulia, E. (2011). Webdiff: A generic differencing service for software

artifacts. Proceedings of the 2011 27th IEEE International Conference on Software Maintenance (pp.

586-589). Williamsburg, VA, USA.

[8] Van, D. B. M., Protic, Z., & Verhoeff, T. (2010). RCVDiff-a stand-alone tool for representation, calculation

and visualization of model differences. Proceedings of the international workshop on models and

evolution-ME co-located with ACM/IEEE 13th International Conference on Model Driven Engineering

Languages and Systems. Oslo, Norway.

[9] La Rosa, M., Dumas, M., Uba, R., & Dijkman, R. (2013). Business process model merging: An approach to

business process consolidation. ACM Transactions on Software Engineering and Methodology

(TOSEM), 22(2).

[10] Schmidt, M., & Gloetzner, T. (2008). Constructing difference tools for models using the SiDiff framework.

568 Volume 12, Number 7, July 2017

Journal of Software

Proceedings of the Companion of the 30th International Conference on Software Engineering (pp.

947-948).

[11] Oliveira, K. F., Breitman, K. K., & Oliveira, T. O. (2009). A flexible strategy-based model comparison

approach: Bridging the syntactic and semantic gap. Journal of Universal Computer Science, 15(11),

2225-2253.

[12] Farias, K., Gonçales, L., Scholl, M., Oliveira, T. C., & Veronez, M. (2015). Toward an architecture for model

composition techniques. Proceedings of the 27th International Conference on Software Engineering and

Knowledge Engineering (pp. 656-659).

[13] Xing, Z. (2010). Model comparison with GenericDiff. Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering (pp. 135-138).

[14] Al-Khiaty, M. A. R., & Ahmed, M. (2016). UML class diagrams: Similarity aspects and matching. Lecture

Notes on Software Engineering, 4(1), pp. 41-47.

[15] Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE Software, 12(6), 42-50.

[16] Mishra, A. K., & Yadav, D. K. (2015). Validation of UML design model. Journal of Software, 10(12),

1359-1366.

[17] Ohst, D., Welle, M., & Kelter, U. (2003). Differences between versions of UML diagrams. ACM SIGSOFT

Software Engineering Notes. 28(5).

[18] Kelter, U., Wehren, J., & Niere, J. (2005). A generic difference algorithm for UML models. Software

Engineering, 64(105-116). pp 4-9.

[19] AbuHassan, A., & Alshayeb, M. (2016). A metrics suite for UML model stability. Software & Systems

Modeling, pp. 1-27.

[20] Clarke, S. (2001). Composition of object-oriented software design models (Doctoral dissertation,

Dublin City University).

[21] Farias K. (2012). Empirical evaluation of effort on composing design models (doctoral DISSERTATION,

PUC-rio).

[22] EMF. Eclipse modeling framework. (2017), Retrieved on March 15, 2017, from

https://eclipse.org/modeling/emf/

[23] UML2. (2017). Retrieved on March 15, 2017, from

http://www.eclipse.org/modeling/mdt/downloads/?project=

[24] GMF. graphical modeling framework. (2017), Retrieved on March 15, 2017, from

https://eclipse.org/modeling/ emf/

[25] UML2 TOOLS. (2017). Retrieved on March 15, 2017, from

http://www.eclipse.org/modeling/mdt/downloads/?projec t=uml2tools

[26] ASPECTJ. AspectJ. (2017). Retrieved on March 15, 2017, from https://eclipse.org/aspectj/

[27] SDMETRICS. SDMetrics the Software Design Metrics tool for the UML. (2017). Retrieved on March 15,

2017, from http://www.sdmetrics.com/index.html

Lucian Gonçales is a master student in the interdisciplinary graduate program on

applied computing (PIPCA) at the University of Vale dos Rio dos Sinos (Unisinos). He

completed his undergraduate studies in Computer Science at the University of Vale do

Rio dos Sinos (UNISINOS) in 2013. He also received his formation as a computing

technician from Sao Lucas Education Institute in 2006. His current research is about

software modeling, empirical evaluation of model composition techniques, and

software metrics. His current research interests include model matching, software

metrics, and neuroscience applied to software engineering.

569 Volume 12, Number 7, July 2017

Journal of Software

Kleinner Farias is an assistant professor in the interdisciplinary postgraduate program

in applied computing at the University of Vale dos Rio dos Sinos (Unisinos). He is an

associate member of the OPUS Researcher Group at the Pontifical Catholic University of

Rio de Janeiro (PUC-Rio), Brazil. He received his Ph.D. in computer science from PUC-Rio

in 2012. He received his master’s degree in computer science from the Pontifical Catholic

University of Rio Grande do Sul (PUC-RS) in 2008. He completed his undergraduate

studies in Computer Science at the Federal University of Alagoas and in Information Technology at the

Federal Institute of Alagoas in 2006. His current research interests include software modeling, empirical

evaluation of model composition techniques, model-driven software development, software metrics and

software product lines.

Vinicius Bischoff is a master student at University of Vale do Rio dos Sinos (UNISINOS)

since 2015. He received his Bachelor degree in Information Systems in 2012 at

Integrated Taquara's Faculties (FACCAT). He obtained his specialization in engineering

of software testing in the Federal University of Pernambuco (UFPE) in 2013. Thus, He

worked as a test engineer at Motorola Mobility between 2013 and 2014. He also

received his Bachelor degree on Transportation Engineering in 2005 in the Catholic

Pontifical University of Rio Grande do Sul (PUC-RS). Since 2015, he started are researching the subject of

integration of feature models in the interdisciplinary graduate program in applied computing (PIPCA). His

current research interests include controlled experiments in the software engineering, and efficacy

techniques for software testing.

Matheus Segalotto is a master Student in the interdisciplinary graduate program on

applied computing (PIPCA) at the University of Vale dos Rio dos Sinos (Unisinos). He

completed his undergraduate studies in analysis and systems development at the

University of Vale do Rio dos Sinos (UNISINOS) in 2014. He also received his formation

as a technician systems development from Fundação Liberato Salzano Vieira da Cunha in

2010. His current research is about software comprehension, data mining, and

neurophysiological indicators. His current research interests include machine learning, big data, and

neuroscience applied to software engineering.

https://eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/mdt/downloads/?project=
https://eclipse.org/modeling/%20emf/
http://www.eclipse.org/modeling/mdt/downloads/?projec%20t=uml2tools
https://eclipse.org/aspectj/
http://www.sdmetrics.com/index.html

