

An Approach for Generation of SPARQL Query from SQL
Algebra based Transformation Rules of RDB to Ontology

Mohamed A. G. Hazber 1*, Bing Li1, Guandong Xu 2, Mohammed A. S. Mosleh3, Xiwu Gu 4, and
Yuhua Li4
1School of Computer Science, Wuhan University, Wuhan, China
2Advanced Analytics Institute, University of Technology Sydney, Australia
3School of IT & Science, Dr. G.R.Damodaran College of Science, Coimbatore, India
4School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

*Correspondence: Email: moh_hazber@whu.edu.cn, moh_hazbar@yahoo.co.uk
Manuscript submitted August 31, 2018; accepted October 10, 2018.
doi: 10.17706/jsw.13.11.573-599

Abstract: Semantic web is a web of linked RDF data that can exchange and reuse data allowing for more use

of traditional web documents. However, the huge amount of data on the web are still formed and stored in

relational databases (RDBs), such data cannot be used directly via the Semantic Web. Consequently,

construction of ontology (Semantic Web -side) from relational schema and data (RDBs - side) and querying of

constructed ontology semantically are fundamental challenges for the development and integration of the

Semantic Web from the data source (i.e. database). This paper proposes an approach for providing a

formulated operation rules to express semantic queries against structured graph ontology in the relational

query language SQL. This approach applied by rewriting SPARQL queries over generated ontology (i.e. RDF

triples) corresponding to advantages of SQL relational algebra operation queries in RDBs and performed by

two phases. The first phase focused on proposing and improving rules of extracting ontology directly from

the important concepts in the relational database with considering database containing null-values to avoid

data losses during the transformation process. The generated ontology represented in the form of

OWL-RDFS/RDF triples to ensure its availability at Semantic Web, thus help semantic query engines to

answer more queries. Furthermore, the first phase providing additional rules to generate the

Internationalized Resource Identifiers (IRIs) for RDB schema and data. In the second phase, we proposed a

set of rules inspired by fundamental operations of relational algebra (SQL algebra) for rewrit ing a relational

algebra for SPARQL over RDBs that represented in RDF triples. In other words, translating SQL relational

algebra operation queries into equivalent graph semantic queries (SPARQL). The proposed approach is

demonstrated with examples, validated, implemented and compared with existing approach methods. The

effectiveness of the proposed approach is evaluated by experimental results.

Key words: Semantic web, ontology, semantic query, SPARQL, transformation rule, relational database, SQL,
relational algebra.

1. Introduction

The Semantic Web has become one of the most significant research fields that came into light recently. It is an

idea of the W3C [1] to make web information understandabl e not only by human beings but also by machines.

Ontology is basically for enabling technology to the semantic web applications and plays a crucial role in solving

the problem of semantic heterogeneity of heterogeneous data sources [2]. Therefore, most researches focus on

Journal of Software

573 Volume 13, Number 11, November 2018

the development of various technologies on semantic web. The W3C has recommended a number of languages

for representing web ontology, such as resource description framework (RDF) [3] as standard language to

represent data model, RDF Schema [4] as a schema of data, and web ontology language (OWL) [5], a formal

language for authoring ontologies. Moreover, the semantic query language (i.e. SPARQL [6], [7]) for web ontology

is recommended by W3C. SPARQL is the standard query language used for querying RDF data model, we

accordingly use SPARQL query in this study.

Currently, the bulk of web data (i.e. deep web) is stored in RDBs with no near future vision for huge

global RDB to RDF triple store migration. It can be noticed that the capacity to publish RDBs in the semantic

web is significant not only for development of the latter, but also for increasing demand for the ability to

effectively exchange this data and allowing search engines to return more relevant deep web search results

[8]. One of the challenges in real world applications is how to make accessing data and sharing the existing

knowledge in databases more efficient. That is mean there are important challenges in using RDB as an RDF

data to enable web applications of accessing the RDBs. One of the studies was proved that Internet

available databases, compared to the static web, contained up to 500 times more data and roughly 70% of

websites are backed by RDBs [9]. Therefore, the success of the Semantic Web in this process depends on its

ability to access RDBs and their content by semantic methods.

The continuous growth in the volume of published data on the web makes a challenge for providing some

automatic mechanism to search and integrate information over the web, which is not possible on existing

web. The majority part of these published data have come from RDBs. Therefore, it is highly desirable to

produce ontology from relational database resources for publishing data as RDF/OWL on the web and

combining a relational data with existing RDF/OWL for data integration. During the last decade several

studies have been conducted to integrate a database with the semantic web and making data hosted in

RDBs accessible to the semantic web. They providing methods and tools that expose or convert data in RDB

as ontological data described in RDF. Recently, there are some issues existing methods of transforming

relational module to ontology (OWL/RDF(S)) [10] and basic transformation methods of RDB data to

ontology (RDF) [11], [12] . The RDF data model can be queried through SPARQL [6], [7] to provide a

semantic query on RDF triples. The different features of existing approaches based on comparing of

RDB-to-RDF mapping language were listed in [13].

However, semantic integration of relational data sources into the Semantic Web is not a trivial task and

several important problems remain to be investigated. Some of the primary obstacles in integrating

semantic web with RDBs are that, how ontology can be automatically constructed from RDBs as RDF/OWL

triples, being a significant step towards realizing benefits of semantic web research, and how to formulate

queries in order to retrieve more accurate information using SPARQL query. A lot of problems exist in

constructing ontology from RDB or re-writing semantic querying corresponding to SQL query, including

unclear ontology generation approaches, non-uniform methods in description of data from RDB by

ontology, semantic query formulation, dealing with relationships and null values, manage and query data

stored in OWL/RDF files.

Therefore, constructing ontology from RDBs and generating queries through ontologies are fundamental

problems for the development of the semantic web and integrated with information sources. This paper

aims to propose an approach for automatic ontology construction from RDBs and to participate in

formulating semantic queries (SPARQL) corresponding to SQL query algebra. Moreover, to provide unified

ontology and improve the quality of ontology, we added new complementary concepts to analyze RDB and

ontology with their relation. Our main contributions in this paper can be summarized as follows.

(i) We propose a direct mapping rules for constructing ontology schema from RDB schema, and use
these rules as a basis to build rules for generating RDF data model from RDB data (contain null

Journal of Software

574 Volume 13, Number 11, November 2018

values). Therefore, RDB data become an integral part of the semantic web formatted that enable
semantic query engines to answer more relative queries.

(ii) We propose a query transformation approach to show that generating RDF triples using our

approach enables the semantic web applications accessing relational data. This approach applied by
formulating translating rules SQL relational algebra into an equivalent semantic query (SPARQL).

(iii) We examine the performance of the proposed method on an RDB (have an important concept of RDB

scenarios), and demonstrate the effectiveness of our approach practically by using examples and
experimental analysis. The results of the queries are presented and demonstrated to be promising.

The rest of the paper is organized as follows: Section 2 introduces related work. Section 3 describes and

analyzes the preliminary concepts of semantic web ontology (SWO) and rel ational database. Section 4 and 5

propose our approach for ontology construction, RDF triples generation, and expressing SPARQL queries against

graph structured ontology in the relational SQL query (i.e. rewriting SPARQL queries correspo nding to

advantages of SQL query). Implementation, experimental analysis, and comparison are provided in Section 6.

Our conclusion and future work direction are presents in the Section 7.

2. Related Work

In this section we discuss the previous works considering the following sub-division.

2.1. Transforming RDB to Ontology

In this section, we provide an overview of the previous effort solutions [14], [15], which aim to extract

data model of ontology from an RDB schema (model) and to convert the relational data to the ontology

instances. Buccella et al. [16] proposed the semi-automatic method to integrate several sources of

information based on the use of ontologies. Every data source has a source ontology constructed in two

phases: Producing initial ontology (OWL) from SQL-DDL and construction of source ontology, which

allowed the domain experts for adding restrictions, classes, and properties to the initial ontology (OWL).

The drawback in transformation rules of datatype properties have not include a domain and range, the

not-null restriction was converted to the number restriction, and their translation was not capable of

expressing the primary keys. Moreover, in the case of SQL-DDL code does not explain the minimal

cardinality, to solve this case, domain experts needed to add this cardinality after the ontology was built. Li

et al. [17] proposed an approach for the automatic ontology learning approach to develop OWL ontolog y

from RDB using a set of rules and extracted ontology from an RDB using entity relationship (ER) Data

Model. This method has a disadvantage of losing the information because only the RDB schema structure

has been considered while the actual data is not utilized. On the other hand Shen et al. [18] is a

semi-automatic approach that presented groups of semantic mapping rules to extract a global ontology as

OWL from an RDB. They are classified as concepts, properties, restrictions and instances and used these

rules to mapping RDB to ontologies in OWL, whereby the mapping and transferring can be performed

semi-automatically. The rules of concepts, properties and restrictions represent the correspondence at the

schema (metadata) level, which avoid the migrating the large amount of data. Another study carried by

Astrova et al. [19], it has been widely cited by many approaches that proposing heuristics for mapping

RDBs to ontologies. They proposed a method to automatically transform RDBs to ontologies, where the

quality of transformation is also studied. This method is based on descriptive informal rules, which lead to

ambiguous transformation rules. While Zhang and LI [20] presented a tool to generate ontology based on

RDB resources, namely the ontology automatic generation system based on a relational database (OGSRD).

This method firstly, mapping analysis of database and ontology. Secondly, building rules of an OWL

ontology based on RDB, which are used to produce ontology classes, properties and axioms. Thirdly,

designing and implementing the OGSRD. However, their tool disregarded some tables that express the

association of data, which could not be counted in the RDB concepts.

Journal of Software

575 Volume 13, Number 11, November 2018

2.2. Mapping an RDB to Existing Ontology

Approaches in this area indicating that a legacy RDB and ontology are already exist [21], [22]. The

general goal is to create mappings between them, and / or populate the ontology with the RDB contents.

For example Xu et al. [23] presented a practical approach for creating generic mappings between RDB

(schema) and ontology (OWL). Ontological annotation is useful for the contents of dynamic web page

extracted from RDB. Their Framework, DPAnnotator, translates the ER schema of the RDB into OWL

ontology. They provide a D2OMapper tool, which automatically creates the mappings by following their

rules; their approach and tool can act as a gap-bridge between existing database applications and the

semantic web. Another simplistic platforms approach is Triplify offered by Auer et al. [24] for publishing

RDB as RDF graph. The created RDF graph in this method can be either published as Linked Data or

materialized, thus allowing dynamic access. The drawback of this tool is a necessity to manually write the

SQL commands for generating an RDF triple. Moreover, the W3C RDB2RDF Working Group recommended a

standard customized mapping language, for expressing RDB-to-RDF mappings document manually, called

R2RML [25]. This approach requires an expert for complete mapping of RDB to the existing ontology,

particularly to avoid problems that occur during mappings document constraints. Recently, M. A. Hazber et

al. [26] presented tool to produce an R2RML mappings document automatically from an RDB schema

according to the direct mapping specification [27]. Thus tool supports any R2RML engine of generating RDF

triples accessing RDB data and producing a set of RDF dataset.

2.3. Semantic Query in RDB Using Ontology

The mapping between RDB and Semantic Web ontology is not enough to integrate a relational database

into the Semantic Web, thus query processing semantically over these mappings is required. Expressing

SPARQL queries against graph structured ontology in the SQL query language is one of the fundamental

problems for the development of the Semantic Web. However, these approaches have some drawbacks

especially in integration with SQL queries and in conversion of SQL query to the corresponding language

data format. RDF query language (SPARQL) [6], [7] presents a standard language for querying on RDF data

that focuses on the transformation of traditional SQL queries to RDF query languages. D2R Se rver [28] is an

engine to publish the RDB content as RDF graph. It uses D2RQ mappings for translating query requests

from external applications to SQL queries on the RDB. The methodology, proposed by Banu et al. [29] based

on Library Management System (LMS) database to build ontology. This method depends on two steps,

ontology extraction (offline) and semantic query (online). In the offline, the process extracts the ontology

from explicit relations of LMS schema and then the domain expert will modify the ontology by ad ding the

implicit relations to complete generated ontology. In online query operation, the user can submit a request

of semantic query to the system, and the system translates that query into a related SQL query for the

underlining RDB. To extract ontology from RDB, two rules are applied on the primary key and foreign key,

both rules are non-final, because not all object properties are defined. The disadvantage of this approach

needs domain experts to complete generating ontology. Lee and Sohn [30] proposed a framework, which

can automatically create ontology from a relational schema and can clearly discover the semantic relations

between data through the ontology building process. The framework proposed in this approach consists of

two modules, MOG (Module for Ontology Generation) and Module for MQO (Query using the Ontology).

MOG is a module that generates the ontology from RDB schema, whilst MQO is a supporting module for

executing the query using the ontology. Ranganathan and Liu [31] specified three types of semantically

relevant results, which are direct, inferred, and related results. These types are based on their relationship

to the semantic query and how these results can be obtained. Based on ontology models, the end-user can

expresses the semantic queries and those queries are translated into a syntactic SQL queries. The semantic

Journal of Software

576 Volume 13, Number 11, November 2018

queries are based on SPARQL where the user can issue either schema or data query. Rodriguez-Muro et al.

[32] proposed the ontop system that allows SPARQL queries over RDF views of RDBs. They converted

SPARQL query to datalog programs and then rewritten and converted to the SQL query. Cyganiak [33]

described the transformation of SPARQL language to relational algebra and outlines a set of transformation

rules to create the equivalence between algebra and SQL. The methodology of their approach depends on a

global reference table that contains RDF statements in form (subject, property, object) as a basis for the

operations. The drawback of this approach lacks the nested OPTIONAL pattern problem.

Compared with existing approaches, this work is quite different in terms of an integrated method, since

we added new complementary concepts to analyze RDB and SWO. These ideas then used to ensure further

analysis reflecting the integration of our work. For example, we produce ontology schema from RDB schema,

transform the contents of RDB (considering null-values) to RDF triples, and re-writing SPARQL queries

corresponding to relational algebra to easy enable the web applications to queries on RDB as RDF triples.

The strength of this work it takes account of the important concepts of RDB, such as constraints,

relationships, and null-values for all phases of the transformation rules that are demonstrated with

examples. The validation, results, and implementation are also considered.

3. Preliminaries

This section mainly presents a good notation and defini tions used in this paper. It defines the basic

terminology of RDBs and Semantic Web ontology languages in order to make the rules of this work understood

and applicable.

3.1. Relational Databases

A Graph Data Model for Relational Databases: Typically, we assume that: (i) a relational database

schema RDBS is a set of relation schemas ,1 1 n nTB (A),..,TB (A) where iTB is the name of the -i th relation (table)

and iA is the set of its attributes (columns) name that denoted by 1() { ,.., },i natt TB A A and (ii) a relational

database RDB over RDBS is a set of instance (data) of relations 1 nI ,...,I over ,1 1 n nTB (A),..,TB (A) respectively.

Where iI is a set of tuples (rows) 1,..., mrw rw over iTB that denoted by 1() { ,..., }i mI TB rw rw RDB RDBS   for

all attributes in iTB , where each row :1 ,irw i m and  1(()) { . ,..., . }i i i i m iI TB A rw A rw A RDB RDBS   for iA in iTB .

The notation .i irw A (or (, ,)i i ival A rw TB) refers to the value of a row irw in a column iA , (iii) each

column iA has a data type (type)iA (type i.e. string, int, float, date, etc.). In the following, we underline the

attributes of a relation that belong to its primary key 1 i ipk (A ,TB) and we denote for foreign key by

 (or (. ?))fk
i k i kTB A TB B A, TB ,B, TBfk between the attribute A of a relation iTB and the attribute B of a

relation kTB .

Basic Structure of SQL Queries: The fundamental structure of an SQL expression depends on three

clauses: SELECT, FROM, and WHERE clause, which they are corresponding to the PROJECTION,

CARTESIAN-PRODUCT, and SELECTION PREDICATE operations of the relational algebra respectively. A

typical SQL query has the following form:

Definition 1: SQL query

1,.., ,..,Select From Wherem i nA A TB TB P is a preP dicate

Relational Algebra (Q): We use relational algebra as a query language for relational data . The

important basic operation of relational algebra: delete unwanted attributes ()PROJECTION  , select tuples

()SELECTION  , combine relations ()JOIN  , set operations ()UNION and (\)DIFFERENCE , and

()RENAME  are defined in our work. The Definition (1) can be re-written into equivalent a relational

Journal of Software

577 Volume 13, Number 11, November 2018

algebra as follows:

Definition 2: SQL algebra (Q)

1 ,..., ,
(..)i n

PA Am
TB TB


 

n,m 0

p stand for a condition like (
iA x ): x is variable or value.

1(..) att((,..,)) 1 m i n nA ,...,A att TB TB RDB TB TB RDBS    

3.2. Semantic Web Ontology Languages

A Graph Data Model for Ontology: Typically, we assume that: (i) a semantic web ontology schema

SWOS is a set of classes (owl:class) 1 1(),.., (),n nCLS DTP CLS DTP where iCLS is the name of the i-th class and iDTP

is the set of its datatype properties names (owl:Datatype Property) to describe th e properties of classes

that denoted by 1() { ,.., }i n iatt CLS DTP DTP CLS  and (ii) a semantic web ontology SWO over SWOS is a set of

instance of class 1,..., nIo Io over 1 1(),.., ()n nCLS DTP CLS DTP , respectively. Where iIo is a set of tuples (graph)

1,..., mtr tr over iCLS that denoted by 1() { ,..., }i mIo CLS tr tr SWO SWOS   for all datatype properties in iCLS ,

where each triple 1: , and (()) { . ,..., . }i i i i i m itr 1 i m Io CLS DTP tr DTP tr DTP   SWO SWOS  for iDTP in iCLS . The

notation .i itr DTP (or (, ,)i i ival DTP tr CLS) refers to the value of a tuple (triple) itr in an property (attribute)

iDTP , (iii) each (owl:ObjectProperty) iOBP and iDTP has a set of domain (rdfs:domain) Dom and range

(rdfs:range) Rng classes, and iDTP has a XML schema data type ()i xsdDTP [34] (e.g.

rdf:resource=”xsd;string”,“xsd;int”,“xsd:float”,“xsd;date”,etc.). Each class has a set of object properties iOBP to

describe the relations between properties of classes ()i iCLS DTP denoted by

()
() () () () () iOBP

i Dom i k Rng k i i i(Dom) k k(Rng)CLS DTP CLS DTP OBP DTP,CLS ,DTP ,CLSor that mean iOBP is a relationship

between () ()() () i Dom i k Rng kanCLS DTP Sd CL DTP through its domain Dom and range Rng .

RDF Graph (Triples) and OWL Vocabulary: Assume there are pairwise disjoint infinite sets ()IR IRIs to

denote web resources, BN (blank nodes) to denote a special type of objects that describe anonymous

resources and L (literals) denotes the values (e.g. Natural Numbers, Boolean, Date Time, and String). A

tuple (, ,) () ()s p o IR BN IR IR BN L      is called an RDF triple (, ,)t s p o , where s is the subject, p is the

predicate and o is the object as shown in Fig. 1. A finite set of RDF triples is called an RDF

graph 1{ ,..., }nG t t . Moreover, assume the existence of an infinite set V of variables disjoint from the above

sets, and assume that every element in V starts with the symbol ? such as 1? ,...,? nV V .

Fig. 1. RDF triple corresponds to the record tuple in RDB.

SPARQL Query () :Q Semantic queries for the semantic web data, represented by RDF graphs, are

specified using some of the W3C standard query languages, e.g. SPARQL. In this paper, we use SPARQL as a

query language for accessing RDF graphs (triples). The official syntax of SPARQL [6], [7] consider these

operators , , (OPTIONAL), , SELECT FILTER OPT UNION AS and concatenation via a dot symbol) (AND , which

Journal of Software

578 Volume 13, Number 11, November 2018

denote the end of a triple pattern TP , to construct graph pattern GP expressions. A set of graph patterns is

a group graph pattern GGP (or {}), meaning that each part of group graph pattern must be matched. A

SPARQL uses a WHERE clause to define graph patterns to discover a match for in the query data set. In

SPARQL queries, variable names : 1 nV V ,..,V are prefixed with the question mark ? symbol e.g. : 1 n?V ?V ,...,?V , and

value constraints can be defined by the FILTER keywords. The SPARQL query offers lots of filtering

possibilities: String matching to test strings based on regular expressions regex)? ,(,strV Boolean

operators (!, ,&&) , comparison operators (,! , , , ,),      arithmetic operators (*, /, ,),  and RDF element

operators (), () and ()bound isURI STR?V ?V . Precisely, a SPARQL graph pattern expression GP is defined as the

following abstract grammar:

Grammar (GP) : SPARQL graph pattern expression

| GP | | | AND OPT UNION FILTERi k i k i kGP TP GP GP GP GP GP GP expr_cond

() () ()TP IR BN L V IR V IR L V        

where, expr_condFILTER represents the FILTER construct with a Boolean expression expr_cond . Therefore,

a SPARQL query defined as:

Definition 3: SPARQL query (Q)

 { ()} SELECT WHERE FILTER1 nQ ?V ,...,?V GP expr_cond ()1 n?V ,...,?V var GP

For example, a SPARQL graph pattern GP can be represented as:

(((? , ,?) (?X,age,?Ag)) ((?N),"mohamed")).AND FILTER regexX name N

4. Rules for Generating Ontology from Relational Database

In this section, we introduce the first part of our approach to construct OWL/RDF triples from RDB,

automatically by using a set of particular rules, called mapping rules. This method presents the basic

transformation rules for producing RDF triples from relational d ata including null values, and enables semantic

query engines to answer more semantic queries. The contents of this part are represented by running examples,

which includes the important cases, such as relationships of RDB as shown in Fig. 2.

Student

PK Stud_Id

 Name

FK1 Lab_No

FK2 Post_No

Lab

PK Lab_No

 Lab_Name

FK1 Prof_No

Stud_Cors

PK,FK1 Stud_Id

PK,FK2 Cors_No

Courses

PK Cors_No

 Cors_Name

Professor

PK Prof_No

 Name

 Direct_Research

Postion

PK Post_No

 Note

a

b

c

d

Fig. 2. Relationships and constraints in RDB laboratory (RDBLAB).

4.1. Rules for Mapping a RDBS to Ontology

Now we will define the rules that map RDB schema to an ontology, which provides the basic rules for

generating RDF triples from RDB data. Firstly, we define some predicates that will be used in this work as

follows.

Identify relationship between two tables (Definition 4) and Identify Binary Relation (Definition 5):

Journal of Software

579 Volume 13, Number 11, November 2018

Definition 4: ()IsRelationship i k.TB .A,TB B Definition 5: ()ISBinaryRel bTB

()

 ()

HasRelationship

IsRelationship

fk
i 1 n k 1 n i k

i k

i k.

TB (A ,...,A),TB (B ,...,B),TB .A TB .B

TB ,A,TB ,B

TB .A,TB B







2 1 2 1

1 2

1 2

1

, ,

, , ,

(. , .) (. , .)

(, , , ?

, , , , , ,

()

) () ()

()

IsRelationship IsRelationship

BinaryRel

ISBinaryRel

b i k

b i

i b k

k

b

b

pk A A TB pk B TB pk C TB

TB A

TB A TB B TB A TB

A TB B TB C

C

TB





, (), (), ,i k are name of tables and A att TB B att TB TB TB TB RDBSi k i k    , , , , , , ,b i kb i k are name of tables b i b k and i k and TB TB TB TB RDBS    

Then the mapping process is done progressively based on the following rules:

Rules for Non-binary Relation: Every concept in RDBS that belongs to a non-binary relation is mapped to

ontology according to the following rules:

Rule1 (i iTB CLS): Each table iTB in an RDB unless ()iTBISBinarRel should be mapped to a class iCLS in .SWO

Rule1(R_1): i iTB CLS

RDBS SWOS (RDF/OWL)

 is name, , . i ii TB RDB CLS SWO  ()!ISBinaryReli iTB TB iCLS

This is a basic rule used to identify classes in a clear way from several cases in tables. It depends on the

function condition, ISBinaryRel(TBi) in Formula (5). Such cases include:

 All tables that have default attributes with (or without) primary keys in absence of foreign keys

should be mapped to classes. For instance, tables (Postion, Professor, and Courses) are mapped to

classes (Postion, Professor, and Courses).

 All tables that have only one or more than two FKs should be mapped to classes. For instance, tables

(Lab, Student) should be mapped to classes (Lab, Student).

 All tables that have two FKs with one or more non-FK attributes should be mapped to classes.

 All tables that have two FKs(A,B) but not PKs(A,B) should be mapped to classes.

Therefore, Rule1 identify all the classes (Postion, Professor, Courses, Lab, and Student) from our RDBLAB

schema except the table (Stud_Cors) are not mapped, because the condition (!ISBinaryRel(“Stud_ Cors”) =

false).

Rule2 ()) :i k(type) i k(xsd)TB (A) CLS (DTP Each column k iA TB unless or k i k ipk(A ,TB) fk(A ,TB) and

()!ISBinaryRel iTB should be mapped to a datatype property kDTP in class iCLS SWO and datatype of

column (type) to XML schema datatype (xsd) of property.

Rule2 (R_2): i k(type) i k(xsd)TB (A) CLS (DTP)

RDBS SWOS (RDF/OWL)

!() ()!ISBinaryReli k(type) k i k i iTB (A) pk(A ,TB) fk(A ,TB) TB  
i k(xsd)CLS (DTP)

For identification of datatype properties to make a relationship between instances of classes with RDF

literals and XSD, Rule 2 was used. It covers several cases for mapping columns of table to the datatype

properties (DTPs). This rule depends on the predicate expressions TB i(Ak(type)), pk(Ak,TBi), fk(Ak,TBi), and

ISBinaryRel(TBi). The cases can be described as follows:

 All default columns (not PKs or FKs) that have datatype should be mapped to the datatype property

with domain and range (xds datatype corresponding to SQL datatype).

 All table columns that are ISBinaryRel(TB i)=true are not mapped to datatype properties.

 Every column unless the predicates pk(Ak,TBi)= true and fk(Ak,TBi)=true should be mapped to

datatype properties with their xsd datatype according the columns SQL datatype.

For instance, the default column (Lab_Name) in table (Lab) is hold in our example. The obtained result is

Journal of Software

580 Volume 13, Number 11, November 2018

owl:DatatypeProperty (Lab_Name) with domain (Lab class) and range (xsd^^string corresponding the

original SQL datatype of column (Lab_Namevarchar)).

Rule3 (k i k kpk(A ,TB) INVFUNPR (A)): Each attribute k iA TB that is k ipk(A ,TB) unless k ifk(A ,TB) should be

mapped to both an inverse functional property k kINVFUNPR (A) (owl:InverseFunctionProperty) with a

minimum cardinality of 1 (owl:minCradinality) kminCRD 1(A) restriction on the property kA .

Rule3 (R_3): k i k kpk(A ,TB) INVFUNPR (A)

RDBS SWOS (RDF/OWL)

! ()!ISBinaryRelk(type) i k(type) i ipk(A ,TB) fk(A ,TB) TB  ,k k i(Dom) k(xsd)-Rng k(xsd)INVFUNPR (A ,CLS ,A) minCRD 1(A)

This rule used for mapping column primary key to inverse function property k kINVFUNPR (A) and

restriction minCardinality constraint of 1 kminCRD 1(A) , if the predicate conditions of rules are true. Two cases,

unique and not null column properties can be inferred by implicit way, since the primary key is a column

that contains a unique and not null value for each row in the table. Therefore, if the column is a primary key,

it should be mapped to k kINVFUNPR (A) (unique constraint) and to restriction kminCRD 1(A) (not null constraint).

For instance, the primary key Lab_No in table Lab is hold in our example, where pk(Lab_Noint)

⋀ !fk(Lab_Noint) ⋀ !ISBinaryKey(Lab) are true, then INVFUNPRLab_No (Lab_No,Labdomain,xsd^^int) and

minCRD 1(Lab_No) will be generated.

Rules for Relationships between Tables: Relationships in RDBs are maintained through the use of

foreign keys. A foreign key is the basis of any relationship between relations 1,..., nTB TB RDB . Therefore, we

will start to map it based on our analysis in Section 3.1.

Rule4 (()fk
i kTB .A TB .B): Each attribute (column) A in the table iTB that references attribute B in

the table kTB should be mapped to an object property (owl:ObjectProperty) OBP that has the source table

iTB as its domain (i i(Dom)TB CLS) and destination table kTB as its range (k k(Rng)TB CLS).

Rule4 (R_4): ()fk
i kTB .A TB .B

RDBS SWOS (RDF/OWL)

i, kfk(A,TB B,TB) i(Dom) k(Rng)OBP(A,CLS ,CLS)

Rule 4 is the basic rule for transforming the relationship between two tables through foreign keys to

object properties. Object property can be defined as a relationship between instances of two classes

through a domain and range.

There are three types of relationships in a relational database, one:one(or zero) (1:1/0), one:many (1:m),

and many:many (n:m), as shown in Fig. 2, which will be mapped to ontology according to the following

rules:

Rule5.1 ((:). .one one
i kTB A TB B): If two relations i 1 nTB(A ,...,A) and k 1 nTB (B ,..,B) are related to each other

through their columns (). .fk
i kTB A TB B , where ifk(A,TB) references 1)kpk (B,TB , the relation should be 1:1

((:). .one one
i kTB A TB B). Therefore, ifk(A,TB) is mapped into i(Dom) k(Rng)OBP(A,CLS ,CLS) that has the source table iTB as its

domain, and the destination table kTB as its range. In the 1:1 relationship, the value . . .i kTB A TB B The property

is restricted to the same value from the class ()kTB kRestOnProp A,hasValue,TB() . The constraint A null is mapped

into a minCardinality in the same restriction, and the property ()A RestOnProp(<A,owl:

hasValue,TBk>,<A,owl:minCardinality,xsd^^int 1>). Fig. 2(a) illustrates an example of this case where only

one position in a laboratory (Lab) holds by one student.

Rule5.1(R_5.1): (:). .one one
i kTB A TB B

RDBS SWOS (RDF/OWL)

Journal of Software

581 Volume 13, Number 11, November 2018

1(. , .) (,)IsRelationship i k kTB A TB B pk B TB A null  
() ()(, ,

, : , , , : ,

),

)1(

i Dom k Rng

kRestOnProp A owl hasValue TB A owl minCardinality xsd

OBP A CL

t

S CLS

in 

This rule reflects to one:one relationship between two classes in ontology through object properties as

shown in Fig. 2(a). By applying this rule, the predicate conditions IsRelationship (Student.Post_No,

Postion.Postion.Post_N ∧ pk1(Post_No,Postion) ∧ Student.Post_No≠ null are true. Hence, the

OBP(Post_No, Studentdoman,Postionrang),

RestOnProp(<Post_No,owl:hasValue,Postion>,<Post_No,owl:minCardinality, xsd^^int 1>) are generated.

Therefore, the ontology can be extracted practically as shown in Fig. 3.

Rule5.2 ((:). .one many
i kTB A TB B): If the function ()i kTB .A,TB .BIsRelationship is true, and (:). .one one

i kTB A TB B is

false, the relationship is 1: m, and (:). .one many
i kTB A TB B is mapped into an)i(Dom) k(Rng)OBP(A,CLS ,CLS . In the 1: m

relationship, a column value (.kTB B) exists in the column value (.iTB A). Therefore, this property is restricted to

all values from the class ()kTB (, : ,)kRestOnProp A owl allValueFrom TB . If the constraint A null holds, it will be

mapped into a mincardinality , : , , , : , 1()kRestOnProp A owl allValueFrom TB A owl minCardinality xsd int   . This case

can be illustrated in Fig. 2(b). The following rule is used for extracting ontology for object properties and

restriction, when the foreign key represents a relationship as 1: m.

Rule5.2(R_5.2) : (:). .one many
i kTB A TB B

RDBS SWOS (RDF/OWL)

(:)
1

(. , .) !(() ())

!(. .) (,) (,)

IsRelationship ISBinarRel ISBinarReli k i k

one one
i k k i k

TB A TB B TB TB

TB A TB B pk B TB valOf A TB ,From,B,TB A null

  

    

 () () ,(, ,), (: , ,

, :), 1

i Dom k Rng kRestOnProp A owl allValueFrom TB

A owl minCardinal

OBP A C

ity xsd i t

S CL

n

L S




 



This rule reflects 1:m relationship between two classes in ontology through object properties. It also

contains the same predicate conditions in R_5.1 with additional predicate (,)i kvalOf A TB ,From,B,TB , to ensure all

the values of column TB i.A are from TBk.B. The generated ontology has the restriction

(, : ,)kRestOnProp A owl allValueFrom TB  indicating all the values property (A) are from the class (TB k). For

example (Fig. 4), the relationship between Student and Lab are holds. The Lab_No is a foreign key in the

table Student that references column Lab_No in the table Lab. A student studies in one Lab, and any given

lab has one or more students studying there.

<owl:ObjectProperty rdf:ID=”Studen.Post_No”>

 <rdfs:domain rdf:resource=”#Student”/>

 <rdfs:range rdf:resource=”#Postion”/>

 </owl:ObjectProperty>

<owl:Class rdf:about=”#Student”>

 <rdfs:subClassOf> <owl:Restriction>

 <owl:onProperty rdf:resource=”#Studen.Post_No”/>

 <owl:hasValue rdf:resource=”#Postion”/>

 <owl:minCardinality rdf:datatype=”&xsd;int”1/> [Delete IF 1:0]

 …

</owl:Class>
Fig. 3. OWL extracted from relationship (1:1)

between tables Student and Position

<owl:ObjectProperty rdf:ID=”Studen.Lab_No”>

 <rdfs:domain rdf:resource=”#Student”/>

 <rdfs:range rdf:resource=”#Lab”/>

 </owl:ObjectProperty>

<owl:Class rdf:about=”#Student”>

 ….

 <owl:onProperty rdf:resource=”#Studen.Lab_No”/>

 <owl:allValueFrom rdf:resource=”#Lab”/>

 <owl:minCardinality rdf:datatype=”&xsd;nonNegativeInteger”1/>

….

</owl:Class>
Fig. 4. OWL extracted from relationship (1:m)

between tables Student and Lab

Rule5.3 (().. . .many many
i A B kbTB A TB TB B ): In the relationship n:m the maximum of both multiplicities is greater

than one, for example, the assigned relationship between Student and Course. A student is assigned one or more

courses, and each course is assigned to one or more students. If two tabl es i 1 nTB(A ,..,A) and k 1 nTB (B ,...,B) , are related

to each other through the third table bTB (A,B) where 2 ,)fk
b b 1 ipk (A,B,TB) TB .A pk (A,TB and .)fk

b 1 kTB B pk (B,TB then

()b i kTB ,A,B,TB ,A,TB ,BBinaryRel is hold. In such a situation, only the tabl es i 1 nTB (A ,..,A) and k 1 nTB (B ,..,B) are

represented in the ontology as classes with two object properties and their restrictions. Therefore, the binary

relation is mapped into two i(Dom) k(Rng)OBP(A,CLS ,CLS) and k(Dom) i(Rng)OBP(B,CLS ,CLS) according to the rule of (R_5.2)

1:m relationship.

Journal of Software

582 Volume 13, Number 11, November 2018

Rule5.3(R_5.3): ().. . .many many
i A B kbTB A TB TB B 

RDBS SWOS (RDF/OWL)

1

1

((,..,),

(,..,), (,)) ()

ThreeTables

ISBinarRel

i n

k n b b

TB A A

TB B B TB A B TB

(:)

(:)

callRuleMap(. .),

callRuleMap(. .)

one many
i k

one many
k i

TB A TB B

TB B TB A

 



The relationship between two classes through their object properties can be represented by Rule 5.3. The

major property of this rule is that it has ability to call Rule 5.2 twice in reversible directions. First, it calls

Rule5.2 (:)(. .)one many
i kTB A TB B to map the relationship one:many between TB i and TBk. Secondly, it calls

Rule5.2 (:)(. .)one many
k iTB B TB A into reversal direction. According to the Formula (5), BinaryRel(Stud_Cors,

Stud_Id,Cors_No,Student,Stud_Id, Courses, Cors_No) holds in our example in Fig. 2(c). The table Stud_Cors

has two columns. (Stud_Id, Cors_No) is the primary key of Stud_Cors, Stud_Id is a foreign key in Stud_Cors

that references column Stud_Id in Student, and Cors_No is a foreign key in Stud_Cors that reference column

Cors_No in Course. Therefore, the binary relation in Fig. 2(c) is mapped according to the above rule.

Generating IRI for the Triples of the Schema: During the mapping process, a prefix (Name space) IRI
denoted by IRINS for the RDB should also be translated (e.g. IRINS :http://mo_exp.edu.cn/dbLab/#). The
following rules to produces IRIs are:

Rule to generate IRI for the class:

 Input Output

()IRI iNS CLS ()i IRICLS

Rule to produce IRI for the any property in the class:

 Input Output

() "." : ()i IRI iCLS A A att CLS   ()()i IRICLS A

Example: (“http://mo_exp.edu.cn/dbLab/#Professor”,rdf:type,owl:Class) where the (http://mo_

exp.edu.cn/dbLab/#Professor) is the IRI for the Professor table in our example. Another example, the

triple(“http://mo_exp.edu.cn/dbLab/#Professor.Name”,rdf:type,owl:datatypeProperty), and the

triple(http://mo_exp.edu.cn/dbLab/#Student.Lab_No,rdf:type,owl:objecrProperty) are hold. This rule

helping to avoid confusion, providing clear triples of ontology schema, and indicating the source of

relational schema. It can also prevent the names of properties from being duplicated even though two or

more tables have the same name of a column. For example, the tables Student and Professor have the same

name of column “Name”. After applying our rules, the generated ontology properties are Student.Name

and Professor.Name.

4.2. Rules for Generating RDF Triples from RDB Instances

We define the rules that map a RDB instance into RDF triples, in order to establish simple way and data

loss avoidance; moreover, to access RDF triples using semantic search technologies. If a table iTB is mapped

to the class i(IRI)CLS then all rows of the table 1() { ,..., }i nI TB rw rw are transformed to the instance of RDF

graphs () 1 1() { ,..., }: { ,..., }, (, ,)i IRI n i ncIo CLS gr gr gr t t t s p o    . If each column of table i 1 nTB (A ,...,A) transferred to the

properties of class () 1() ()(,...,)i IRI IRI n IRICLS DTP DTP , then the values of the columns unless null-value in table

(, ...,) (, ...,)1 1 1() { ,..., }, nullA A A Ai nc n nc i k iI TB rw rw val(A ,rw ,TB)  can be mapped to the values of the corresponding property

of ontological instance (, ...,) (, ...,)() 1 1 1() { . ,..., . }A A A Ai IRI nc n ncIo CLS gr t gr t . Firstly, we initiate a family of predicates that

produce k(IRI)RwId for the triples being translated according to the following rule.

Definition (6): Procedure for generating k(IRI)RwId
Function header (,)k(IRI)RwId i kRowIRI TB ,rw

Journal of Software

583 Volume 13, Number 11, November 2018

http://mo_exp.edu.cn/dbLab/#Professor”, rdf:type, owl:Class
http://mo_exp.edu.cn/dbLab/#Professor
http://mo_exp.edu.cn/dbLab/#Professor
http://mo_exp.edu.cn/dbLab/#Student.Lab_No

Function body Definition

- - ((,)k(IRI)RwId

i 1 nc n i nc i 1 k i nc k i

i 1 nc

TB (A ,..,A), pk ([A ,...,A],TB),val(A ,rw ,TB),...,val(A ,rw ,TB),

collect to RwId NS,TB ,"_",collect val(A),...,val(A)

A (, ,)i kRowIRI TB rwk(IRI)RwId generates the identifier k(IRI)RwId of a row krw of a relation iTB . Thus, given

that the facts PK1(“Student”,”Stud_Id”) and VALUE(“Student”,”rw1”,”Stud_Id”,1) are hold in our example,

the (RwId1=NS:Student_1) is the identifier for the tuple in table Student with value 1 in the pk. To generate

triples for data row columns of the table our following rule generated the RDF triples from RDB instance.

Rule6: (1, ...,) (, ...,).1() ()rw rw gr gri n i nI TB Io CLS 

Procedure for generating RDF datasets from RDB data.

(1, ...,)() rw rwi nI TB (, ...,).1() gr gri nIo CLS

1

1

([,...,],)

 [,...,]

null

r nc i

nc

r i

rw A A TB

val(A A ,

rw ,TB)





(, ,),gr . r i r rRowIRI TB rw(IRI)RwId

()

1 1

gr

t (, : ,),

t (,getObject(, ,)) ,..., .

t (, ,getObject(, ,)

IRI

r

id r i

r i 1 (IRI) r i

nc r i nc (IRI) nc r i

rdf type CLS

,CLS (A) A rw TB

CLS (A) A rw TB



 
 
 
 
 

(IRI)

(IRI)

(IRI)

RwId

RwId

RwId

Predicate function of (, ,)k r iA rw TBgetObject

Function
header

(, ,)k r iA rw TBgetObject

Function
body
Definition

(!Isfk()))

return();

((,), fk())

return((, ,));

k i k r i

k r i

k i k i c

rc c rc

if A ,TB val(A ,rw ,TB null

val(A ,rw ,TB)

elseif A TB A ,TB ,B,TB

RowIRI TB rw

 

(IRI)

Isfk

RwId

(), (,) [(.),]fk
i i i k r iWhere A TB TB .A TB B val(A ,rw ,TB) null  Isfk . Note that, this rule expresses the conversion of

the null-value and its retrieval in query is explained in Section 5. The function getObject(, ,)k r iA rw TB used to get the

object of the triple kt of graph rgr depends on the type of column kA (literal or foreign column). The table triples in

our example, (as shown in Fig. 5) is:

1 2Student_1 Studen

Let xmlns:NS="http://www.mo_exp.edu.cn/dbLab/#".

(NS: , rdf:type , NS:), (NSt Student_1 , Student.Name , Mohamed Student_: NS:), (NS: , N1 Student.LaS:1 b_No , NS:Lab_442((t t tidStudent gr

1Lab_442 , rdf:type , NS:Lab Lab_44

), ...

(NS:), (NS: , 442), ...1 2 , NS:Lab.Lab_No

),...,).

((),...,).t tidLab gr

Therefore, for understanding how to apply our rules on RDBs to generate ontology schema and RDF

graph (triples), the following example (Fig. 5) is used: If one of the tables refers to another table by a

foreign key, it can be mapped according to the above rules R_1 (table to class), R_2 (column with datatype

to datatype property with XML schema data type), R_3 (primary key to inverseFunctionProperty), R_4 and

R_5 (relationships to object property with restriction on property), and R_6 (rows to triples). From the

instances mentioned in Fig. 5, it can be observed that the values of rows in the table Stud_Cors are not

simply represented as literals instead of properties added to the classes of Student and Courses. The se

properties link the resources between Student and Course nodes in the RDF/OWL, also the values of

Lab_No in a Student represented as a property added to the class of Student because table a Student has a

column Lab_No that references a table Lab through a column Lab_No. Therefore, a created class Student has

one property linking the resources Lab node to represent the values of a column Lab_No in the Student.

Journal of Software

584 Volume 13, Number 11, November 2018

Fig. 5. Part of RDF triples of the data model extracted from the RDB data of relationships (1: 1, 1:M

and N:M).

5. Rules for Generation of SPARQL Query from SQL Algebra

The result of the previous section is an RDF graph. It is created in an automatic transformation mechanism

from the data stored in RDBs, which can be processed by most of Semantic Web. T herefore, Semantic Web

applications need to be accessing relational database contents by semantic methods. Presently, SPARQL is a W3C

recommendation and has been becoming the standard language for querying RDF data. All queries presented in

this paper have been verified using Apache Jena-ARQ implementation of SPARQL. Assume a given relational

instance I over TB (possibly including null values). We proof and explain that, for every relational algebra

query ()Q I(TB) , there is SPARQL query oQ (Io(CLS)) satisfying the following function:

Definition (7): () ()() ()I TB Io CLSQQ 

SQL- ()()I TBQ SPARQL- ()()Io CLSQ

1

1

{ ,..., }.

{ . ,..., . }.

n

i i i nc

rw rw

rw rw A rw A

1

1 1

{ ,..., }.

{ , . ,..., . }.

n

i id nc nc

gr gr

gr t t A t A

We conduct a test on the rules of the query depending on our results in Fig. 5. To avoid the loss of data,

the operators OPTIONAL and BOUND are used for handling null-values in the SPARQL expressions. In this

work, we rewrite the SPARQL queries corresponding to the most important operations of relational algebra:

Selection (), Projection (), Rename (), Union (), Difference (\), Natural Join (), Left Join (),

and Binary Relation.

5.1. Rules for Basic Relational Algebra Operations

Rule7 (Selection ()-restriction): The selection  is a unary operation in relational algebra. The

expression

1 21(..) : 0, { , , , (), (),

like*, IN}, { , , , , , }, {&&,||}, , () .,

p n i k i i i

i k is a constant val

TB TB n p A A A v p p IsNull A IsNotNull A

A A att TB v ue

   

 

   

        

Journal of Software

585 Volume 13, Number 11, November 2018

Where the P stands for an expression condition in the set 1 2{ , , , (), (), , }i k i i iA A A v p p IsNull A IsNotNull A Like IN   , is a binary

operation of the set { , , , , , },       is a logical operation 1 2{and &&, or ||} and , p p are expiration condition. Therefore,

we need to consider all the cases to define a query Q to satisfy the defining condition (7).

Rule No. SQL–Algebra Q SPARQL Q

R_7.1 ()
iA v TB 

(), var()

(()) or (regex(,))

:

FILTER FILTERi i

A att TB ?A GPi i

GP ?A = v GP ?A v

 

R_7.2 1 and 2 01 01 2018 ()A v A v or Ai k d
TB      = 1 && || "2018-01-01" xsd:date(())FILTER ?A v ?A v2 ?Ai k dGP 

 

R_7.3
() ()IsNull Ai

TB ((!bound()))iGP ?AFILTER

R_7.4
() ()IsNotNull Ai

TB ((bound())) iGP ?AFILTER

R_7.5 like
*
()Ai
TB (regex(,"")) iGP ?AFILTER

R_7.6 IN (,..,)1
()A v vni
TB 1((IN(,...,))) i nGP ?A v vFILTER

These rules (R_7.1 ­ R_7.6) cover several cases of SQL condition types, and satisfy the condition (7) using

SPARQL FILTER, which restricts the solutions of a query by imposing constraints on values of bound

variables. More details are described in the following example.

" "(Professor)Name Zhang 

This expression returns all rows of the table Professor where the column Name equals “Zhang”. Since an

OWL:Class has been created for each table in the RDB, a similar constraint for the objects of this class should be

applied to obtain the corresponding result. In order to transform this expression to equivalent SPARQL query

satisfying the condition (7), rules R_7.1 is applied. Then the OPTIONAL OPT ope rator has been added (line 4) to

avoid loss of information. It should be observed that the O PT is not added to line 2 or 3, because their predicates

(NS:Professor.Prof_No and NS:Professor.Name) are generated from primary key (Prof_No) and Name = “Zhange”

constraints respectively. More details are shown in Fig. 6 in equivalent SPARQL query (Q).

SELECT ?Prof_No ?Name ?Research_Direction

WHERE {?S, a , NS:Professor.

 {?S, NS:Professor.Prof_No, ?Prof_No.}

 {?S,NS:Professor.Name,Name.}

OPT{?S,NS:Professor.Direct_Research,?Research_Direction.}

 FILTER(regex(?Name,”Zhang”)) }

Fig. 6. Q selection operation algebra
" "(Professor)Name Zhang 

where a is abbreviate the rdf:type in SPARQL and PREFIX NS:<http://www.mo_exp.edu.cn/ dbLab/#>.

As for the query described above, the SPARQL query representing the selection contains three main clauses

(SELECT, WHERE and FILTER). In the first line of the WHERE clause, the result set is restricted to contain

only object of the type NS:Professor, having an origin in our RDBLAB in the Professor table. This can be

useful for accelerating and getting accurate results, because it limits the search scope inside RDF triples,

especially when generated from a big RDB. Although our rules in Section 4 do not transform null values, we

can still handle null-value in query expressions. The same results are obtained if the rows are returned by

DBMS on expression of relational algebra query. Therefore, the results satisfy the definition condition (7),

and the query preservation is true.

Rule8 (Projection ): This rule used to rewrite a SPARQL query (Q) corresponding to relational

algebra (Q) operation (projection ), which selects of the relevant attributes of a relation. Then the

equivalent rule query Q to satisfy the defining condition (7) can be defined as:

Rule8 (R_8): Projection 

 SQ L–Algebra Q SPARQ L Q

Journal of Software

586 Volume 13, Number 11, November 2018

R_8  
1 Orde byr TB.Ai ASC|[DESC]. , , . nTB A TB A

TB
 order by [ASC|DESC](?TB.Ai) ... { } 1 n?TB.A ?TB.A where GPSelect

Example  
. _ , . _Lab Lab No Lab Lab Name

Lab ?Lab_No, ?Lab_Name ?x a NS:Lab.

?x NS:Lab.Lab_No ?Lab_No. ?x NS:Lab.Lab_Name ?Lab_Name.

 Where {
OPT{ }}

SELECT

This query involves three triple patterns (TPs) concatenation via AND (.) located at the end of triple

pattern. The result set is restricted to objects of the NS:Lab class in the first TP1 {?x a NS:Lab} and as signed

to the variable ?x. The variable ?x has the same values that match each triple patterns (TP2 and TP3). The

TP2 {?x NS:Lab.Lab_No ?Lab_No.} returns all the mapped values generated from column Lab_No to

predicate NS:Lab.Lab_No based on values in subject ?x and binding them in variable ?Lab_No. While, the

TP3 OPT{?x NS:Lab.Lab_Name ?Lab_Name.} returns all the values generated from column Lab_Name even

the null-value (due to addition of OPT clause) based on values in subject ?x. Since the column Lab_Name

may contain null-value, the OPT clause is added to TP3, while the column Lab_No is a PK, so that an OPT is

not mandatory to be added. The result returned by SPARQL is the same result returned by DBMS on

expression of relational algebra after applying this rule. Therefore, this rule satisfies the defining condition

(7).

Rule9 (Rename ): In the in relational algebra, a rename  operation used to renames one column to

another name and projects all columns of Q . Then the equivalent rule queryQ to satisfy the defining

condition (7) can be defined as:

Rule9(R_9): Rename 

SQL–Algebra Q ()
1 n 1 n(TB.A ,...,TB.A) (B ,...,B)

TB


SPARQL Q () ... () { }1 1 n n?TB.A ?B ?TB.A ?B Where GPAS ASSelect

Obviously, the SPARQL expression (Q) correspond to relational algebra (Q), that because the rename

operator in (Q) and (Q) will are making the same purpose of the rename operation.

Rule10 (Union ): A union  is one of most common operators, which merges the results returned by

two or more projects ()-Select statements. Then the equivalent rule query Q to satisfy the defining

condition (7) can be defined as:

Rule10(R_10): Union

SQL–Algebra Q SPARQL Q

   1
1 1 1 1. , , . . , , .

... n
nc n n ncTB A TB A TB A TB A

TB TB
  ...

 ... ? .

 { }}

... {

* {{

{ }}}UNION UNION
1 1 1 nc

1

?TB .A ?TB .A

?TB .A TB An n nc

Select where GP

Select where

Select wh

GP

ere

It can be noticed that the Q expression unifies all rows from the attributes (A1,..,An) in TB1 to TBn relation.

The first requirement is to perform the projection within the UNION clause to restrict the (?A1,,..,?An)

variables for both (A1,..,An) attributes. Therefore, the SPARQL query (oQ) will return all values (A1,..,An) that

originated in TB1 to TBn.

Rule11 (Difference \): A difference \ operator is used to minus the result-set of two tables (1TB and 2TB).

The two tables (1TB and 2TB) should have the same columns. The result-set of \1 2TB TB is table, which

contains all tuples in 1TB but not in 2TB .Then the equivalent rule query Q to satisfy the defining condition (7)

can be defined as:

Rule11 (R_11): Difference \

SQL–Algebra Q SPARQL Q

   1 2
1 1 2 1 2. , , .. , , .1 nc ncTB A TB ATB A TB A

TB TB
  1 1 1 1 1?A ...?A a NS:TB . NS:TB .A ?A .

 a NS:TB . NS:TB .A .2 2 1

 Where { ...

{ }}

?x ?x

?x

Select

FILTER NOT EXISTS

n

?y ?y

The SPARQL query and its result are represented in the following example (Fig. 7):

Journal of Software

587 Volume 13, Number 11, November 2018

1Q  
. _ . _

()
Lab Lab No Student Lab No

Studb enL ta 

1Q

?Lab_No ?x a NS:Lab. ?x NS:Lab.Lab_No ?Lab_No

?y NS:Student.Lab_No ?x. ?y a NS:Student

?Lab_No

 Where { .

{ .}

} order by

SELECT

FILTER NOT EXISTS

Fig. 7. SPARQL query with its results of SQL difference algebra in Q1

So far, in the equivalent SPARQL query, the object NS:Lab and predicate NS:Lab.Lab_No are represented

by the variables ?x and ?Lab_No respectively, while the NS:Student object is represented by ?y. The triple

pattern {?y NS:Student.Lab_No ?x.} is conditional clause that reflects the relationship between two classes

NS:Student and NS:Lab through two variables ?y and ?x, where ?x in TP {?y NS:Student.Lab_No ?x.} refers

to ?x in TP {?x a NS:Lab}. That means the foreign key holds and our approach for transformation of

relationships (through FK) is satisfied. The FILTER NOT EXISTS expression tests the existence of a

pattern {?y NS:Student.Lab_No ?x} in the data, given the bindings already determined by the query pattern

{?x a NS:Lab}. This rule uses the object property Student.Lab_No that is generated from fk(Lab_No,Student)

by Rule 5.2 in Section 4.1, reflecting the integrity of our rules.

5.2. Rules to Generate Q from a Relational Algebra Join

An SQL join clause is one of the important concepts in relational algebra that is used to combine rows

from two tables or more based on a common field between them.

Rule12.1 (Natural join ): It is a binary operator, which used to combine tuples from two/more tables

1 2 ... ,nTB TB TB  through on a common field between them. The result of 1 2 TB TB is a set of all combination

tulpes in 1TB and 2TB that are equal on their common attribute names. To reflect the role of foreign keys

in the RDB data, SPARQL queries are applied on the resulted ontology to locate tuples (results obtained by

variables in SELECT clause). These tuples used to connect each other by object properties (corre sponding

to FKs in RDB). Then the equivalent rule query Q to satisfy the defining condition (7) can be defined as:

Rule12.1 (R_12.1): (Natural join )

SQL–Algebra Q SPARQL Q

 
1 1 1 1 2 1 2 2

1 2
. , , , . , . , , , .1 i 2 iTB .A TB .An nTB A TB A TB B TB B

TB TB
 



Where 1 2. and .i iTB A TB A are common attributes.
   

 
2

1

2

1 2 1 2 2

1

2

? . ? .

. .

.

{

:

1 i 1 i 1 i

1 i 1 i

Optional Optional

?x NS : TB .A TB .A TB .A

Optional TB .A Op

? . ?

? tional TB .A?

1 n1 n

1

1 1 1 1 1 n1 1 n

1 1

Select TB A ?TB .A TB B ?TB .B
Where ?x a NS :TB .

?x TB .A ?TB .A ?x NS :TB .NS

N

A ?TB .A

a

N

S :TB .

S :TB .B ?TB .B S :TBN

 



  2 2 2 2 }.n n.B ?TB .B

The graph pattern GP {?x NS:TB1.Ai ?TB1.Ai. ?TB1.Ai a NS:TB2.} has an object property (NS:TB1.Ai)

represented by the variable ?TB1.Ai, which used to link between two classes 1:NS TB and 2:NS TB . To ensure

no any data lose of triples, the OPTINAL operator for all properties of class was used except on the common

property that should be its value is not-null. If we change the rule condition by BOUND operator in

part 1 1 1 1 1 1(? : . ? . {? : { {? : . ? . } ((? . }...) to . })a FILTERi i i i i?x NS TB A TB A x NS TB Optional x NS TB A TB A Bound TB A the same result was observed.

The following Q2 example with it equivalent SPARQL (2Q) and its result (Fig. 8) that is generated with

input:

2Q
, . , . _

()
Student.Stude_Id Student Name Lab Lab Name

Student Lab

Journal of Software

588 Volume 13, Number 11, November 2018

2Q

 ?Stud_Id ?name ?lab_no ?lab_name

{?x a NS:Student.

{?x NS:Student.Stud_Id ?Stud_Id.}

{?x NS:Student.Name ?name.}

a NS:Lab.

Select Where

Optional

Optional

?x NS : Student.Lab_No ?lab_no.

?lab_no

Optional{ NS:Lab.Lab_Name ?lab_name.} }

order by ?Stud_Id

?lab_no

Fig. 8. SPARQL query results of natural join in Q2

From the above result of SPARQL query, it can be noticed that our rule is satisfied. Moreover, the tuple 5

in Fig. 8 is not lost even the column Lab_Name with null-value due to the use of OPT operator. Therefore,

this rule satisfies the defining condition (7).

Rule12.2 (Left Join ): To satisfy the defining condition (7) according to left join, the equivalent

query Q can be defined as follows:

Rule12.2 (R_12.2): Left Join

SQL–Algebra Q SPARQL Q

 1 2
1 1 1 1 2 1 2 2. , , , . , . , , , .n nTB A TB A TB B TB B

TB TB
 


1 iTB .A TB .A2 i

 and 1 i 2 iTB .A TB .A are common columns in this expression    

 

1 1 2 1 2 2

1 1

2

2

2

? . ? .
{

?. . .

.

1 n1 n

1

1 1 1 1 1 n1 n

1 1

Select TB A ?TB .A TB B ?TB .B
Where ?x S :TB .

?x S :TB .A ? TB .A ?x S :TB .A B A

a S :TB .

S :TB .B ?TB .

a N

N N T

N

N B

 




1 i 1 i 1 i

1 i

1

Optional Optional

?x NS : TB .A TB .A TB .A

Optional Optional TB .A

Optiona

. ?

?

l ?TB

?

 2 2 2 2

}

.n nS :TB .B ?TB .N B

 
 

 
 
 i.A

The different between this rule and Rule 12.1 is the use of nested OPTIONAL. The condition graph

pattern GP {?x NS:TB1.Ai ?TB1.Ai. ?TB1.Ai a NS:TB2.} is putted inside OPTIONAL operator in order to avoid

losing tuples and guarantee the result of a left outer join for class NS:TB 1 and NS:TB2. This will further

guarantee to obtain all tuples of the "left" class (NS:TB1), even if the join-condition does not match any tuple

in the "right" class (NS:TB2). For instance, Q3 represents the left join algebra and its corresponding SPARQL

query (
3Q). The results of equivalent SPARQL query of SQL left join expression in Q3 is shown in Fig. 9.

3Q
, . , . _

()
Student.Stude_Id Student Name Lab Lab Name

Student Lab

3Q ?Stud_Id ?name ?lab_no ?lab_name
{?x a NS:Student.

{?x NS:Student.Stud_Id ?Stud_Id.}
{?x NS:Student.Name ?name.}

a NS:Lab

Select
Where
Optional
Optional

?x NS : Student.Lab_No ?lab_no.
Optional ?lab_no . }

{ ?lab_no NS:Lab.Lab_Name ?lab_name.}

  
 
  Optional

Fig. 9. SPARQL results of left join algebra in Q3

The condition GP {?x NS:Student.Lab_No ?lab_no. ?lab_no a NS:Lab.} is included inside OPTIONAL to

satisfy our rule and avoid the loss of tuples (e.g. the tuple 5 and 6 in Fig. 9 are not lost). Therefore, this rule

satisfies the defining condition (7).

5.3. Rules to Generate Q from a Binary Relation

Assume that Q is a query algebra over binary relation (3, , , 1, , 2,)TB A B TB A TB BBinaryRel and

(3)TBISBinaryRel holds, based on our rules (R_5.3 and R_6). These rules make the property A be part of the

class TB2, and property B is part of the class TB1, where A and B refers to its class (Fig. 5). The binary

Journal of Software

589 Volume 13, Number 11, November 2018

relation is satisfied because it has two FKs, which form PK of the binary relation. The null-value cannot be

allowed. Therefore, there is no need to put the triple pattern that is used to connect between the classes

(TB1 and TB2) through their object properties (A and B) in the OPTIONAL operator. Then the equivalent

query Q to satisfy the defining condition (7) can be defined as:

Rule13 (R_13): Rules13 for a Binary Relation

SQL–Algebra Q SPARQL Q

   3, , , 1, , 2, 3TB A B TB A TB B and TBBinaryRel ISBinaryRel

1 1

2 2

 ? { : . : .B .

: . : . .}

?A ?A ?B

?B ?B ?A

Select ?A BWhere a NS TB NS TB

a NS TB NS TB A

In this rule, ?A and ?B are variables for representing conditional clauses to produce the structure of the

equivalent SPARQL query according to the expression of the binary rel ation al gebra. Furthermore, to obtain

the same results retrieved by the expression query of the relational algebra in the RDB. For example, SPARQL

query (4Q) corresponding algebra (Q4) shows the validity of this rule and the results of
4Q are shown in Fig.

10.

4Q ? _ , . , .` _ `, . _ ,?

. , 牋 _ 牋 牋 牋 牋 牋 _
_ . _ 牋 . _

SELECT Student Stud Id Student Name Courses Cors No Courses Cors Name

Student Name age FROM Stud Cors INNER JOIN Student ON INNER JOIN CoursesON Stud Co
Stud Cors Stud Id Student Stud Id

 
 
 
 

. _ 牋 . _rs Cors No Courses Cors No

4Q ?Stud_Id ?name ?Cors_No ?Cors_Name

{

?A NS:Student.Stud_Id ?Stud_Id.

 ?A NS:Student.Name ?name.

Select

Where ?A a NS : Student.

?A NS : Student.Cors_No ?B.

?B a NS : Courses.

?B NS : Course

 ?B NS:Courses.Cors_No ?Cors_No.

 ?B NS:Courses.Cors_Name ?Cors_Name.}

s.Stud_Id ?A.

Fig. 10. SPARQL 4Q results of binary relation in Q4

Accordingly, it seems fair to conclude that the transformation rules are satisfied the condition definition

(7) and validated the rules in Section 4, thus reflecting our integrated rules. Furthermore, the

transformation rules (Section 4 and 5) designed in unambiguous structure and kept the tracks of attribute

keys in the tables. Therefore, these rules can be extended to produce relational databases from ontologies.

6. Implementation and Comparison

We propose to implement this method in two phases. The first phase is to transform an RDB schema and

data to an OWL and RDF triples. Also, we use ontology validator [35] to validate, and show the triple of data

model and ontology graph. The second phase is to perform equivalent semantic query on the ontology (RDF

triples) generated from the first phase. In the two phases, we use Apache Jena 2.11.0 in Java Language

(NetBenas IDE7.3.1). Apache Jena™ is a Java framework that used for building semantic web applications. It

provides a set of tools and Java libraries for developing semantic web and linked-data apps, tools and

servers [36]. Beside the implementation, experimental analysis is performed to reflect the effectiveness of

our work. Moreover, this work also provides a view of comparison with the proposed techniques.

6.1. Implementation

6.1.1. Transforming an RDB to OWL/RDF Triples

For the implementation of this phase, we propose a technique using Apache Jena framework in Java

(package-com.hp.hpl.jena). This package consist of interfaces that representing models, resources,

properties, literals, and statements. Furthermore, it includes other key concepts of OWL/RDF, and a

ModelFactory for models creation. To examine our implementation, the new method should be applied to

Journal of Software

590 Volume 13, Number 11, November 2018

http://www.w3.org/2001/sw/
http://linkeddata.org/

an RDB. Fig. 2 shows a sample RDB named, RDBLAB (have several cases of RDB concepts), created by

MYSQL5.6 and connected with Java JDBC by “com.mysql.jdbc.Driver”. For syntactic ontology validation, RDF

validator is a tool that used to test the RDF/XML syntax documents (passed as parameters), displays a

tabular presentation and graphical of this documents. The RDF validator is used to validate the generated

results. As a result of this phase, Fig. 5 (RDB data and RDF data model) illustrates the use of transformation

rules to export an RDB data from a database (RDBLAB) into ontology as RDF triples. The left side of Fig. 5

shows an RDB data of relationships (1:1, 1:M and N:M) between five tables (Student, Stud_Cors,

Courses,Lab and Professor) and the right side shows corresponding OWL/RDF ontology. In addition, to

understand the ontology (RDF(S)-OWL) formation, the ontology code production and the ontology graph

representation, we used RDF validator to validate RDF(S)-OWL code that generated after applying our rules

on RDB, and showed the RDF triples and graph as resulting ontology. According to the schema and data of

the RDBLAB (Figs. 2 and 5), the results are shown in Figs. 5 (right side), 11 and 12.

6.1.2. Semantic query on the OWL/RDF triples

In phase two, we propose a method implemented using Apache Jena 2.11.0 packag e ARQ API [36], [37] (a

SPARQL 1.1). ARQ is a query engine for Jena, which supports the SPARQL RDF query language. In the ARQ API,

the key semantic query (SPARQL) package for the application developer is jena-arq-2.11.0.jar

(com.hp.hpl.jena.query). This package contains interfaces for representing Query, QueryExecution,

QueryExecution Factory, QueryFactor, ResultSetFormatter, and all the other key concepts of SPARQL. Fig. 13

shows our interface of semantic query on an RDF tripl es file that is generated from the phase one. Our

implemented tool also contains a direct SPARQL query endpoint so that the user can directly run the SPARQL

queries. All query results that are shown in Section 5 proved the efficie ncy of our approach, and verified the

preservation of semantics with SPARQL.

Ns:Student Ns:Lab

Ns:Courses

Ns:Professor

ObjectProperty with

inversobjectproperty
ObjectProperty DatatypeProperty

D R

rangedomain

D

Ns:Student.Lab_No

D R

D

R

R
D

D

R

Ns:Courses.Stud_Id

Ns:Student.Cors_No

Xsd:int Xsd:string

Ns:Student.Stud_Id Ns:Student.Name

Xsd:int

Ns:Lab.Lab_No

Xsd:string

D

RR

Ns:Lab.Name

Xsd:string

Ns:Professor.

Direct_res

Xsd:int
Xsd:string

Ns:Courses.

Cors_Name

Ns:Courses.

Cors_No

R

R

D

R

DNs:Lab.Prof_No

Xsd:int Xsd:string

Ns:Professor.

Name

Ns:Professor.

Prof_No

RR

D

1

Mohamed

Ns:Student_1

Ns:Lab_442

Ns:Prof_1

442

Ruixua Li

Ns:Courses_1

IR

IDC

IR,SW,Ontology,DB

1

R
R

1

T

T

T

Type

1:1

N:M

M:1

N:M

M:1

1:1

bas:dbLab

SubClassOf

xmlns:NS="http://www.mo_exp.edu.cn/dbLab/#"

Ontology
T

xml:base ="http://www.mo_exp.edu.cn/dbLab/">

Fig. 11. Graph of ontology extracted from RDLAB (Figs. 2 and 5) schema and data instance

Journal of Software

591 Volume 13, Number 11, November 2018

http://jena.apache.org/

<?xml version="1.0"?>

...

xmlns="http://www.mo_exp.edu.cn/dbLab/#"

xmlns:NS="http://www.mo_exp.edu.cn/dbLab/#"

xml:base ="http://www.mo_exp.edu.cn/dbLab/">

<owl:Ontology rdf:about="dbLab"/>

<owl:Class rdf:ID="Student"> <rdfs:subClassOf rdf:resource="dbLab"/> </

owl:Class>

<owl:Class rdf:ID="Courses">...</owl:Class>

<owl:Class rdf:ID="Lab">...</owl:Class>

<owl:Class rdf:ID="Professor">...</owl:Class>

<owl:Class rdf:ID="Postion">...</owl:Class>

<!-- Student ontology Schema RDFS-OWL -->

<owl:InverseFunctionalProperty rdf:ID="Student.Stud_Id"/>

<owl:datatypeproperty rdf:ID="Student.Name">

 <rdfs:label> Student Name</rdfs:label>

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 <rdfs:comment>Used to store the Name of Student</rdfs:comment>

</owl:datatypeproperty>

<owl:ObjectProperty rdf:ID="Student.Cors_No">

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="#Courses"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Student.Lab_No">

 ...
<owl:ObjectProperty rdf:ID="Student.Post_No">

 ...

<owl:Class rdf:about="#Student">

...
 <owl:Restriction>

 <owl:onProperty rdf:resource="#Student.Stud_Id"/>

 <owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>

 ...

 <owl:onProperty rdf:resource="#Student.Cors_No"/>

 <owl:allValueFrom rdf:resource="#Courses"/>

 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</...>

 ...
 <owl:onProperty rdf:resource="#Student.Lab_No"/>

 <owl:allValueFrom rdf:resource="#Lab"/>

 ...

 <owl:onProperty rdf:resource="#Student.Post_No"/>

 <owl:hasValue rdf:resource="#Postion"/>

 ...

<!--Schema for Courses -->

<owl:InverseFunctionalProperty rdf:ID="Courses.Cors_No"/>

<owl:datatypeproperty rdf:ID="Courses.Cors_Name">

 ...

<owl:ObjectProperty rdf:ID="Courses.Stud_Id">

 <rdfs:domain rdf:resource="#Courses"/>

 <rdfs:range rdf:resource="#Student"/>

 ...

 <owl:onProperty rdf:resource="#Courses.Stud_Id"/>

 <owl:allValueFrom rdf:resource="#Student"/>

 ...
<!--Schema for Lab -->

<owl:InverseFunctionalProperty rdf:ID="Lab.Lab_No"/>

...

<owl:ObjectProperty rdf:ID="Lab.Prof_No">

 <rdfs:domain rdf:resource="#Lab"/>

 <rdfs:range rdf:resource="#Professor"/>

...

 <owl:onProperty rdf:resource="#Lab.Prof_No"/>

 <owl:hasValue rdf:resource="#Professor"/>

 ...
</rdf:RDF>

<!-- Student Instances -RDF TRIPLES -->

<Student rdf:ID="Student_1">

<NS:Student.Stud_Id rdf:datatype="&xsd;int">1</NS:Student.Stud_Id>

<NS:Student.Name rdf:datatype="&xsd;string">Mohamed</NS:Student.Name>

<NS:Student.Lab_No rdf:resource="#Lab_442"/>

<NS:Student.Cors_No rdf:resource="#Cors_1"/>

</Student>

…
<Student rdf:ID="Student_6">

<NS:Student.Stud_Id rdf:datatype="&xsd;int">6</NS:Student.Stud_Id>

<NS:Student.Name rdf:datatype="&xsd;string">Abdullah</NS:Student.Name>

</Student>

…
<!--Courses Instance-->

<Courses rdf:ID="Cors_1">

<NS:Courses.Cors_No rdf:datatype="&xsd;int">1</NS:Courses.Cors_No>

<NS:Courses.Cors_Name rdf:datatype="&xsd;string">IR</

NS:Courses.Cors_Name>

<NS:Courses.Stud_Id rdf:resource="#Student_1"/>

<NS:Courses.Stud_Id rdf:resource="#Student_2"/>

</Courses>

<Courses rdf:ID="Cors_2">

<NS:Courses.Cors_No rdf:datatype="&xsd;int">1</NS:Courses.Cors_No>

<NS:Courses.Cors_Name rdf:datatype="&xsd;string">DBMS</

NS:Courses.Cors_Name>

</Courses>

…
<!--Lab Instance-->

<Lab rdf:ID="Lab_440">

<NS:Lab.Lab_No rdf:datatype="&xsd;int">440</NS:Lab.Lab_No>

<NS:Lab.Lab_Name rdf:datatype="&xsd;string">SWE</NS:Lab.Lab_Name>

<NS:Lab.Prof_No rdf:resource="#Professor_5"/>

</Lab>

…
<Lab rdf:ID="Lab_442">

<NS:Lab.Lab_No rdf:datatype="&xsd;int">442</NS:Lab.Lab_No>

<NS:Lab.Lab_Name rdf:datatype="&xsd;string">IDC</NS:Lab.Lab_Name>

<NS:Lab.Prof_No rdf:resource="#Professor_1"/>

</Lab>

…
<Lab rdf:ID="Lab_444">

<NS:Lab.Lab_No rdf:datatype="&xsd;int">444</NS:Lab.Lab_No>

<NS:Lab.Prof_No rdf:resource="#Professor_4"/>

</Lab>

<!--Professor Instance-->

<Professor rdf:ID="Professor_1">

<NS:Professor.Prof_No rdf:datatype="&xsd;int">1</NS:Professor.Prof_No>

<NS:Professor.Name rdf:datatype="&xsd;string">Ruixuan Li</

NS:Professor.Name>

<NS:Professor.Direct_Research

rdf:datatype="&xsd;string">IR,SW,Ontology,DB</

NS:Professor.Direct_Research>

</Professor>

…
<Professor rdf:ID="Professor_5">

<NS:Professor.Prof_No rdf:datatype="&xsd;int">5</NS:Professor.Prof_No>

<NS:Professor.Name rdf:datatype="&xsd;string">Jing</NS:Professor.Name>

<NS:Professor.Direct_Research rdf:datatype="&xsd;string">MDBS</

NS:Professor.Direct_Research>

</Professor>

Ontology Schema Ontology instance(RDF Triples)

Fig. 12. Part of ontology corresponding to the (Figs. 2 and 5) RDB schema and data of relationships (1:1, 1:M

and N:M).

Fig. 13. Semantic query interface over RDF triples

Finally, this section provides some examples of SPARQL queries to interrogate the resulting ontology by

analogy to the interrogation of the RDB by the SQL queries. For example, the SPARQL query (5Q)

corresponding to the query in relational algebra (5Q). Query(5Q) represents LEFT JOIN condition between

Journal of Software

592 Volume 13, Number 11, November 2018

three tables Student, Lab, and Professor in SQL query, to obtain the stud_Id and name, lab name, professor

name of the all students who have /or have not the place in the lab and professors of the lab. Fig. 14 shows

the results returned by the execution Q5 using RDBMS (MySQL) and Fig. 15 shows the corresponding

results returned by the execution equivalent SPARQL query (
5Q) using our system interface (Fig. 13),

which used as the interfaces to execute a SPARQL query on RDF triples for querying generated ontologies.

From Fig. 14 and 15 it can be observed that the returned dataset of Q5 and its equivalent (
5Q) are same

and this reflects the validity of our approach.

5Q
Stud_Id,Lab.Lab_No,Prof.Name

(Student Lab) Professor)( 

Fig. 14. LEFT JOIN (Q5) and the result returned by DBMS

5Q

SELECT ?Stud_Id ?name ?lab_no ?lab_name ?prof_name

WHERE { ?x a NS:Student.

 optional{?x NS:Student.Stud_Id ?Stud_Id.}

 optional{?x NS:Student.Name ?name.}

 optional{?x NS:Student.Lab_No ?lab_no.

 ?lab_no a NS:Lab.

 optional{ ?lab_no NS:Lab.Lab_Name ?lab_name.}

 optional{ ?lab_no NS:Lab.Prof_No ?prof_no.

 ?prof_no a NS:Professor.

 optional{ ?prof_no NS:Professor.Name ?prof_name.}}}

 order by ?Stud_Id

Fig. 15. SPARQL
5Q result corresponding SQL algebra (Q5)

To more reflect the validity of our approach, an extra example (Q6) has added and its result is shown in

Fig. 16(a)(b) by using different rules (R_8, R_9, and R_10). This query (Q6) used three rules for rewriting

SPAQRL(
6Q) query corresponding to the operations of SQL algebra (projection, rename, and union).

6Q  

 

 

ρ(Stud_Id,Name,'Stud') (id,name,type)

ρ(Lab_No,Lab_Name,'Lab',) (id,name,type)

ρ(Prof_No,Name,'Prof') (id,name,type)

Lab

Profess

Student

or





(a) Result from RDB data using SQL (b) Result from ontology data using SPARQL

Fig. 16. SPARQL(
6Q) result corresponding SQL algebra (Q6)

6Q

SELECT * WHERE {

 { SELECT (?Stud_Id As ?id) (?Name As ?name) ('Stud' AS ?type)

WHERE { ?S a NS:Student.

 optional{?S NS:Student.Stud_Id ?Stud_Id.}

 optional{?S NS:Student.Name ?Name.}

 }} union

 {SELECT (?Lab_No AS ?id) (?Lab_Name AS ?name) ('Lab' AS ?type)

WHERE {?lab_no a NS:Lab.

 optional{?lab_no NS:Lab.Lab_No ?Lab_No.}

 optional {?lab_no NS:Lab.Lab_Name ?Lab_Name.}

 }} union

 {SELECT (?Prof_No AS ?id) (?Name AS ?name) ('Prof' AS ?type)

WHERE{?prof_no a NS:Professor.

 optional{?prof_no NS:Professor.Prof_No ?Prof_No.}

 optional{?prof_no NS:Professor.Name ?Name.}

 }} } order by ?id

From the previous results, it can be seen obviously that the ontology results (Figs. 5, 11, and 12) and

queries (Q1-Q6) are well integrated. During the transformation process, there is no data loses, even for the

null values. Moreover, the combination of ontology (schema and instance) and SPARQL query have the

ability to provide the same results of RDB (schema and data) using SQL query algebra.

6.2. Experimental Analysis

The information retrieval system was implemented in the platform of Windows 7 (32 -bit) operating

system with the specification of CPU Intel® Core™ i5-2410M 2.30GHz, RAM 6GB. For validating the

efficiency of this work in terms of quantitative, Table 1 shows the dataset of RDBLAB row tables (100200)

including null-values in each column tables. Furthermore, it presents quantity of rows in which null-values

that appears through the relationship between the tables. Additionally, the null -values in this table reflect

Journal of Software

593 Volume 13, Number 11, November 2018

the size of data that are not lost when our rules are applied. Moreover, the table presen ts the corresponding

number of tuple classes returned from RDF triples (752916) that are generated from dataset of RDBLAB.

We also emphasize the validity and accuracy of our rules by applying all the queries (Q1 -Q6) on the new

dataset. To present the significance of our work, additional SPARQL (Q`) queries are used for reflecting the

volume of data loss compared with our approach SPARQL (Q°). The SPARQL (Q°) are modified from the

original SPARQL (Q°) queries (Table 2). The SQL(Q1-Q6) queries are executed on the RDBLAB dataset using

RDBMS (MYSQL 5.6), while the SPARQL (Q° and Q`) queries are executed on RDF triples (generated from

RDBLAB dataset). The results of queries and their execution time are shown in Table 3. Table 3 shows

quantitative analyses of the dataset, which are represented in the Figs. 17 and 18. It can be seen obviously

from Fig. 17 that the results obtained from SQL(Q) and SPARQL(Q°) are the same results, and there are no

data losses from SQL(Q) compared to SPARQL(Q`) (Figs. 18). Moreover, the performance analysis of

different SQL(Q), SPARQL(Q°) and SPARQL(Q`) rules is shown in Fig. 19. It can be observed that, the

minimum retuned execution time is obtained by SQL(Q), because it has been carried out by RDBMS (MYSQL

5.6 engine). There is a small increase in returned execution time that is obtained by our rules SPARQL(Q°).

Moreover, when the execution time of SPARQL(Q`) compared with our SPARQL(Q°) there is small

differences. This because our approach searching all tuples even for that contains n ull-values, while the

SPARQL(Q`) avoid the searching of tuples that contains null-values. All these results together reflect the

high accuracy and significance of our work.

Table 1. Table Rows of RDBLAB (Contain Null-value) and Class Tuples of Ontology Generated

Tables Rows Columns have
null-value

Rows have null-value SPARQL TP used to
return class tuples

Returned
tuples

Student 70000 Lab_No=7614
Age=2500

Students with lab_no is null=7614.
Students with age is null=2500.
Lab_no or age is null =10114
Students with lab_no is not null and
lab.lab_name is null=7873.
Students with lab_no is not null and
lab.prof_no is null=4212.
Students with lab_no is not null and
lab.lab_name and lab.prof_no is null =
169.

{?x a NS:Student} 70000

Lab 3000 Lab_Name=199
Prof_No=111

Rows of lab used by students =2625.
Rows of lab used by students with
lab_name is null=190.
Lab with lab_name and prof_no is
null=25.

{?x a NS:Lab} 3000

Courses 100 {?x a NS:Courses} 100
Stud_Cors 27000 Q4 27000

Professor 100 {?x a NS:Professor} 100

Table 2. SPARQL (Q`) Queries

Query Conditions used to modify Q ̀ from original examples of Q°
Q1 If {?x NS:Lab.Lab_Name ?lab_name } added to get lab name without OPT

Q2 If the OPT deleted from the triple pattern {?lab_no NS:Lab.Lab_Name ?lab_name.}
Q3 If the OPT that used for LEFT OUTER JOIN is deleted
Q4 If {?Stud_Id NS:Student.Age ?age.} added to get the age of students without OPT

Q5 If the two OPTs that used for LEFT OUTER JOIN are deleted.
Q6 If all OPTs are deleted from triple patterns

Table 3. Results of Queries and their Executing Time

Q Q Rows Time (s) Q° Tuples Time (s) Q ̀Tuples Time (s)

Q1 375 0.007 375 0.008 366 0.009
Q2 62386 0.046 62386 0.06 54513 0.095

Q3 70000 0.071 70000 0.075 62386 0.1
Q4 27000 0.025 27000 0.035 24190 0.04

Q5 70000 0.07 70000 0.075 58174 0.095

Journal of Software

594 Volume 13, Number 11, November 2018

Q6 73100 0.146 73100 0.156 72901 0.157

Fig. 17. Comparing between SQL(Q), SPARQL(Q°)

and SPARQL(Q`) results

Fig. 18. Comparing between SPARQL (Q°) and

SPARQL (Q`) results

(a) SQL(Q) and SPARQL(Q°)

(b) SQL(Q), SPARQL(Q°) and SPARQL(Q`)

Fig. 19. Execute time of Query Statements

6.3. Comparison

Our approach is more advanced, integrated and characterized by different features when compared with

the existing approaches (Table 4). These features can be noted as follows.

 At first, we analyze the concepts of RDB and ontology then our analysis indicates the similarities
between these concepts, which can be used as the basic in this field for new researches. The analysis
used in this approach is more modified when compared with other studies [18], [20]. These studies
depend on their analysis upon the properties of RDB and ontology in general but they do not
concentrate on the similarities between RDB and ontology.

 Every transformation stage depends on the previous one to improve its integrity and validity in
application. Moreover, we use formal rules for all steps including ontology construction, RDF
generation and semantic query on RDF triples with illustrated examples and results while the others
[11], [19], [38] used informal rules.

 Our work deals with the most important concepts of RDB to generate ontology and its query in the all
stages of transformation (schema, data and query) such as primary key, foreign key, constraints and
relationships, unlike the others [11], [16], [17], [38] they are not integrated in their approaches (Table
4).

 We consider the data null value transformation and its query. This feature is not studied by formal
researches (Table 4).

 Generating IRI for the triples shows the capability of our approach to avoid confusion, provide cle ar
triples of ontology schema, indicate the source of relational schema and also not be allowed to
duplicate the names of properties even two or more tables have the same name of a column.

Journal of Software

595 Volume 13, Number 11, November 2018

 Our approach for semantic query is based on set of formal rules to rewrite the SPARQL query
corresponding SQL relational algebra, with illustrated examples and results that proved the validity of
our rules and the possibility of use in real applications. While authors [29], [38] use one example that
shows SPARQL query corresponding SQL.

 Our paper deals with the most important concepts of SQL relational algebra operations to generate
formal rules of semantic query (SPARQL) on RDF data such as selection, projection, rename, union,
difference, natural join, left Join, and binary relation. While authors [29], [38] show the SPARQL syntax
query for representing relationship 1:M by one example written by SPARQL and SQL.

 Additional features are shown clearly in Table 4.
Accordingly, our approach shows integrated rules with represented examples, validation, results and

implementation. All these indicate the efficiency of our approach and provide the developer of semantic

web a clear procedure to develop their applications that depend on RDB.

Table 4. A Comparison between our Proposed Approach and other Existing Approaches

Method Model Analysis
concepts of
RDB and

Ont.

Rel.
Schema

Rel.
Data

Data
Null
value

Data
Transform

Generate
Identifier
RwId

Formal/
Informal

Validation Semantic
query

Implementation

Buccella et al. Semi-auto No M:N No No No No Expository
example

No No No

Stojanovic et al. Semi auto Yes 1:1,1:M 1:M No Yes No Formal No No No
Astrova et al. Auto No 1:1 No No Yes(weak) No Informal No No Yes

Shen et al. Semi-auto Yes 1:M 1:M No Yes No Informal No No No
Li et al. Auto Ontology M:N No No Yes No Informal No No Ontology learning

Framework
Mohamed et al. Auto No M:N No No Yes(weak) No Informal No No No
Zhang & Li Semi-auto Yes(Weak) 1:1 No No Yes(weak) No Informal No No Yes

Bakkas & Bahaj Auto No M:N No Yes Yes No Informal Yes simple
example

Yes(weak)

Proposed
approach

Auto Yes 1:1,1:M,
M:N

1:1,
1:M,
M:N

Yes Yes Yes Formal Yes Yes Yes

7. Conclusions

Study on ontology construction of information resources such as RDB is becoming far more widespread

in the computer science community. It’s helping for the integrating relational databases with Semantic Web

and accessing RDB through assisting in the semantic query formulation process. This paper prese nted a

novel method for rewriting equivalent SPARQL query from the SQL - relational algebra query based on the

direct mapping rules. Firstly, this paper presented the well-formulated rules for translating RDB schema to

OWL ontology and converting RDB instances (considering the null-values) to ontology triples. Secondly, our

work proposed a set of rules that transformed relational algebra operation queries into equivalent SPARQL

queries. These rules enable executing SPARQL queries over RDB as RDF triples wit h getting the accurate

results without data loss and showed how to deal with null values in the queries according to the structure

of SQL query. The effectiveness of the proposed approach is demonstrated with examples and experimental

analysis. The integrated ontology and the query results are shown and analyzed. All those indicate the

effectiveness and efficiency of the proposed approach. For the limitation of our approach, we did not

address on how to deal with queries that contain GROUP BY, HAVING, and SQL aggregation functions, such

as SUM(), COUNT(), MIN() and MAX(). In addition, our approach does not explain in details on how to

rewrite the equivalent SPARQLs from the nested SQL queries. All these limitations will be considered in the

future works.

References

[1] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 284(5), 28-37.

Journal of Software

596 Volume 13, Number 11, November 2018

[2] Vasilecas, O., Bugaite, D., & Trinkunas, J. (2006). On Approach for Enterprise Ontology Transformation

into Conceptual Model. Proceedings of the International Conference on Computer Systems and

Technologies(pp. IIIA.23-1- IIIA.23-6). University of Veliko Tarnovo, Bulgaria.

[3] Cyganiak, R., Wood, D., & Lanthaler, M. (2014). RDF 1.1 concepts and abstract syntax. from

http://www.w3.org/TR/rdf11-concepts/

[4] Brickley, D., Guha, R., & McBride, B. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.

from http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[5] Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009). OWL 2 Web Ontology Language:

Profiles. from http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

[6] Prud’, E., & Seaborne, A. (2008). SPARQL Query Language for RDF. from

http://www.w3.org/TR/rdf-sparql-query/

[7] Harris, S., & Seaborne, A. (2013). SPARQL 1.1 Query Language. from

http://www.w3.org/TR/sparql11-query/

[8] Geller, J., Chun, S. A., & An, Y. J. (2008). Toward the semantic deep web. IEEE Computer, 41(9), 95-97.

[9] He, B., Patel, M., Zhang, Z., & Chang, K. C.-C. (2007). Accessing the deep web. Communications of the ACM,

50(5), 94-101.

[10] Hazber, M. A., Li, R., Gu, X., & Xu, G. (2016). Integration mapping rules: Transforming relational database

to semantic web ontology. Appl. Math, 10(3), 1-21.

[11] Mohamed, H., Jincai, Y., & Qian, J. (2010). Towards integration rules of mapping from relational databases

to semantic web ontology. Proceedings of 2010 International Conference on Web Information Systems

and Mining (WISM)(pp. 335-339). Sanya, China: IEEE.

[12] Marx, E., Salas, P., Breitman, K., Viterbo, J., & Casanova, M. A. (2013). RDB2RDF: A relational to RDF

plug-in for Eclipse. Software: Practice and Experience, 43(4), 435–447.

[13] Hert, M., Reif, G., & Gall, H. C. (2011). A comparison of RDB-to-RDF mapping languages. Proceedings of

the 7th International Conference on Semantic Systems(pp. 25-32). Graz, Austria: ACM.

[14] Stojanovic, L., Stojanovic, N., & Volz, R. (2002). Migrating data-intensive web sites into the semantic web.

Proceedings of the 2002 ACM symposium on Applied computing(pp. 1100-1107). Madrid, Spain: ACM.

[15] Astrova, I. (2004). Reverse engineering of relational databases to ontologies . In Proceeding of 1st

European Semantic Web Symposium(ESWS)(pp. 327-341). Heraklion, Grete, Greece: LNCS.

[16] Buccella, A., Penabad, M. R., Rodriguez, F., Farina, A., & Cechich, A. (2004). From relational databases to

OWL ontologies. Proceedings of the 6th National Russian Research Conference on Digital Libraries.

Pushchino, Russia.

[17] Li, M., Du, X.-Y., & Wang, S. (2005). Learning ontology from relational database . Proceedings of 2005

International Conference on Machine Learning and Cybernetics (pp. 3410-3415). Guangzhou, China:

IEEE.

[18] Shen, G., Huang, Z., Zhu, X., & Zhao, X. (2006). Research on the rules of mapping from relational model to

OWL. Proceedings of the OWLED*06 Workshop on OWL: Experiences and Directions(pp. 548-552).

Athens, Georgia-USA: CEUR-WS.org (http://ceur-ws.org/Vol-216/).

[19] Astrova, I., Korda, N., & Kalja, A. (2007, October). Rule-based transformation of SQL relational databases

to OWL ontologies. Proceedings of the 2nd International Conference on Metadata and Semantics Research.

Ionian University, Corfu,Greece.

[20] Zhang, L., & LI, J. (2011). Automatic generation of ontology based on database. Journal of Computational

Information Systems, 7(4), 1148-1154.

[21] Hu, W., & Qu, Y. (2007). Discovering simple mappings between relational database schemas and

ontologies. Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian

semantic web conference(pp. 225-238). Busan, Korea: Springer-Verlag.

Journal of Software

597 Volume 13, Number 11, November 2018

[22] Bizer, C., & Seaborne, A. (2004, November). D2RQ-treating non-RDF databases as virtual RDF graphs.

Proceedings of the 3rd International Semantic Web Conference (ISWC2004 posters)(Vol. 2004).

Hiroshima, Japan.

[23] Xu, Z., Zhang, S., & Dong, Y. (2006). Mapping between relational database schema and OWL ontology for

deep annotation. Proceedings of the 2006 IEEE/WIC/ACM international Conference on Web

intelligence(pp. 548-552). Hong Kong: IEEE Computer Society.

[24] Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., & Aumueller, D. (2009). Triplify light-weight linked data

publication from relational databases. Proceedings of the 18th International Conference on World Wide

Web(pp. 621–630). Madrid, Spain.

[25] Souripriya Das, O., Seema Sundara, O., & Cyganiak, R. (2012). R2RML: RDB to R DF mapping language.

from http://www.w3.org/TR/r2rml/

[26] Hazber, M. A., Li, R., Xu, G., & Alalayah, K. M. (2016). An Approach for Automatically Generating

R2RML-Based Direct Mapping from Relational Databases. Proceedings of the International Conference of

Young Computer Scientists, Engineers and Educator s(pp. 151-169). Springer.

[27] Hazber, M. A. G., Li, R., Zhang, Y., & Xu, G. (2015). An Approach for Mapping Relational Database into

Ontology. Proceedings of the 12th Web Information System and Application Conference (WISA2015)(pp.

120-125). Jinan, Shangdong, China: IEEE.

[28] Bizer, C., & Cyganiak, R. (2006). D2r server-publishing relational databases on the semantic web .

Proceedings of the 5th International Semantic Web Conference (ISWC2006). Athens, GA, USA.

[29] Banu, A., Fatima, S. S., & Rahman Khan, K. U. (2011). Semantic-based querying using ontology in

relational database of library management system. International Journal of Web & Semantic Technology,

2(4), 21-32.

[30] Lee, H. J., & Sohn, M. (2012). DB schema based ontology construction for efficient RDB query .

Proceedings of the 4th Asian conference on Intelligent Information and Database Systems (ACIIDS'12) -

Volume Part II(pp. 341-350). Kaohsiung, Taiwan: Springer.

[31] Ranganathan, A., & Liu, Z. (2006). Information retrieval from relational databases using semantic

queries. Proceedings of the 15th ACM international conference on Information and knowledge

management(pp. 820-821). Arlington, VA, USA: ACM.

[32] Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M., Bagosi, T., & Calvanese, D. (2013). Evaluating

SPARQL-to-SQL translation in ontop. Proceedings of the. 2nd OWL Reasoner Evaluation Workshop (ORE

2013)(Vol. 1015, pp. 94-100). Ulm, Germany: CEUR-WS.org

(http://ceur-ws.org/Vol-1015/ore2013_proceedings.pdf).

[33] Cyganiak, R. (2005). A relational algebra for SPARQL. Digital Media Systems Laboratory HP Laboratories

Bristol. HPL-2005-170.

[34] Biron, P. V., & Malhotra, A. (2004). XML schema part 2: Datatypes second edition. from

http://www.w3.org/TR/xmlschema-2/

[35] Prud’hommeaux, E., & Lee, R. (2004). W3C RDF validation service. from

http://www.w3.org/RDF/Validator/

[36] jena, A. (2015). A free and open source Java framework for building Semantic Web and Linked Data

applications. from http://jena.apache.org/index.html

[37] McCarthy, P. (2005). Search RDF data with SPARQL. from

http://www.ibm.com/developerworks/library/j-sparql/

[38] BAKKAS, J., & BAHAJ, M. (2013). Generating of RDF graph from a relational database using Jena API.

International Journal of Engineering & Technology (0975-4024), 5(2), 1970-1975.

Journal of Software

598 Volume 13, Number 11, November 2018

Mohamed Hazber is an assistant professor at School of Computer Science, Wuhan University,

China. He received the B.S. degree from School of Computer Science and information systems at

University of Technology-Baghdad-Iraq 2000 and his M.S. degree from School of Computer

Science and Technology at Central China Normal University 2011. He gained PhD degree in

School of Computer Science and Technology, Huazhong University of Science and Technology,

China in 2016. His research interests include knowledge extraction, rel ational database,

semantic web and ontologies, database and ontology integration.

Bing Li is a professor in School of Computer Science at Wuhan University, Wuhan. He received

his Ph.D., M.S., and B.S. degrees, all in computer science, from Huazhong University of Science

and Technology, Wuhan, in 2003, 1997, and 1990, respectively. His main research in terests

include software engineering, service computing, complex system, semantic Web service and

artificial intelligence.

Guandong Xu is an associate professor in the School of Software and Advanced Analytics

Institute at University of Technology Sydney. He received MSc and BSc degree in Computer

Science and Engineering from Zhejiang University, China. He gained PhD degree in Computer

Science from Victoria University in 2008. After that he worked as a postdoctoral research

fellow in Centre for Applied Informatics at Victoria University and then postdoc in

Department of Computer Science at Aalborg University, Denmark. His research interests

include web information retrieval, web mining, web services etc.

Mohammed A.S. Mosleh received the B.S. degree from Department of Information Systems at

Saba University, Yemen 2009 and his M.S. degree from School of information Technology,

Bharathiar University, India in 2012. He received his PhD in computer science from Bharathiar

University, India 2017. His research interests include cloud computing, databases.

Xiwu Gu received the BS, MS, and PhD degrees in computer science from Huazhong University

of Science and Technology in 1989, 1998, and 2007 respectively. He is currently a lecturer in

the School of Computer Science and Technology at Huazhong University of Science and

Technology, Wuhan, China. His research interests include distributed computing, data mining,

and social computing. He is a member of the China Computer Federation (CCF).

Yuhua Li is an associate professor in the School of Computer Science and Technology at

Huazhong University of Science and Technology, Wuhan, China. She received the PhD degree in

computer science from Huazhong University of Science and Technology in 2006. Her research

interests include link mining, social network mining, graph mining, knowledge engineering,

Semantic Web and ontology. She is a senior member of the China Computer Federation (CCF).

Journal of Software

599 Volume 13, Number 11, November 2018

