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Abstract: Increasing the speed of single-core processors created more heat and produce higher power 

consumption. Multi-core architectures are proposed for their capability to provide more processing power 

than single-core processors, without increasing heat and power usage. This paper introduces simulation 

models of a new architecture for large-scale multi-core clusters to improve the communication 

performance within the interconnection network. The simulation models are built based on two different 

flow control mechanisms to identify their impact on the interconnection network performance of the 

multi-core cluster. 
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1. Introduction 

The exponential growth in computing performance quickly led to more sophisticated computing 

platforms. This rapid growth increased the demand for faster computing performance; every new 

enhancement in processors leads to greater performance demands. Moore’s Law predicts that the number 

of transistors on a computer microprocessor will double every two years or so, providing regular leaps in 

computing power [1]. Over more than four decades, this has driven the impressive growth in computer 

speed and accessibility. But lately, Moore’s Law has begun to show signs of falling, which insists on the 

emergence of multi-core processors [2]. 

In the past, it was a trend to increase a processor’s speed to get better performance. Transistor size has 

been reduced to increase the number of transistors that can be applied to processor functions and reduce 

the distance signals must travel [3]. These allowed processor clock frequencies to soar by having more 

transistors to work with. However, Lei, Qi and Panda [4] identified that it becomes more difficult to speed 

up processors nowadays by increasing frequency. As processor frequencies increase, the amount of heat 

produced by the processor increase with it [5]. The solution is to reduce the transistor size because smaller 

transistors can operate at lower voltages, and this allows the processor to produce less heat. Unfortunately, 

David Geer [6] demonstrated that as a transistor gets smaller, it will be less able to block the flow of 

electrons. Thus, smaller transistors keep using the electricity even when they aren’t switching which wastes 

the power. However, transistor can’t shrink forever and chip manufacturers have struggled to cap power 

usage and heat generation which slowing the processor performance. For these reason, computer engineers 

are building a processor with more processing cores which means placing two or more processing cores on 

the same chip [7]. 
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Multi-core processors have been widely deployed in clusters for parallel computing as reported in the 

Top500 supercomputer list [8]. Multi-core cluster architectures have been major designs and have provided 

an important contribution in computing technology for provisioning additional processing power in high 

performance computing and communications. These architectures provide an effective solution to improve 

cluster performance while keeping power consumption manageable. The ability to work on multiple 

problems simultaneously by taking advantage of parallelism allows for faster execution of applications. 

In recent years, many architectures based on multi-core clusters have been proposed to predict and 

evaluate communication performance [9]-[11]. Previous work on modelling either concentrated on 

inter-node communication network or focused on high performance multi-core architecture design without 

considering the effect of interconnection networks on the performance. Perhaps the work by Furhad et al. 

in their paper “An Analysis of Reducing Communication Delay in Network-on-Chip Interconnect 

Architecture” [12] is the most related to this paper, but with a different interconnection network structure 

and their analysis only being based on wormhole flow control. 

2. The New Architecture 

A new architecture known as the multi-core multi-cluster architecture (MCMCA) is introduced in Fig. 1. 

The structure of MCMCA is derived from a multi-stage clustering system (MSCS) [13] which is based on a 

basic cluster using single-core nodes. The MCMCA is built up of a number of clusters where each cluster is 

composed of a number of nodes. Each node of a cluster has a number of processors, each with two or more 

cores. Cores on the same chip share the local memory and the cluster nodes are connected through the 

interconnection network.  
 

 
Fig. 1. Multi-core multi-cluster architecture (MCMCA). 

 

There are five communication networks in MCMCA. Two of them are commonly found in any multi-core 

cluster architecture, the intra-chip network (AC) and the inter-chip network (EC). The new communication 

networks introduced in this paper are the intra-cluster network (ACN), the inter-cluster network (ECN) and 

the multi-cluster network (MCN). 

The communication between two processor cores on the same chip is the intra-chip network (AC). 

Messages will be divided into a number of cores by the AC network, which acts as a connector between two 

or more processor cores on the same chip. Dividing the messages into a number of cores, in theory, results 

in more than twice the performance with a lower communication delay. An inter-chip network (EC) 

provides for communications between processors in different chips, but still within the same node. 

Messages travelling to different chips in the same node will communicate via the intra-chip (AC) and 
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inter-chip (EC) networks to reach their destination. Intra-cluster network (ACN) is an interconnection 

network to connect nodes within a cluster. Messages that cross between nodes in the same cluster will 

connected by ACN via the intra-chip (AC) and the inter-chip (EC) networks to complete their journeys.  

The longest route for messages to travel will involve ECN and MCN. Messages travelling from their source 

to their destination between clusters communicate via two interconnection networks. An inter-cluster 

network (ECN) is used to transmit messages between clusters. The clusters are connected to each other via 

the multi-cluster network (MCN). When messages reach the other cluster, they will travel using the ECN of 

the target cluster before arriving at its destination. The same process will continue to the other clusters 

until all the packets exit the network. 

3. The Methodology 

3.1. Analysis Assumptions 

Both analyses are built on the basis of the following assumptions which are used in similar studies [14], 

[15]: 

1) Each processor generates packets independently, following a Poisson distribution with a mean rate of 

lambda (λ) and the inter-arrival times are exponentially distributed. 

2) The destination of each message is any node in the system with uniform distribution. 

3) The number of processors and cores in all clusters are the same and the cluster nodes are 

homogeneous. 

4) The communication switches are input-buffered and each channel is associated with a single packet 

buffer. 

5) The message length is fixed. 

3.2. Simulation Model 

A simulation model of Multi-core Multi-cluster Architecture was developed using OMNeT++ network 

simulation software. OMNeT++ [16] is a C++-based discrete-event simulator, which uses the 

process-interaction approach and has been publicly available since 1997. The structure of the model, 

including its modules and their interconnection is defined in OMNET++’s topology description language, 

NED. NED consists of simple module declarations, compound module definitions and network definitions.  

The model was built at run time to form a topology based on a scalable fat-tree topology [17] that 

represents the geometric structure and the Up*/Down* routing [18], a deadlock-free deterministic routing 

for interaction between the modules. The research experiment focused on buffered flow control mechanism, 

with store-and-forward flow control representing packet-buffer flow control and wormhole flow control 

indicating flit-buffer flow control, in order to determine the allocation of the network’s resources. 
 

 
Fig. 2. Illustration of message, packets and flits. 

 

Store-and-forward flow control is a packet switching mechanism where the message to be transmitted is 

partitioned into a sequence of packets. Each packet is sent separately to the destination according to routing 
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information. Store-and-forward flow control mechanism allocates channel bandwidth and buffer resources 

to packets, and the resources are used by one packet at a time. With store-and-forward flow control 

mechanism, each node along a route waits until a packet has been completely received or stored and then 

forwards the packet to the next node. 

Wormhole flow control mechanism allocates buffers and physical channels to flits instead of packets. A 

packet is decomposed into one or more flits. A flit, the smallest unit on which flow control is performed, can 

advance once buffering in the next switch is available to hold the flit. The flits of a packet are delivered in a 

pipeline fashion. Illustration of message, packet and flit is shown by Fig. 2. 

The simulation can behave with different inputs and specified parameters of the model, such as the 

number of cores (nc), number of clusters (C), number of messages to be generated (λg), message length (M) 

and inter-arrival time (λ). Messages are generated at each node by a generator module based on the 

assumptions that the network traffic follows the uniform Poisson process distribution and the message 

destinations are uniformly distributed by using a uniform random number generator. Each packet is 

time-stamped after its generation and the message completion time is defined by a sink module on each 

node to compute message latency.  

In each run, 10,000 messages were generated and a total of 100,000 messages were used to gather 

statistics for every simulation experiment. The simulation experiments were conducted in three phases: 

warm-up, measurement and drain, to measure steady-state performance. The network has necessarily 

reached a steady-state once the network is warmed up. This means that the statistics of the network are 

stationary and no longer changing with time, which will determine an accurate estimation [19]. 

The communication between processors relies on message passing between the source and destination 

processors/nodes. The message passes over a channel that directly connects two nodes and might have to 

pass through several such nodes based on the designate flow control before it reaches its destination. 

Therefore, each communication involves a lot of latency. Communication networks in MCMCA are divided 

into internal-cluster and external-cluster. The communication latency in internal-cluster includes messages 

travelling in the intra-chip network (AC), inter-chip network (EC) and intra-cluster network (ACN) while 

messages travelling in an external-cluster communicate via two interconnection networks, the inter-cluster 

network (ECN) and multi-cluster network (MCN). Both clusters will be determined by four factors: 

1) Average waiting time at the source node 

2) Average transmission delay for a message to cross the networks 

3) Average time for the last packet of the message to reach its destination 

4) Average waiting time at transfer switch (external-cluster only) 

4. Results and Discussion 

In order to illustrate the feasibility and the accuracy of the simulation model, a set of experiments were 

conducted using several system configurations as listed in Table 1 and Table 2. Two different flow control 

mechanism are used to investigate the impact on interconnection network performance.  
 

Table 1. Simulation Input 
Items Quantity 

No. of cores (nc) 1, 2, 4 

Message Length (M) and Flit Length (F) 32 flits, 256 bytes 

No. of cluster, m-port n-tree 8, 8, 2 
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Fig. 3 and Fig. 5 depicts average message latency vs. traffic generation rate curve based on 

store-and-forward flow control from case I and case II while Fig. 4 and Fig. 6 shows average message 



  

 

Table 2. Interconnection Network Parameter 
Parameter Internal-cluster External-cluster 

Case I  Case II Case I Case II 

Network latency 0.01s 0.02s 0.02s 0.01s 

Switch latency 0.01s 0.01s 0.01s 0.05s 

Network Bandwidth 1000 b/s 800 b/s 500 b/s 600 b/s 
 

 
Fig. 3. Average message latency based on 

store-and-forward flow control. 

 
Fig. 4. Average message latency based on 

wormhole flow control. 

 

  

Fig. 5. Average message latency based on 

store-and-forward flow control. 

Fig. 6. Average message latency based on wormhole 

flow control. 

 

All the figures demonstrated that as the traffic increases, the contention latency begins to dominate and 

the vertical asymptotes of the latency curves are determined by the saturation throughputs of the different 

flow control mechanism. The increased contention causes the latency to increase as messages must wait for 

the buffers and channels. All figures also show that the traffic starts to saturate at about 50% of traffic rate 

capacity with single-core and dual-core processor but higher throughput is achieved with quad-core 

processors. Store-and-forward flow control fares better, improving the performance by almost 51% 

compared to wormhole flow control. While wormhole flow control performs better at light traffic, it does 

not achieve optimal throughput due to the probability of blocking happen while traversing the network. 

Generally, as the number of processor cores increases, the load allocation time increases, which can affect 

the pipelining of the router. The zero-load latency tends to increase and may slightly decrease the saturation 

throughput in the internal-cluster because of the additional time required to allocate the task into a number 
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of cores. The zero-load latency assumption is that a packet has never contended for network resources with 

other packets. It gives a lower bound on the average latency of a packet through the network. The fact that 

multiple messages can be in transmission and attempt to use the same network link at the same time will 

cause a problem in the network. If this problem happens, some of the message transmission must be 

blocked while other messages are allowed to proceed which affect the performance. Fig. 7 and Fig. 8 

demonstrate an average message latency in internal-cluster and external-cluster with the same system 

configuration as in Table 1 and Table 2 with single-core and multi-core processor. For the same traffic rate, 

both flow control mechanisms achieve lower latency in internal-cluster with single-core and dual-core 

processor, but the latency increases massively with quad-core processor due to higher message distribution 

in the internal-cluster as shown in Fig. 7. Since more messages can be loaded in internal-cluster with 

multi-core processors, the external-cluster latency decreases as in Fig. 6. 
 

 
Fig. 7. Average Message Latency in 

Internal-cluster. 

Fig. 8. Average Message Latency in 
External-cluster. 

 

5. Conclusions 

This paper has presented a new architecture for building and measuring the performance of 

interconnection networks in Multi-Core Multi-Cluster Architecture (MCMCA). The simulation models in this 

paper are general and applicable to predict the performance of a multi-core cluster. The experiments are 

produced based on two different flow control mechanisms to provide a comparative analysis of multi-core 

cluster architecture with a varying number of parameter and system configurations. Higher performance of 

large clusters can be achieved by optimizing the interconnection network communication. The choice of 

routing algorithm used in a network sets a limit on the achievable throughput and a lower-bound on the 

packet latency. The results show that the wormhole flow control performs better at light traffic, however it 

does not achieve optimal performance throughput. Though store-and-forward flow control produces larger 

latency, the saturation point is greater.  
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