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Abstract: According to the dynamic GPS rapid positioning ambiguity resolution problems, a modified 

algorithm for rapid integer ambiguity resolution is proposed. Firstly, a method of QR decomposition is 

applied on the observation matrix to construct the left null space matrix in order to construct the left null 

space matrix, so as to decrease dimensions of the matrix and to satisfy rapid ambiguity resolution by matrix 

transformation that can separate out the ambiguity parameter from the position parameter. Kalman filter is 

applied only to estimate the ambiguity parameters in order to acquire the real-time ambiguity float solution. 

Then, ordering and multi-time (inverse) paired Cholesky decomposition are adopted for decorrelation of 

ambiguity. One applies diagonal elements preprocessing, sorts diagonal elements according to the results of 

Cholesky decomposition, thus to improve the efficiency of decomposition and decorrelation. Lastly, the 

LAMBDA method is used for searching the fixed integer ambiguity. To verify the correctness and 

effectiveness of the proposed algorithm, the static and kinematic tests are carried out. Experimental results 

show that this algorithm has good performance of decorrelation and precision of float solution. It also can 

effectively improve computation speed. The final positioning accuracy result with static baseline error less 

than 1cm and kinematic error less than 2cm.The method may be used in areas requiring accurate 

positioning such as kinematic navigation and geodesy. 
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1. Introduction 

Rapid ambiguity resolution is the key problem of GPS carrier phase measurements for high precision 

real-time positioning [1], [2], which has been studied by many researchers during the last two decades. 

Examples of proposed methods were dual-frequency P code pseudo range algorithm [3], least squares(LS) 

searching algorithm [4], ambiguity function algorithm [5], fast ambiguity resolution approach(FARA) [6], 

Cholesky decomposition [7], OMEGA [8], LAMBDA [9]-[11], etc. Recently, the rapid integer least-squares 

estimation for high-dimensional ambiguity resolution using lattice theory was proposed [12], [13]. Among 

them, some were based on dual frequency measurements. When applied for single frequency kinematic 

positioning, those methods required more epochs, resulting in large amount of calculation caused by 

higher-order matrix inversion operation and a long time to fix the ambiguity. Thus, those methods could not 

meet the requirement of real time kinematic applications.  

To solve this problem, a new algorithm is proposed to rapid resolve integer ambiguity of kinematic 

application. Firstly, QR decomposition and transformation are applied to construct a left null space matrix to 
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remove baseline coordinate parameters, ambiguity parameters are successfully separated from position 

parameters. Kalman filter is used to estimate only the ambiguity parameters that acquire real-time float 

solution of integer ambiguity. Then, diagonal entries of covariance matrix are sorted, and multi-time (inverse) 

paired Cholesky decomposition is applied for the decorrelation of ambiguity. One applies diagonal elements 

preprocessing, sorts diagonal elements according to the results of Cholesky decomposition, thus to improve 

the efficiency of decomposition and decorrelation. Finally, integer solution is fixed by LAMBDA method. Static 

and kinematic experiments prove the good performance and feasibility of the new algorithm. 

2. Rapid Calculation of Ambiguity Float Solution Based on QR Decomposition 

Let us suppose that base station and mobile station can observe n satellites synchronously, and each 

epoch can form n-1 double difference carrier phase measurement equations. For the ith epoch, GPS 

linearized observation equations are generally expressed as 

i i i i  L A X BN ε                                      (1) 

where 1n

i

L R denotes the observation vector of double difference (DD)carrier phase at the ith epoch, 

which is the difference between actual value and the calculated one. ( 1) 3n

i

 A R  is coefficient matrix at the 

ith epoch. 
i X  is the unknown parameter vector of 3D baseline. 1nN Z  is the unknown DD ambiguity 

parameters vector with n-1 dimensions, which is independent of the epoch. 
1 1 1

( , , )L L Ldiag   B  is the 

coefficient matrix with n-1 dimensions, where
1L is the L1 carrier wavelength. 

iε  
is the measurement noise 

vector. 

In rapid positioning, we expect that fewer epochs or even single epoch can realize positioning. According 

to (1), it has 3 rank deficiencies when computing in single epoch, thus the LS method is unavailable. General 

method is to increase the number of observation epochs in order to increase equations. For m epochs, 

relative equations in matrix form are 

= + + εL AδX BN                                      (2) 

High-order matrix inversion is a problem [14] of huge computation when directly solving (2). In order to 

obtain high precision ambiguity float solution, one needs at least 200 to 400 epochs, which results in very 

high-order matrix with about 600 to 1200 dimensions. Thus, it can not meet the requirement of real-time 

kinematic positioning. As we only care about ambiguity float solution and its covariance, this paper applies 

QR decomposition to coefficient matrix[15]. Baseline component correction vector is eliminated by 

constructing left null space matrix AL  according to U matrix features. By doing so, ambiguity parameters 

are successfully separated from position parameters, and matrix dimension is decreased. QR 

decomposition based transformation steps are showed as follows: 

One starts first to solve the left null space matrix of coefficient matrix iA . Since QR decomposition to iA  

is carried out, one has i A QR , where Q is ( 1) ( 1)n n   unitary matrix, R is ( 1) 3n   unitary matrix. 

Next, the matrix Q is blocked as 
1 2

( 1) 3 ( 1) ( 1 3)n n n     

 
  
 

Q Q Q , at this time one easily proves the following 

formula: 
2i

T

A L Q , that is 0
iA i L A  

Finally, Let (2) multiplied by left null space matrix 
iAL , one will get transformed equation as 

i i iA i A A i L L L BN L                                    (3) 

Considering the characteristics that integer ambiguity of each epoch is equal when there is no cycle slip, 

Kalman filtering state equation and measurement equation [16] are respectively written as 
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1k kN N                                          (4) 

+k k k kZ H N V                                        (5) 

where
kk A kZ L L ,

kk AH L B . kV  is the measurement white noise with mean zero and variance 

cov( , )k k k R V V
2 2T T

k k A AE      V V L L I . 

Since the state vector of integer ambiguity N is constant value, time update process (prediction process) 

during Kalman filtering can be simplified as follow 

1

ˆ ˆ 1

ˆ ˆ
k k

Nk Nk









 




N N

Q Q
                                      (6) 

Kalman filter Measurement update process (calibration process) are given as 

 

1

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ( )

T T

k k k k kNk Nk

k k k k k k

k kNk Nk


 

  

 

    


  


 


K Q H H Q H R

N N K Z H N

Q I K H Q

                             (7) 

Among (7), Kk is filtering gain, I is unit matrix. According to the initial value of state vector
0N̂ and the 

estimation error covariance ˆ 0N
Q , we can compute the optimal estimation of ambiguity state vector and 

estimation error covariance at any time. Filtering equations indicate that position parameters and velocity 

parameters are eliminated during the process of calculation. Obviously, the amount of computation is 

greatly reduced due to the avoiding of high-order matrix inversion, which can do a good help to ambiguity 

estimation in real-time kinematic applications. 

3. Sorting and Multi-time (Inverse) Paired Cholesky Decomposition for Decorrelation 

Real-time float solution of ambiguity can be calculated based on QR decomposition and Kalman filtering. 

But in actual kinematic positioning environment, during a shot period of observing time, the geometric 

structure of satellites in view is poor, which leads to strong correlation between DD measurements. This 

strong correlation makes multi-dimensional ellipsoid search space much longer. Thus, integer ambiguity 

search results are not as good as expected. To solve this problem, the covariance matrix of float solution 

needs to be factorized to make it to be diagonalization as much as possible. By doing so, the correlation 

between ambiguities of DD phase measurements can be reduced, which makes the search ellipsoid space 

closer to sphere, minimizing length of search interval and improving the search efficiency of integer 

ambiguity fixing. 

Concerning that Gauss transformation for decorrelation is not stable, and its calculation amount is double of 

Cholesky decomposition. This paper proposes a method of continuously implementing modified upper 

triangular Cholesky decomposition and lower triangular Cholesky decomposition to realize continuous 

decorrelating [17]-[19]. Before Cholesky decomposition, sorting the diagonal elements of ambiguity 

covariance matrix(ascending or descending) can reduce condition number of matrix, effectively improve the 

performance of matrix decomposition [20]-[22]. Compared to this traditional method, we apply diagonal 

elements preprocessing. Sorting based on the result of Cholesky decomposition, bigger diagonal entry of 

UDUT result is adjusted to a smaller i position in diagonal line, LDLT result is on the contrary. After this, 

numerical size of each diagonal element is much closer to one another. Thus, the validity of matrix 

decomposition is improved, so is the decorrelation. Then, the efficiency and quality of ambiguity discrete 

search is improved at last. The steps of sorting and multiple (inverse) paired Cholesky decomposition are as 
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follows: 

(1) Modified integer UDUT decomposition 

1) Remark ˆ0 , 1,2, ,ijN n n
q i n


    J Q , Perform the following steps to 0J  row by row 

a) Pre-compute candidate elements 

1

2

1

,

, , 1, ,

n

pj pj pk k jk j

k j

n

p pp pk k

k i

c q c d c d i j

v q c d p i i n

 

 

  
    

  



   






                            (8) 

In (8), 
pjc denotes the candidate entry in unit upper triangular matrix U, 

pv denotes the candidate in 

diagonal matrix D. 

b) Select the element iv  to meet  maxi p
i p n

v v
 

 , and its index number iM p . So let ( )ij Mju c i j  , 

ii Md v ,
iju , id denotes the elements in modified Cholesky decomposition U and D respectively. 

c) Adjust variance-covariance matrix according to the index number from the last step: 

1( , ) ( , )T

i i i i i ii M i MJ S J S . Where ( , )i ii MS is adjusting matrix, obtained by exchange of ith row and 

iM th  row in unit matrix n nI  . Especially, when ii M , ( , )i i n ni M S I . 

2) Modified UDUT decomposition is obtained by the previous step, that is [ ]ij n nu U , 

1 2( , , , )ndiag d d dD , then one can get that T

n J UDU , ˆ
ˆ ˆ T

n N
J SQ S , where 

1 1 1 1
ˆ ( , ) ( 1, ) (1, )n n n nn M n M M  S S S S . 

3) Let entries in upper triangular be integers, calculate the transformation matrix  
1

1


U by matrix 

inversion, then the covariance matrix after modified UDUT transformation is 

       
1 1

ˆˆ 1 11 1 1 1

ˆ ˆT TT

u n N

   
 Q U U U S Q S UJ                            (9) 

(2) Modified integer LDLT decomposition 

1) Remark ˆ0 u ij n n
q



     J Q , 1,2, ,i n , Perform the following steps to 
0
J  row to row. 

a) Pre-compute candidate elements 

1

1

1
2

1

,

, , 1, ,

j

pj pj pk k jk j

k

j

p pp pk k

k

f q f d f d i j

v q f d p i i n









  
    

  



   






                             (10) 

In (10), 
pjf is the candidate element in unit lower triangular matrix L, 

pv denotes the candidate element 

in diagonal matrix D. 

b) Select element iv  to meet  mini p
i p n

v v
 

 , and its index number iM p . So let ( )ij Mjl f i j  , 

ii Md v ,
ijl , id denotes the elements in modified Cholesky decomposition L and D respectively. 

c) Adjust variance-covariance matrix according to the index number from the last step: 

1( , ) ( , )T

i i i i i ii M i M
 J G J G . Where ( , )i ii MG is adjusting matrix, obtained by exchange of ith row and 

iM th  row in unit matrix n nI  . Especially, when ii M , ( , )i i n ni M G I . 
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2) Modified LDLT decomposition is obtained by the previous step, that is [ ]ij n nl L ， 1 2( , , , )ndiag d d dD

，then one can get that
n
  T

J LDL ， ˆ
ˆ ˆ T

n u
 J GQ G ，where 

1 1 1 1
ˆ ( , ) ( 1, ) (1, )n n n nn M n M M  G G G G . 

3) Let entries in lower triangular be integers, calculate the transformation matrix  
1

1


L by matrix 

inversion, then the covariance matrix after modified LDLT transformation is 

       

        

1 1

ˆ ˆ1 11 1 1 1

1 1

ˆ1 1 1 11 1 1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

T TT

n uN

T TT T

N

   

   

  Q L L L G Q G L

L G U Q U G L

J

S S
                          (11) 

(3) Check whether A is the identity matrix. If so, then end the calculation; otherwise, it show that the 

correlation between the undetermined ambiguity is quite strong, return to step (1) carrying on loop 

computing until  
1

1


L becomes identity matrix, so far, now stop decomposition. 

Perform the modified integer UDUT decomposition and LDLT decomposition repeatedly. Assuming that 

iteration is executed for m times, when  
1

1


L is transformed to be a unit matrix, the final transformation 

matrix is going to be 

         
    

    

1 1 1 1

1 11 1

1 1

1 11 1

1 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

z m m m mm m m m

m

i ii i
i

   

  

 

 







T L G U S L G U S

L G U S

L G U S

                          (12) 

Accordingly, the covariance matrix of ambiguity after the transformation is 

T

ˆẑ z zN
Q T Q T                                       (13) 

Integer ambiguity float solution is 

ˆˆ
zz T N                                         (14) 

Finally, integer ambiguity is fixed by LAMBDA algorithm. z  is searched using (15) to minimize the 

object function as the fixed ẑ  

ˆ
ˆ ˆmin( ) ( )z

z
 T -1

z z Q z z                                  (15) 

Then perform inverse transformation 

1ˆ ˆ
z


N T z=                                        (16) 

That is the original ambiguity fixed solution. 

4. Experimental Analysis 

In order to verify the accuracy, correctness and effectiveness of proposed algorithm, static and kinematic 

experiments are carried out respectively. Actual collected receiver data is processed to calculate the 

navigation result. Then, compare it with the standard value to prove the reliability of this algorithm. 

4.1. Static Test and Result Analysis 

In order to validate the correctness and feasibility, static test was carried out. The data acquisition time is 

ten thirty-one on May 16, 2013, as the place of Air Force Engineering University Taoyuan campus laboratory 

building. We used two NovAtel receivers with type OEM628 as one base station and another mobile station, 
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GPS-702-GG GPS dual-frequency antenna. Data was collected in half an hour. Baseline between tow receivers 

is 7.812m. There were 7 stars in view above elevation 10°, PRN6, PRN8, PRN11, PRN15, PRN17, PRN24, and 

PRN28. In order to reduce other errors, PRN24 with maximal elevation was chosen as the reference satellite. 

Actual data was processed by proposed algorithm in simulation, after 128 epoches, ambiguity was fixed. 

Then, fixed ambiguity was returned to compute the value of baseline to make a comparison with the real 

value 7.812m. Fig. 1 is the length of baseline and its error. As can be seen from the figure baseline length 

error of proposed new algorithm is less than 1 cm, which indicates some good performance of accuracy.  
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(b) Baseline length error 

Fig. 1. Baseline length and its error. 

4.2. Kinematic Test and Result Analysis 

To further validate the applicability of the algorithm in a kinematic environment and a long baseline 

situation, a vehicle test in a longer distance was carried out. 

4.2.1. Verification scheme 

Using the same test conditions with static test, as due to the dynamic changes of baseline with a much 

longer distance, the accuracy of the algorithm can not be validated directly, so here by way of dual mobile 

station, as shown in Fig. 2. Base station is placed below the Lab building in open area, two mobile stations 

are placed on the top vehicle, one is at the head and another one is at the rear, 2.115m apart. After a short 

period of stop, the vehicle began to go around in 200meters away. Original measurements data and epoch 

data (L1 frequency) is collected and it was processed by the proposed rapid new algorithm one epoch to 

another. 
 

 

Fig. 2. Sketch of algorithm validation embodiment.  

As shown in Fig. 2, the baseline between antenna2 and antenna1 is computed ，recorded as 1d , so was 

the baseline between antenna3 and antenna1, recoded as
2d . The baseline between antena2 and antena3 is 

fixed and recoded as d . Easy to know 2 1 d d d . According to the solution of 1d  and 2d , we can get 
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that
1 2 d d d , and then compared it with fixed length of baseline d to verify the accuracy of relative 

position.  

4.2.2. Test results analysis 

Using the proposed algorithm, the integer ambiguity between mobile station2 and the base station is 

computed, so is the integer ambiguity between mobile station2 and the base station. Integer ambiguities are 

rapid fixed when epoch number is 193 and 197 respectively, and Kalman filter tends to be stable. This is 

because that new algorithm baseline parameters are eliminated by the construct of left null matrix and only 

ambiguity status vector is concerned during filtering processing, thereby the dimensions of matrix are 

reduced, and the calculating accuracy and speed of float solution is effectively improved. According to the 

above-mentioned scheme, the relative position between mobile station2 and station3 is computed and the 

length and error of baseline are shown in Fig. 3(a), the elevation and azimuth of baseline are shown in Fig. 

3(b). 
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(a) Baseline length and its error 
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(b) The elevation and azimuth of baseline 

Fig. 3. Relative position of the mobile station 2 and station 3. 

Table 1. The r and e of Ambiguity Covariance Matrix before and after Decorrelation 

Epoch 

Before decorrelation After decorrelation 

Decorrelation 

coefficient r 

Spectral condition 

number e 

Decorrelation 

coefficient r 

Spectral condition 

number e 

1 9.216 810  301.225 0.622 3.356 

2 9.327 810  300.037 0.623 3.334 

3 9.399 810  298.964 0.625 3.318 

4 9.473 810  297.993 0.625 3.305 

5 9.560 810  297.101 0.627 3.293 

6 9.634 810  296.098 0.629 3.282 

7 9.711 810  295.252 0.630 3.302 

8 9.789 810  294.307 0.631 3.319 

9 9.873 810  293.579 0.632 3.332 

10 9.961 810  292.626 0.632 3.346 

11 1.005 710  291.633 0.633 3.355 

12 9.731 710  290.784 0.634 3.336 

13 9.844 710  289.851 0.635 3.318 

14 9.928 710  289.008 0.636 3.331 

15 1.003 710  288.132 0.636 3.314 

16 1.016 710  287.156 0.637 3.303 

17 1.028 710  286.017 0.637 3.287 

18 1.034 710  285.320 0.638 3.302 

19 1.047 710  284.464 0.638 3.313 

20 1.060 710  283.511 0.639 3.325 
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As shown in Fig. 3, the computed position relationship between mobile station and base station is 

consistent with the reality. The errors of elevation and azimuth are stable in a small angle because of the 

circle motion of vehicle. During the test, when signal quality is good, baseline error is confined in 2cm, which 

indicates that ambiguity is correctly fixed. But in some small part of time, error may become larger due to 

other causes. As the length of baseline, elevation and azimuth are all computed based on the relative position 

between mobile stations, so this paper makes the length of baseline as criterion is practical and scientific. It 

further verifies the correctness of the algorithm. 

Finally, we analysis the performance of decorrelation, adopting decorrelation coefficient r and spectral 

condition number e as standard to evaluate the performance of decorrelation [22]. Table 1 shows the 

decorrelation and spectral condition number before and after decorrelation. As shown in Table 1, 

decorrelation coefficient r is near 0 before decorrelation, which indicates strong correlation between 

ambiguities. The spectral condition number e is very large before decorrelation, which indicates a flat search 

space, also reflecting the strong correlation. After decorrelation, decorrelation coefficient r becomes larger 

and approaches 1. While it’s spectral condition number e is greatly reduced and covariance matrix is closer 

to diagonal one. Correlation between different ambiguities is reduced successfully, which indicates the 

feasibility and good performance of decorrelation of the new algorithm. 

5. Conclusion 

1) Through static and kinematic test and analysis show that the proposed algorithm for ambiguity rapid 

resolution in this paper is feasible, the static baseline error is less than 1cm, kinematic baseline error is 

less than 2cm, which verifies the correctness and effectiveness of the algorithm. 

2) QR decomposition is applied to construct the left null space of matrix to eliminate the baseline 

coordinate parameters which can separate out the ambiguity parameters from the position parameters. 

Thus Kalman filter is used to estimate only the ambiguity parameters in the new algorithm, which 

greatly reduces the amount of computation. Computation speed and real-time capability are both well 

improved. 

3) Sorting and multiple (inverse) Cholesky decompositions are performed for ambiguity decorrelation, 

adopting method of diagonal entries pre-processing and adjusting the order of diagonal entries 

according to Cholesky decompositions values. The effectiveness of matrix decomposition is well ensured 

and much smaller conditional number is obtained, thereby performance of decorrelation is improved, 

which is good for ambiguity search efficiency and correctness. 

As the new algorithm in this paper can realize integer ambiguity rapid solution, acquiring high accurate 

position quickly, it could be used for ‘BDS-2’ in some years. It may have a broad application prospects for 

airborne platform rapid positioning and attitude determination and for precision approach and landing 

system. It also needs further improvement in some specific engineering implementation. 

Acknowledgment 

This work is supported by China National Natural Science Foundation of China (No: 61273049). Special 

thanks go to anonymous reviewers whose comments have contributed to the improvement of the paper. 

References 

[1] Hofmann-Wellenhoff, B., Lichtenegger, H., & Collins, J. (2001). Global Positioning System: Theory and 

Practice (5th ed.). Berlin: Springer-Verlag. 

[2] Leick, A. (2004). GPS Satellite Surveying (3rd ed.). New York: Wiley. 

[3] Blewitt, G. (1989). Carrier phase ambiguity resolution for the global positioning system applied to 

Journal of Computers

59 Volume 11, Number 1, January 2016



 

geodetic baselines up to 2000 km. Journal of Geophysical Research, 94(B8), 10187-10203. 

[4] Hatch, R. (1990). Instantaneous ambiguity resolution. Proceedings of IAG International Symposium: No. 

107 (pp. 99-308). Banff, Alberta, Cananda,. 

[5] Remondi, B. W. (1991). Pseudo-kinematic GPS results using the ambiguity function method. Journal of 

Navigation, 42(1), 109-165. 

[6] Frei, E., & Beulter, G. (1990). Rapid static positioning based on the fast ambiguity resolution approach 

FARA: Theory and First Results. Manuscripta Geodaetica, 15(6), 325-356. 

[7] Euler, H. J., & Landau, H. (1992). Fast GPS ambiguity resolution on-the-fly for real-time application. 

Proceedings of Sixth International Geodetic Symposium on Satellite Positioning (pp. 17-20). 

[8] Kim, D., & Langley, R. (1999). An optimized least-squares technique for improving ambiguity 

resolution and computational efficiency. Proceedings of ION GPS (pp. 1579-1588). 

[9] Teunissen, P. J. G. (1994). A new method for fast carrier phase ambiguity estimation. Proceedings of 

IEEE Position Location and Navigation Symposium PLANS’94 ( pp. 562-573). 

[10] Teunissen, P. J. G. (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS 

integer ambiguity estimation. Journal of Geodesy, 70, 65-82. 

[11] Teunissen, P. J. G., & Verhagen, S. (2008). GNSS ambiguity resolution: When and how to fix or not to fix? 

Proceedings of A Symposium on Theoretical and Computational Geodesy (pp. 143-148). 

[12] Jazaeri, S., Amiri-Simkooei, A. R., & Sharifi, M. A. (2012). Fast integer leastsquares estimation for GNSS 

high-dimensional ambiguity resolution using lattice theory. Journal of Geodesy, 86(2), 123-136. 

[13] Jazaeri, S., Amiri-Simkooei, A., & Sharifi, M. A. (2014). On lattice reduction algorithms for solving 

weighted integer least squares problems: comparative study. GPS Solutions, 18(1), 105-114. 

[14] Liu, L. L., Liu, J. Y., et al. (2005). Rapid Ambiguity Resolution On-the-Fly for Single Frequency Receiver. 

Geomatics and Information Science of Wuhan University, 30(10), 885-887. 

[15] Timothy, S. (2010). Numerical Analysis. Beijing: Posts & Telecom Press. 

[16] Tomoji, T., & Akio, Y. (2010). Kalman-filter-based integer ambiguity resolution strategy for 

long-baseline RTK with ionosphere and troposphere estimation. Proceedings of ION GNSS 2010 (pp. 

161-171). 

[17] Xu, P. L. (2001). Random simulation and GPS decorrelation. Journal of Geodesy, 75(7), 408-423. 

[18] Zhou, Y. M. (2011). A new practical approach to GNSS high-dimensional ambiguity decorrelation. GPS 

Solutions, 15(4), 325-331. 

[19] Zhou, Y. M., & He, Z. B. (2014). Variance reduction of GNSS ambiguity in (inverse) paired Cholesky 

decorrelation transformation. GPS Solutions, 18, 509-517. 

[20] Liu, L. T., Su, H. T., & Zhu, Y. Z. (1999). A new approach to GPS ambiguity decorrelation. Journal of 

Geodesy, 73(6), 478-490. 

[21] Chen, S. X., & Wang, Y. S. (2002). New algorithm for GPS ambiguity decorrelation. Acta Aeronautica Et 

Astronautica Sinica, 23(6), 542-546. 

[22] Huang, Z. Y., & Chen, S. J. (2010). Modified GPS ambiguity white filtering algorithm. Journal of 

Southwest Jiaotong University, 45(1), 150-155. 
 

 

Rong Duan was born in Hunan, China in 1986. He received his B.S. and M.S. degrees from 

Institute of Telecommunication Engineering, Air Force Engineering University, China, in 

2009 and 2012, respectively. Currently, he is an Ph.D. candidate in College of Information 

and Navigation, Air Force Engineering University, China. His research interests are focused 

on high accuracy navigation algorithms for close proximity applications such as airplane 

 

Journal of Computers

60 Volume 11, Number 1, January 2016



 

approach and landing, cycle ambiguity resolution, and robust estimation techniques. 

 

Xiubin Zhao received the M.S. degree in electrical information engineering from Nanjing 

University of Aeronautics and Astronautics, Nanjing, China, in 1996, the Ph.D. degree in 

signal and information processing from the Xibei Industry University, Xi’an, China, in 2000. 

He has been engaged in basic theory research and technology innovation of radio navigation 

since 1990. He was recruited as a senior member of Chinese Institute of Electronics in 2000, 

employed as an electronic journal reviewer in 2001, recruited as the national science 

foundation reviewer in 2003, recruited as a Sahan’xi Provincial Institute of Electronics Radar and Navigation 

professional member in 2005. His research interests include radio navigation, navigation signal processing, 

satellite positioning technology and simulation technology. 

 

Chunlei Pang received the B.S. degree from Air Force Engineering University, China, in 

2007, the M.S. and Ph.D. degrees from same university, in 2010 and 2013. Now he is a 

research associate in Air Force Engineering University, China. His research interests include 

GNSS data processing, relative navigation and attitude determination in space and air. 

 

 

 

Ang Gong received his B.S. and M.S. degrees from Institute of Telecommunication 

Engineering, Air Force Engineering University, China, in 2010 and 2013, respectively. 

Currently, he is an Ph.D. candidate in College of Information and Navigation, Air Force 

Engineering University, China. His current research interests include GNSS data processing 

and its application. 

 

 

 

 

Journal of Computers

61 Volume 11, Number 1, January 2016


