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Abstract: According to the feedback information from a user in the result sets of initial or previous queries, 

we present in this paper a framework for processing recommender top-N queries in relational databases. 

Based on the techniques and ranking strategies of keyword search, this framework returns top-N results for 

an initial query given by the user. As soon as he or she selects some of the top-N results, the framework will 

find out related keywords from the result(s) selected by the user, calculate and modify corresponding weights 

of the related keywords. By using the weights, our framework determines new query words associated with 

the previous query to construct a recommender query. A knowledge base is created to store the related 

information of the tuples in the underlying database for evaluating the recommender query. The experimental 

results based on real datasets show the efficiency and effectiveness of our framework. 
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1. Introduction 

Based on the similarities between query words and data objects, Information Retrieval (IR) systems [1] by 

keyword search for unstructured data return the results that may not be the desired answers to a user, then 

he or she has to refine the query words to the system for several times. The methods for answering 

recommender queries are important in recommender systems [2]–[4], which are applied in many fields 

including books, news, research articles, live insurances, financial services, and so on. Traditional database 

systems [5] retrieve tuples through complex structured query language (SQL) and they support only pattern 

match of tuples with query conditions. The researches of keyword search in relational databases have been 

extensively studied since 2002 [6], [7]. For example, BANKS [6] and DISCOVER [7] are two systems that 

support keyword search in relational databases. They generate candidate tuple trees from multiple tables.   

The BANKS system [6] handles keyword search by using a directed graph, which includes a scheme graph 

and a data graph. In the data graph, each tuple is represented by a node, and each “Foreign Key-Primary Key” 

between two tuples in the database is represented by a directed edge. The data graph uses the heuristic 

algorithm to search for all information nodes. 

In [6], each candidate result tree has a relevance score, and every edge has a weight. Let W (e) be the 

weight of edge e, and N (v) be the weight of node v. The scoring function Score (J) for a candidate result tree J 

is as below: 
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In Equation (1),  is a constant, Escore(e) is the edge scoring function of an edge e, and Nscore(v) is the node 

scoring function of a node v; in Equation (2), Wmin is the minimum weight of edges in the directed graph; in 

Equation (3), Nmax is the maximum weight of nodes in the directed graph. 

DISCOVER [7] supports both AND- and OR- semantics queries. Each tuple returned by an AND-semantics 

query contains all query words, while the result by an OR-semantics query contains at least one query word. 

Based on the breadth-first search algorithm of the graph in [7], the DISCOVER system uses the enumeration 

algorithm to obtain candidate tuples, and the scoring function is defined by Equation (4) as follows: 

 

)(

),(
),(

PSize

qfScore
qPScore Ff i

i
                             (4) 

 

In Equation (4), q is a keyword query, P is the result set returned by q, F is the set of all attribute values of 

P, Size(P) is the number of objects in P, and Score(fi, q) is the scoring function with respect to the attribute fi 

and q. 

In [8], Hristidis et al. used directed graph to deal with keyword search with a simple ranking method to 

compute similarities. In [9], Liu et al. utilized the model of computing similarities in IR to compute 

similarities between a given query and answer trees in relational databases. 

Traditional information retrieval techniques are proposed to satisfy user’s requirements extensively. 

However, sometimes, the techniques of traditional IR systems cannot deal with user’s queries in different 

situations. A personalized search algorithm by using content-based filtering is presented in [10]. XML has 

been utilized widely in many applications, then lots of XML documents need to be managed in databases. In 

many applications where backend data sources are controlled by XML database management systems; 

therefore, keyword query is important if a user does not know the structure of the databases. BTP-Index, an 

XML index structure, is proposed in [11] for processing efficiently keyword queries in databases. 

Keyword search will be an important component for processing recommender top-N queries discussed in 

this paper. We invoke the main idea of the techniques with a knowledge base (or an index) introduced in the 

previous work [12]–[14], we improve the ranking strategy in IR as our similarity in ranking the candidate 

results, and we obtain top-N answers. We create a framework to process recommender top-N queries in 

relational databases. First, we establish a knowledge base that stores the related information of tuple words in 

the underlying database, cache and sort the optimal results of a query. Second, according to the words in the 

initial/previous query and the results selected by the user, our framework finds out the correlative keywords 

associated with initial/previous query words to construct a new query (i.e., recommender query), and the 

framework returns new top-N results with the new query for the user. Thus, we realize the processing of 

recommender top-N queries. 

2. Recommender Query Model 
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Assume that R is a relation with schema R(TID, A1, A2, …, Am), where TID is the tuple identifier, {A1, A2, …, 

Am} is the set of m text attributes, and |R| = n (the size of R, i.e., R includes n tuples). For a tuple tR and an 

attribute A {A1, A2, …, Am}, t[A] is the value of the tuple t under the text attribute A and consists of one or 

more English word(s), which is denoted by t[A] = (tw1, tw2,…, twk), where twi (1 i  k) is called a tuple word. 

For Qi = (qwi, wi) (1 i  h) in a keyword query Q = {Q1, Q2, …, Qh}, qwi is a query word, and wi is the weight 

corresponding qwi.   

2.1. Creation of Knowledge Base  

Based on the main ideas of the knowledge base of the tuple words described in [12]–[14], we create a 

knowledge base with Algorithm 1 to store the related information of English tuple words in the underlying 

database, and we build a framework by using the knowledge base to deal with recommender top-N queries. 

The knowledge base will be stored as an index table with schema KBTable(id#, word, size, DBValue), where 

id# is the primary key, word denotes the tuple word, and DBValue is a string with the form as “tid, cid, dl, tf, 

df;...; tid, cid, dl, tf, df;”. In DBValue, tid is the identifier of a tuple t containing the tuple word “word”, i.e., tid = 

t[TID], cid is the column identifier of the attribute A, dl is the number of English words (counting duplicate 

words) in the cell defined by tid and cid, tf is the number of occurrences of tuple word “word” in the cell with 

tid and cid, and df is the number of cells containing the tuple word “word” with cid. The attribute size means 

the number of nodes in DBValue, that is, the number of semicolons (“;”) in DBValue. We will not distinguish 

the terminologies “knowledge base” and “index” in the following discussion. Part of the index table KBTable is 

shown in Table 1. 

 

Table 1. Part of the Index Table 

id# word size DBValue 

… … … ... 
9356 Distilled 1 0060613998,1,12,1,1; 

9357 Daily 2 0060613998,1,12,1,2;0060926627,1,9,1,2; 

9358 Exposing 12 0060614803,1,18,1,12;0553076426,1,2,1,12;… 

… ... ... ... 

 

For the knowledge base, its index table will be built in three steps: 

1) Identify the relations, attributes and tuples to be unique in the underlying database. 

2) Normalize each tuple and eliminate the meaningless symbols, characters and stop words. 

3) For each tuple word twi, store its related information into KBTable. 
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Fig. 1. Structure of knowledge base. 

 

Being similar to the way of the previous work [13] dealing with Chinese keyword queries, the structure of 

the knowledge base is shown in Fig. 1, which consists of a Hash-table with hash function Hash(), a word-list 

and some db-lists. The process of creating our knowledge base needs three steps. (1) Normalize each tuple in 
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R. (2) For each tuple word twit[A], extract related information of twi from tuple t and create or update a list 

db-list. (3) Create or update the word-list and Hash-table. 

 

Algorithm 1 (Input: R, Output: KBTable)     /* creating the knowledge base */ 

1):  Initialize Hash-table and the list word-list; 

2):  Read each tuple t R, and each data item t[A] for each text attribute A{A1, A2, …, Am}; 

3):  For each data item of t[A] do 

4):    Normalization the data item;  

5):    Extract each tuple word twi from t[A], then obtain the related information(dl, tf, tid, cid) of twi; 

6):      For each tuple word twi of a data term do 

7):        Check whether twi is in word-list. If TRUE then update corresponding node of the tuple word 

twi in db-list by information of cid, dl, tf, df and tid. Else create node wi and Dij and insert 

them into word-list and db-list respectively. Update Hash-table if necessary;  

8):      End For 

9):   End For 

10):  Store the knowledge base into KBTable; 

 

2.2. Maintenance of Knowledge Base 

In order to make the query system work well, we need to maintain the knowledge base when the 

underlying database (or relation R) is modified. The modification of R may be regarded as one of the three 

basic operations including insertion, deletion, and update. Since an update can be decomposed as a deletion 

and an insertion, we consider only insertion and deletion operations of tuples with respect to the relation R. 

Assume that the tuple t is inserted into or deleted from R. 

Insertion: it is sufficient to repeat the process of creating our knowledge base with Algorithm 1 in Section 

2.1 for the tuple t, i.e., (1) normalize the tuple t; (2) for each tuple word twi from t[A], update the Hash-table, 

word-list, and db-lists if necessary; (3) update the corresponding rows or columns in the table KBTable. 

Deletion: (1) normalize the tuple t; (2) by using hash function Hash(), calculate the hash value Hash(twi) 

for each tuple word twi in t[A], find out the node in word-list and the db-list corresponding twi, then delete the 

node with tid = t[TID] in the db-list, and decrease the value of size by 1 in the node; if size = 0, delete the node 

from word-list and update the hash-table; (3) update the corresponding rows or columns in the table 

KBTable. 

2.3. Definition of Similarity 

Inspired by the ranking model in IR described in [1], we define the similarities between a query and tuples 

in order to rank the top-N answers. Let T = {t1, t2, …, tc} be the set of candidate tuples. For tT, and A{A1, 

A2, …, Am}, we have t[A] = (tw1, tw2,…, twk). Assume that Q = {Q1, Q2,…, Qh}, where Qi = (qwi, wi) (1 i  h), qwi 

is a query word, and wi is the weight corresponding qwi, then we obtain the similarity between Q and t by 

using Equations (5)-(8) as follows. 
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Equation (5) shows the similarity between Q and a candidate tuple t, which is the sum of similarities 

between t and QiQ (i=1, 2, …, h). For QiQ, Equation (6) is the similarity between Qi and t, i.e., the sum of 

similarities between t[A] and Qi for all A{A1, A2, ..., Am}. For an attribute A{A1, A2, …, Am}, Equation (7) 

calculates the similarity between Qi and t[A] by the inner product function, where wi is the weight of query 

word qwi in query Q, i.e., the wi in Qi = (qwi, wi). Component Sim(qwi, t[A]) computes the similarity for each 

query word qwi in the text attribute t[A]. Equation (8) is similar to the one of the most widely used weighting 

methods in IR [1], where n = |R| is the total number of tuples in R, s is a constant (usually set to 0.2), and avdl 

is the average number of words in tuples corresponding to the attribute.  

3. Query Processing 

The processing of recommender top-N queries includes two phases: (1) deal with free-form keyword 

search (or keyword query) as shown in Fig. 2, and (2) generate a new/recommender query if the user 

chooses some result(s) of the previous keyword search, and then go to phase (1). Fig. 3 illustrates the phase 

(2). 

We discuss the phase (1) firstly that deals with the top-N keyword query based on our knowledge base 

created in Section 2.1 and the similarity defined in Section 2.3. The process is illustrated in Fig. 2. 

 

 

 
Fig. 2. Keyword Query Processing. 

 

For a keyword query Q = {Q1, Q2, …, Qh} where Qi = (qwi, wi) (1 i h) with the query word qwi and weight 

wi. (1) Matching query word qwi and tuple words in our knowledge base by loading KBTable in the main 

memory, we obtain the set of identifiers and the related information of candidate tuples, denoted by T, and 

we compute the similarities between Q and its candidate tuples in T by using Equations (5)-(8) (in Section 

2.3) based on the related information (e.g., dl, tf, df). (2) Using the candidate tuple identifiers with N highest 
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similarities and other selection conditions, we generate the SQL selection statement(s) by the Execute Module 

in Fig. 2, and then retrieve top-N results from the underlying database via the relational database 

management system. (3) We display the ranked top-N answers. 

Next, we consider the evaluation of recommender query, and focus on the generation of recommender 

query, i.e., the new query Qnew in Fig. 3. 

 

 

Fig. 3. Generation of recommender query. 

 

After the user obtains the top-N results of a query Qold and chooses some one(s), based on the feedback 

information of the result(s) chosen by the user, our framework will find out the candidate query words from 

the chosen result(s), and recalculate/calculate weights of the query words of Qold and candidate query words. 

Using the weights, the query words of the recommender query Qnew are determined by the query words of 

Qold and candidate query words. Then, we evaluate the query Qnew by the process in Fig. 2, and return 

recommender top-N answers to the user. 

For the aim of efficiency and effectiveness, in the phase of generating and processing recommender query, 

we cache and sort query words with their weights as well as the top-N results of the queries, where the 

weights are crucial and are discussed in the following section. 

4. Weights of Query Words  

Due to the differences of semantic meaning in different attributes, usually, we need to define a weight of 

an attribute to indicate the importance of the attribute. When a user searches a book, for instance, the title of 

a book is more important than its publisher; therefore, the weight of attribute “Title” should be larger than 

that of attribute “Publisher”. Defining and sorting the weights (or Important factors) of different attributes, 

we get the weight set W = {I1, I2, …, Im} with Ii ≥ Ij (i > j) for the attribute set {A1, A2,..., Am}. 

For the initial query Q = {Q1, Q2, …, Qh} = {(qw1, wo1),  (qw2, wo2), …, (qw3, woh)}, let woi  =  1/h (1  i  h), 

where h is bounded (in our experiments, h is between 1 and 10) due to the fact that the average number of 

query words is not larger than 6.7 in practice [9]. According to the user's choice in the results of the 

initial/previous query, we find out each tuple word twi and calculate its weight weight(twi) by equation (9), 

which is related to two factors: (1) the nature of twi, i.e., its previous weight woi, or the attribute weight Ii, and 

(2) the appearance frequency of twi in the answers. 
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In equation (9), wi = max(woi, Ii) for the initial/previous weight woi, and attribute weight Ii in set W = {I1, 

I2, …, Im}; L is the number of returned results, and count(twi) is the number of tuple words twi appeared in the 

returned results if L > 0. If a query word qwi is not in the results, its weight wi does not change in equation (9). 

If twi appears in two or more attributes, we use the maximum weight in the set W. Then, we normalize and 

update all weights by the assignment statement (10). 

5. Experimental Analysis  

We use Windows XP, VC++ 6.0 and Microsoft SQL Server 2000 to carry out our experiments on a PC with 

Intel Core 2 Duo 2.8GHz and 2GB RAM. The database comes from a set of various kinds of English books, and 

stores the information of the books into the relation Book (id#, Title, Author, Publisher, Year), which contains 

270,946 tuples (i.e., books).  

For our experiments, the initial query contains two words selected randomly from the database. The 

workload has 70 recommender queries that are constructed by previous query words and the tuples selected 

from the results of the previous query according to the weights and the size of the new query. The 70 queries 

contain the values of “Title”, “Author” and/or “Publisher”, respectively. The workload contains seven 

categories of queries, i.e., (Title), (Author), (Publisher), (Title; Author), (Title; Publisher), (Author; Publisher), 

and (Title; Author; Publisher). Each category contains 10 queries, and the number of query words in each 

query is between 1 and 10. We group the queries according to their sizes, and report the arithmetic means 

of the elapsed times, recalls and precisions based on the queries in each group. For the elapsed time of a 

query, we report Index-Time and Result-Time respectively, where Index-Time is the elapse time of matching a 

query with the knowledge base/index, and Result-Time is time of retrieving tuples from the underlying 

database and other times. 

 
Fig. 4. Elapsed times of index. 

 
Fig. 5. Result-times for accessing database. 

 

As shown in Fig. 4, Index-Time varies from 30 milliseconds to 45 milliseconds; thus, our index is efficient. 

From Fig. 4, we can see that the four curves are (almost) independent of the queries and the number N (N = 

3, 10, 20, and 50); therefore, Index-Time is stable. 

As illustrated in Fig. 5, Result-Time is between 50 and 500 milliseconds. In most cases Result-Time is 

greater than Index-Time, because it requires more I/O cost than Index-Time by using SQL selection statements. 

The four curves are related to queries, but not to N (N = 3, 10, 20, and 50). The general tendency of curves is 

that more query words will spend more Result-Time, and increases almost linearly as the number of query 

words increases. 

We employ the measures recall and precision used in IR (Information Retrieval) to evaluate the 

effectiveness of our method in this paper. 

Fig. 6 illustrates the recalls of top-N results of recommender queries. From Fig. 6, we can see that recall 

shows increasing trend with the increase of N for each group of the queries, and the general tendency of 
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recalls decreases continuously with the increase of number of query words for the same N. The total average 

recalls are 0.19, 0.37, 0.50, and 0.63 for N = 3, 10, 20 and 50, respectively. 

 

 
Fig. 6. Recalls of recommender top-N queries. 

 
Fig. 7. Precisions of recommender top-N queries. 

 

Fig. 7 shows the precisions of top-N results of recommender queries. The precisions show the trend of 

decrease with the increase of N as showed in Fig. 7, i.e., a smaller N indicates more matching tuples appear in 

its top-N results. The total average precisions are 0.68, 0.56, 0.48, and 0.35 for N = 3, 10, 20, and 50 

respectively. 

6. Conclusions 

In this paper, we proposed a new method to realize keyword search for recommender top-N queries in a 

relation database. The method builds a knowledge base to store the related information of the tuples in the 

database, and improves the classic ranking strategy in Information Retrieval to calculate the similarity 

between a query and a candidate tuple as a ranking strategy. Given a keyword query by a user, the top-N 

answers are obtained based on the knowledge base and ranking strategy presented in this paper. Using the 

selected items by the user, our method finds new query words, and recalculates/calculates the weights. Then, 

a recommender top-N query is generated according to the weights by using the candidate tuple words and 

the initial query words. Extensive experiments are carried out to measure the performance of our method. 

For top-N (N = 3, 10, 20, and 50) queries with 1 to 10 query words, experimental results show that the 

Index-Times are between 30 and 45 milliseconds, and the Result-Times are from 50 to 500 milliseconds. 

Recalls are between 0.19 and 0.63, while precisions are from 0.35 to 0.68.  

The knowledge base (or index) is the key component in our framework. In the future, we plan to apply the 

mechanism of database access control in [15] and the idea of clustering algorithm in [16] to ameliorate our 

knowledge base, and we will optimize our algorithm for the weights of query words to improve the recalls 

and precisions of recommender queries. It would be interesting to consider that multiple candidate 

recommender queries are listed by using the auto complete techniques of the Textbox as described in [17], 

which will provide the conveniences for the users and increase the efficiency in refining the recommender 

queries. 
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