

A Complete Method Configuration Process for Configuring
Project-Specific Methods

Rinky Dwivedi*, Daya Gupta

Delhi Technological University, New Delhi, India.

* Corresponding author. Email: rinkydwivedi@gmail.com.
Manuscript submitted October 21, 2014; accepted March 8, 2015.
doi: 10.17706/jsw.10.5.599-615

Abstract: In this paper we are going to present our Method Configuration process in its generic form. A

Method Configuration process with respect to the instantiation of a Configurable Meta model and Method

configuration to the finest level of granularity has been envisaged in the present research. Emphasis is on a

different selection of method elements in the method component. Hence, it can act as a bridge between the

necessary focus on the method artifact and the project team during method engineering, which can improve

the use of methods during projects.

The ultimate goal is to facilitate the user by simplifying the tedious task of method configuration. For

information system domain, the knowledge of conceptual structures is combined for defining the

essentialities in a method. However for practical applications, the observations and demands form the basis

of defining the essentials in the domain. The customized method is formed by considering the purposes of

the artifacts chosen for the situated method and dependencies that need to be satisfied in configuring the

method.

For validation purpose, we use an atomic and a compound method as a case study object, but the

principles described should apply to a wide range of systems engineering methods since what we discuss

are general underpinning principles, not the method restricted as such.

Key words: Method configuration process, situational method engineering, variability, configurable meta
model, project characteristics.

1. Introduction

In the Past years variability is gaining importance in every aspect of software development, the notion

has also been extended in Situational Method Engineering (SME) science, as different method components

are stored in a method base or repository and used in a given situation in function of the project

characterization. The notion of variability is defined as the “ability of a software system to be changed,

customized or configured to a specific context” [1].
In SME domain, the term coined for variability is Method Configuration [2]. Configurability is a sub-

discipline to SME and has been formulated and proposed by Karlsson et al in [3]. They defined method

configuration task as a “means to adapt a particular method to various situated factors. The focus is thus on

one method as a base for configuration rather than on a set of methods as a base for assembly”. Further in

their later proposals they [4], [5] defined a high-level configurable construct for their method configuration

Journal of Software

599 Volume 10, Number 5, May 2015

process. The configurable concept proposed by them lacks the issues of genericity and granularity, to

overcome these constraints they propose the idea of combining activity theory and method engineering [6].

Since the previous proposals on method configuration centred on the one single base method, reduced the

scope of the method generation for every new project.

The task undertaken in this paper is to design a complete configuration methodology for information

system domain methods. One such proposal on Method Configuration has been attempted in [7], [8]. The

idea put forth and elaborated in this paper, in contrast with the previous approaches, that support one

single base method for the process, we rely on a method base of configurable method components of

distinct granularity. (By granularity we mean atomic methods or compound methods). The configurable

method components are the pre-made method configurations and are an efficient way to achieve genericity

and granularity. The difference between previous constructs and the proposed one is that it is capable

enough to support Essentiality in a method.The Essentiality attribute can take two values either common or

variable. Common are the non-configurable part of the method component and can be defined as the

essentiality in the method component, which if omitted method will lose its identity.

We use Conceptual Structure knowledge-introduced in [10] and further extended for generic Meta model

[11], as a deciding factor for the essentiality attribute in our proposal.

All the Meta concepts of configurable method component are supported by configurable Meta model that

is specially designed to suppress details during the Method Configuration process and to emphasize the

task of constructing the situated method. Our configuration process is supported by a tool support to make

efficient use of this approach

The main contribution of the present research is to solve following issues

 The design of a Meta model needs to model the concepts of a configured method.

 The second issue is what ‘good component’ is and what the ‘right granularity’ is.

 The third is regarding the Selection of a configurable method component for the situation –in-hand.

 Lastly, the complete process of configuration to reach coherent desired method.

The proposed method configuration process is supported by a method base of configurable method

components. The implementation of the process makes it possible to have an interactive method

configuration process where method user can construct a suitable situational method.

The paper is organized as: Section 2 foresees the related work on method configuration. Section 3

describes the configurable Meta model consistent with the generic Meta model. In Section 4 the macro level

architecture of Complete Configuration process is described. Section 5 proposes the design of a method

base, capable of residing configurable and configured method. In section 6, steps for complete method

configuration process are explained. The paper closes with the introduction of method extension process

which may be required to form situated method.

2. Related Work

It has now been proved that there is no universal method that can be applied to all projects since

different projects have different requirements [12], [13]. SME is a solution offered to the problem of the

selection of the “most appropriate” methodology for an organization and/or its projects [14].

There are number of proposals for developing project-specific methods such as Fragment-based

approach [15], [16], Contextual approach [16] and Graph, Object, Property, Role and Relationship (GOPRR)

approach [17]. All these approaches require instantiation of a complex Meta-model, where the concepts of a

method are made instances of meta-model concepts or inter-relationships. Gupta [9] had proposed a

method requirement specification language rooted in a simple meta-model i.e. Method View Model (MVM)

having only limited concepts thereby simplifying the task of instantiation.

Journal of Software

600 Volume 10, Number 5, May 2015

In recent times, the SME has been extended to include Method Configuration to construct a project-

specific method. During our research we come across some proposals on configurability in SME domain.

2.1. Method for Method Configuration (MMC)

The major proposal for method configuration is from Karlsson and Agerfalk [3], [4]; they proposed a

meta-method named MMC – Method for Method Configuration for configuration process. MMC takes the

Base method as method component or initial method for their process. The base method is subsequently

configured with respect to the project requirements defined in the form of development situations and

characteristics to form situation-specific method.

 MMC approach focuses on configuring a base method with respect to Configuration package and

Configuration template.

The process defined by them is as follows:-

1) Method component used in MMC framework is the base method. Base method is configured on basis

of development situations and characteristics use to elicit project development requirements.

2) If multiple development requirements exist, configured method is formed by configuration template.

Configuration template is generated by combining configuration packages.

3) The configured method is then adapted in accordance with the Project Situations to form Situational

Method.

The criteria for selecting base method is external to this approach therefore the issues such as the

selection of Base Method and the granularity of method component remain unanswered.

Later on Karlsson along with Wistrand [5], [6] extended the proposal by defining a conceptual construct

to facilitate the method engineer’s task of method configuration and termed it as “Method Component”.

Method Components are composed from method elements and can be configured to achieve an overall goal

on the basis of one or more project requirements. For future use a method rationale is also maintained

corresponding to each transformation. Each artifact is capable of taking recommended inputs called <pre-

requisites>. These inputs are then modified to deliver output. The modification is done on the specification

of <outcomes> or goals.

The process defined is as follows:-

2.1.1. Define the Input/output of a method component

Method component consists of artifacts, each artifact has a value either prerequisite or outcome.

Prerequisite are the inputs for the method component whereas output or deliverables are specified by the

outcome artifact.

2.1.2. Define the operations performed by the method component

Method components are configured to perform some specific operations. These operational

characteristics are defined by the Internal View of method component. Internal view defines the purposes

of a method component in the form of Actions, Goals, Method Elements, Actor roles etc.

Recently Rolland [19] proposed method configuration in the form of method families, these method

families are further surfaced to form a method line that ultimately results into a configured method the

proposal is in infancy stage and fails to give detailed process of configured method construction. These

proposals gave solutions to many issues, however issues like ‘right granularity’, ‘appropriateness of the

method being selected’ and ‘explicit representation of variability’ are still open.

 Above proposals are centered on a single base method configured to form situated method, this reduces

the scope of method generation for each new project and hence decrease the flexibility in the process.

2.2. Method Configuration In Respect to the Existing SME Approaches

Journal of Software

601 Volume 10, Number 5, May 2015

To position the method configuration process within the existing SME research we will first describe the

characteristics that can be used to compare different SME approaches. There are several aspects in which

SME approaches differ, but most notably are:

 Meta Model and its underlying principles

 Reusable building blocks

2.2.1. Meta model and its underlying principles

Meta-model (Meta-modeling) is the principal technique used for understanding, comparing and

evaluating methods. It is generally defined as a “model of models” [20]. Broadly, two types of information

are required to develop a meta-model: the structure of products and the procedures to produce the

products i.e. process. Reflecting the product-process dichotomy of methods, two types of meta-models have

been developed. The first of these are meta-data models for the product aspects of methods. Such models

introduce a system of concepts in which the static and data aspects of methods as well as constraints

defined in them can be represented. The second kind of meta-models deals with the process aspects of

methods; these meta-models are called meta-activity models and specify a system of concepts to define

tasks and task transition criteria. Next the need comes for coupling the product and process aspects of

methods, the contextual meta-model [17] and the decisional meta-model [9] have been proposed. The

contextual meta-model, context is defined as <situation, decision>, where decision reflects the choice the

application engineer makes in a situation. The decisional meta-model is process and paradigm independent,

it views a method as a set of decisions and dependencies between them together with a mechanism for

decision enactment. After these, the requirements moved towards the need of generic models, generic

models abstract out the common properties of meta-models. This results in a three-layer framework

consisting of the generic, meta-model and method layers capable enough of handling the link types between

the architectures [11].

The configurable Meta model presented in this proposal is engineered from generic model hence making

it an important proposal in the field. Since the generic concepts are entered in the configurable Meta model,

it makes sense to model a number of methods from it and after customization; a complete and consistent

situated method can be formed.

2.2.2.Reusable building blocks

SME reuses method components, which are the building blocks of development methods to create

situational methods in SME. The methods are built from small parts of existing methods i.e. smaller pieces

(e.g. fragments, patterns, components, chunks). Method fragment consists of process fragments and product

fragments. The process fragment describes the stage, activities and task whereas the product fragment

concerns the structure of a process product (diagrams, deliverables etc.). Further, method fragments

defined as "standard building blocks based on a coherent part of a method” [21]. A situational method can

be constructed by combining a number of method fragments.

A Pattern is described as “a problem which occurs over and over again in our environment and then

describes the core of the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing the same twice” [22]. It is necessary “to specialize the pattern and to fill the

abstract solution with additional information in order to meet the specific conditions of the actual case”

[23]. It is used to guide model based design of software. We can apply pattern for the issue at hand maps

with the general problem specification in particular pattern. For example, Analysis pattern which contains

the knowledge on how to appropriately represent a certain fact in requirement engineering.

A component provides the partial solution to a specific problem [25]. They are more concrete as

compared to the patterns and can be used without modification. Process building blocks are an example for

Journal of Software

602 Volume 10, Number 5, May 2015

model components. Researcher observed that components may also be specialized or configured before or

after aggregation. “Method components, the building blocks of SME, are development methods or any

coherent parts of them” [24].

“A method chunk represents a reusable building block for situation-driven method construction or

adaptation whereas a road-map represents a path in a method or a specific sequence of method chunks in a

method” [26].

In addition to above, many other existing method modules have been used as an input for analysis. The

aim of the analysis has been to determine the limitation of the current design and what changes are made in

order to transform it as a configurable method component. Subsequently, the analyses have focused on

configuring a configurable method component and adapt it for current organizational definition.

Our notion of configurable method is similar to the method chunk; it combines product and process

perspective into the same modelling component. The configurable method can be atomic, compound,

transformational and constructional besides these a new essentiality concept is added in the method that

transforms a method into configurable method.

3. Meta Model Supporting Method Configuration Process

In this section we are looking to fulfil our requirement of a configurable Meta model, which has the

properties of integrating the product and process aspects of methods and provides facility of ordering

method features. Therefore the class of product Meta models, process Meta models and contextual model

do not individually fit in to our requirement of the Meta model. Thus our choices are limited to decisional

and generic models only. We choose to modify decisional Meta model to develop configurable Meta model

since the decisional Meta model itself is an instantiation of generic model.

The fundamental part of the configurable meta-model is the configurable construct as a means to

facilitate efficient and rationally motivated modularization of systems development method.The

Configurable method supports a new attribute called Essentiality in the method. The Essentiality attribute

can take two values either common or variable. Common are ones which if omitted; the method will lose its

identity. So the variability in the proposal lies in the variable part of the method. Within a method, it is

possible for method blocks to be either common or variable. This is shown in the Fig. 1 by the essentiality

attribute of the method block.

Fig. 1. Configurable meta model.

A method block is an aggregate of Purpose and Approach. For simplicity, let us ignore the notion of an

approach. Thus a method block reduces to a purpose. Now, in a purpose, there is a structure part and an

operation part.

Purpose= <structure, operation>

Journal of Software

603 Volume 10, Number 5, May 2015

As we will see, the operation part is used to create, delete and modify the structure part and is given in

the Meta model. Thus, they are not configurable. The only configurability lies in the structure part. This

results in the purpose and consequently, the method block to be configurable.

In the rest of this section, we give a detailed description of Configurable Meta model. Configurable Meta

model treats method as a triple <MB, Dep, E> where MB is a set of method blocks, Dep is a set of

dependencies between these, and E is the enactment algorithm.

The Meta model is centered round MB and Dep. E is the procedure that exploits the given set of MB and

Dep to produce the product. The set Dep establishes dependencies between instances of method blocks.

Thus, if a method block is common then all dependencies in which it participates are relevant to the desired

method. However, if a method block is a variable and not included in the desired method then all

dependencies in which these variables participate are meaningless.

3.1. Structure

There are two kinds of structures, those whose instances can be created and destroyed by application

engineers and those whose instances are pre-defined. The former are called conceptual structures and the

latter are called fixed structures. Conceptual structures constitute the set of concepts in terms of which a

product is expressed. Fixed structures are those that are defined once and all for by a method engineer. An

example of fixed structure is a method constraint such as completeness and conformity which cannot be

created or destroyed by the application engineer.

3.1.1. Conceptual structures

Conceptual structures are partitioned into two dimensions. The first dimension classifies them as either

atomic or compound. The second dimension represents conceptual structures into disjoint classes of

structures called constraint, definitional, constructional, link, and collection of concepts respectively.

Simple constructional structures cannot be decomposed into other components. Links are conceptual

structures that are used to build collection of concepts from given concepts. For example ISA and

aggregation are links, as they build abstraction hierarchies. Collections of concepts are constructed

whenever constructional structures are connected by links. Aggregations, specialization hierarchies, and

subtype hierarchies are examples of collection of concepts. A collection of concepts is complex if it is

defined out of other collections. Definitional structures define the properties of conceptual structures.

Constraints impose application-related constraints on conceptual structures. The presence of the attribute,

essentiality, in configurable Meta model shows that conceptual structures are configurable.

3.1.2. Fixed structures

Fixed structures deal with the restrictions that are used to enforce quality of conceptual structures. They

are defined by the method engineer to help the application engineer in creating well defined and well

formed conceptual structures. In their simplest form, they are the method constraints of completeness,

consistency, conformity and fidelity. Similarly there are compositional constraints which are specified

between conceptual structures of the different simple component methods of a compound method. A

structure of one of these cannot compose any arbitrary structure of the other. Such composition is governed

by constraints that control the product resulting from the use of compound methods. The method engineer

defines these constraints at the time the compound method is defined. For example in UML, operation in

Class Diagram must be a use case in Use Case Diagram.

3.2. The Operation

The operations identify the set of process types that operate upon product types to provide product

manipulation and verification capability to application engineers.

Journal of Software

604 Volume 10, Number 5, May 2015

3.3. Dependencies

Method concepts (MCi) in a method are dependent upon one another. In generic model, these

dependencies are defined on two main properties namely, Urgency and Necessity (As shown in table

Urgency refers to the time during which the dependent method concept, MC2, is to be enacted. If MC2 is to

be enacted immediately after MC1 is enacted then this attribute takes on the value Immediate. If MC2 can be

enacted any time, immediately or at any later moment, after MC1 has been enacted, then urgency takes on

the value Deferred.

Necessity refers to whether or not the dependent method concept MC2 is necessarily to be enacted after

MC1 has been enacted. If it is necessary to enact MC2, then this attribute takes the value Must otherwise it

has the value Can. Combining these two properties, four possibilities as shown in Table1.

Table 1. Types of Dependencies
Dependency

Type
Urgency Necessity Abbreviation

1 Immediate Must IM
2 Immediate Can IC
3 Deferred Must DM
4 Deferred Can DC

In configurable Meta model, four kinds of dependencies are defined corresponding to the above

mentioned dependencies of generic model.

 Requirement dependency: Requirement dependency says that when a certain manipulation purpose

is performed, there must associate some constraints that have to be related with it. This corresponds

to dependency type 3 of generic model.

 Removal Dependency: removal dependency is the inverse of requirement dependency. It says that

when a certain manipulation purpose is performed then there are certain purposes that are not to be

performed. This corresponds to dependency type 1 of generic model.

 Activate dependency: It says that a purpose activates other purpose. The activate dependency is of

type 4 of generic model.

 Inactivate dependency: Inactivate dependency is the inverse of the activate dependency. It says that

when a certain manipulation purpose is performed then there are certain manipulation purposes

that cannot be performed. , inactivate dependency is of type 1.

As stated above, our Configurable Meta model supports methods as Configurable Methods. We define the

configurable method “as an abstraction of method that identifies the essentiality of the method concepts

and its relationships”. The crucial part of this definition is the ‘essentiality of the method concepts’. For our

process, we accomplish this by using Conceptual structure knowledge. Conceptual structures are classified

in seven categories viz simple definitional, complex definitional, simple constructional, complex

constructional, simple collection of concepts, complex collection of concepts and links. The detailed

discussion on conceptual structures has been presented in our previous research [8]. The simple

definitional and simple constructions are basic building blocks of a method; hence considered them as

common in our proposal. The rest of the structures are considered as variables. The identification is done

on the knowledge and judgment of method engineers, who are practically working with many methods in

different organizations moreover their feedback and knowledge of the method-in –action is used to enrich

the method base.

Entity- Relationship(ER)[27] method expressed in configurable Meta model (Atomic Method)

3.4. Method Nature Part

Journal of Software

605 Volume 10, Number 5, May 2015

 Describes the method name and method characteristics

Method Name (12 characters) <ER method>

Method Type (Atomic/Compound) <Atomic>

Method Nature (Constructional/Transformational)

<Constructional>

Method Application (Data/Process/Behaviour Oriented) <Data Oriented>

Method life cycle (Requirement/Design/Testing/Complete life cycle)

<Design Phase>

3.5. Method Conceptual Model

Method conceptual model stores the method concepts, instantiation of conceptual structures and

essentiality of each method concept in a method. Since atomic method belongs to one product model only,

there is single conceptual model for each atomic method.

<Concept Name> : <Type> <Essentiality>

<Entity>: <Simple Constructional>

 <Common >

<Relationship>: <Simple Constructional> <Common>

<Cardinality>: <Simple Definitional> <Common>

<Primary Key>: <Complex Definitional> <Variable>

<Attribute> : <Complex Definitional> <Variable>

<Multiplicity of Attribute>: <Complex Definitional><Variable>

<Role>: <Simple Definitional>

<Common>

<Functionality>: <Simple Definitional> <Common>

<N-ary Relationships>: <Complex Constructional> <Variable>

3.6. Method Purposes and Dependencies

Along with the method nature part and method conceptual part, purposes and dependencies in the

method are also stored.

<Purpose>: <Basic life cycle, Relational, Constraint Enforcement>

<Dependencies>: <Activate, Requirement, Inactivate, Removal>

Unified Modeling Language [28,29] expressed in configurable Meta model (Compound Method)

3.7. Method Nature Part

Method Nature Part describes method name and method characteristics of the method. In compound

methods, method nature part also defines the method components within the method

Method Name (12 characters) <UML method>

Method Type (Atomic/Compound) <Compound>

Method Components < Class Diagram, Use Case Diagram, Sequence Diagram, Collaboration Diagram, State

Chart Diagram, Component Diagram, Deployment diagram, activity diagram, object diagram>

Method Nature (Constructional/Transformational)

<Transformational>

Method Application (Data/Process/Behaviour oriented)

<Process Oriented>

Method life cycle (Requirement/Design/Testing/Complete life cycle)

<Design Phase>

Journal of Software

606 Volume 10, Number 5, May 2015

3.8. Method Component Model

Since compound methods consist of more than one product model, they need a separate component

model to be well expressed. Method component model of compound methods stores the entire set of

method components together with their essentiality. For each compound method a separate component

model is designed.

 <Component Name>: <Essentiality>

 < Class Diagram> :< Common>

< Use Case Diagram>: <Common>

<Sequence Diagram>: <Variable>

< Collaboration Diagram> :< Variable>

< State Chart Diagram> : < Variable>

<Component Diagram>: <Variable>

<Deployment diagram>: <Variable>

<Activity diagram>: <Variable>

3.9. Method Conceptual Model(s)

Since compound methods composed of more than one method components, there is a separate

conceptual model for each method component defined in the component model. Following is the method

conceptual model for component Class Diagram.

<Concept Name> : <Type> <Essentiality>

<Class> :< Simple Constructional> < Common>

<Data_type :< Simple Definitional> <Common>

<Association>: <Complex Constructional > <Variable>

<Aggregation>: <Simple Collection of concepts > < Variable>

<Operation>: < Complex Definitional> <Variable>

<Generalization>: <Simple Collection of Concepts> < Variable>

<Generalization_link> : < Link> <Variable>

<Aggregation_link> : <Link > < Variable>

<Cardinality>: < Simple Definitional>

 < Common>

<Degree of association>: <Complex Definitional > < Variable>

<Multiplicity>: < Complex Definitional>

 < Variable>

UML has eight components in the method component model consequently eight conceptual models are

needed to express complete UML in configurable Meta model

3.10. Method Purposes and Dependencies

Purposes and dependencies for each conceptual model are defined. In case of compound methods,

together with the operations available in the atomic method, a separate class of operations is also defined.

The class is named as Integration class and it deals with the structure belonging to different product models

of the compound method.

<Purpose>: <Basic life cycle, Relational, Integration class, Constraint Enforcement, >

<Dependencies>: <Activate, Requirement, Inactivate, Removal>

4. Method Configuration Architecture

The Macro level architecture that gives the flavor of our whole process is shown in figure2.

Journal of Software

607 Volume 10, Number 5, May 2015

Fig. 2. Macro level architecture of method configuration process.

Our idea behind Method configuration process is as follows: The desired method is built around each

project-in-hand. The project characteristics are gathered from current project situations. These project

characteristics are used to retrieve methods from the method base. In our process, method base is formed

by collecting configurable methods. The Configurable method has property of essentiality which consists of

two attributes i.e. common and variable. The configurability in our proposal lies in the variable attribute of

the method. In the method implementation stage the variables meeting the project requirements will be

kept and redundant variables will be omitted resulting in formation of desired method. If the configured

method formed is not the method to-be, the Method Extension activity is required to be carried out.

Therefore in the Method configuration process we propose the method extension as an optional activity.

5. Method Base

Method configuration process proposed by us is centered on method base. Availability of a rich method

base is probably the most important prerequisite for the method configuration process. It is a formal

representation of how a configurable method is stored. The construction of a method base is a crucial

activity as it presents the foundation for creating the desired methods and thus has to be done prior to the

process starts.

5.1. Design of the Method Base

The method base is designed in two parts Method Configurable Part (MCP) and Method Implementation

Part (MIP). Configurable methods are stored in MCP; from MCP these methods are retrieved and configured

to form desired method. The method structure stored for both atomic and compound methods in MCP is

described in Section 3. Here we will focus on Method Implementation Part, MIP stores the configured

methods formed from actual methods for future reuse.

Method Implementation Part for Atomic methods

Following is the configured method formed (ERconf) from ER method having only Single valued attribute

and Binary relationships. To form ERconf the product entities <n-ary relationship> and <multivalued

Journal of Software

608 Volume 10, Number 5, May 2015

attribute> will remove from the Method conceptual Model of ER and the purposes and dependencies are

modified accordingly. ERconf is stored in MIP as

ERconf stored in Method Implementation Part

Method Conceptual Model

<Entity>: <Common>

<Relationship> :< Common>

<Cardinality>: <Common>

<Primary Key>: <Variable>

<Attribute> : <Variable>

<Role>: <Common>

<Functionality>: <Common>

Method Purposes and dependencies:

In the configured method, some method concepts have been neglected and are not becoming the part of

the desired method, consequently, purposes and dependencies of the original conceptual model shall be

engineered to form the coherent method. The method formed is then stored in the MIP of the method base.

Engineering process for atomic methods will be discussed in Section 6.

Method Implementation Part for Compound methods

Following is the configured method formed UMLconf from UML method having only two atomic methods

Class Diagram and Use Case Diagram. UMLconf is stored in MIP as

Method Component Model

 < Class Diagram>

< Use Case Diagram>

Method Conceptual Model(s)

<Conceptual Model of class diagram>

<Conceptual Model of Use Case Diagram>

Method Purposes and dependencies:

In the configured method, some method components have been neglected and are not becoming the part

of the desired method, consequently, purposes and dependencies of the original component model shall be

engineered to form the coherent method. The method formed is then stored in the MIP of the method base.

Engineering process for compound methods will be discussed in section 6.

5.2. Operations on Method Base

The basic notions of storage and retrieval from the method base are formalized by defining two operators:

the storage operator (for storing the configurable and configured methods in the method base) denoted by

‘store’ and the retrieve operator for the retrieval of methods denoted by ‘retrieve’. The former, as its name

implies, stores a method Mi in the method base. The method stored in the method base exists in two forms:

 Store a new configurable method: Here a new configurable method is stored in the Configurable

method part of the method base. The new method stored is completely defined by method nature

part, conceptual and component model and purposes and dependencies of the method.

Store (Mi) = MCP of Method Base.

 Store a configured method: After the method configuration process, the configured method formed

will again store in the Method Implementation part of the method base. The configured method is an

implementation of configurable method stored in the CMB of the method base, the method structure

of the configured method comprises of modified conceptual and component model along with the

modified set of purposes and dependencies.

Journal of Software

609 Volume 10, Number 5, May 2015

Store (Miconf) = MIP of Method Base.

The ‘retrieve’ operator used to retrieve methods from method base based on the project characteristics of

the project in hand.

Retrieve (Project Characteristics) =Method Mi from method base.

The retrieved method is in the form of configurable method, and has to be configured to form situated

method. In the next section we will the detail process of method configuration.

6. Developing Configured Method

The process of Method Configuration is depicted in the Fig. 3

Fig. 3. Method configuration process.

The situation of SME can be conceptualized in many ways, as descriptors [16], contingency factors [30],

project factors [15], context type [25] and project type [31],[32] and project manager/ method engineer can

assign should be able to determine the situation to these factors by assigning values. All these factors are

considered to define the project situation or development situation. In the step 1, the situation is gathered

in the form project characteristics defined by any of the above mentioned process. For example, the project

characteristics are specified as method type=atomic, Method Nature=Constructional, Method

Application=Data Oriented and Method Life Cycle=Design Phase. The proposal contained in this paper has

been used to design a computerized tool to capture project requirements, retrieve configurable method and

Journal of Software

610 Volume 10, Number 5, May 2015

to facilitate the method-user to perform method configuration, hence bridging the gap between end users

understanding and method engineer’s expectations from a situational method.

The tool has been developed, and has proved useful with an understanding that it is possible for the

method users to actively participate and construct suitable situational methods if they were provided with

appropriate high-level modeling concepts, such as configurable method component. The project

characteristics are used to retrieve configurable method by matching the method characteristics stored in

the method nature part of the method base (refer Section 3) in the second step. The method so retrieved

can be atomic or compound. The atomic methods by definition consist of only one method component and

belong to one product model only. On the other hand, compound method composed of other atomic

methods or method components.

As stated above, method requirements are complex in nature and there cannot exist only one set of

requirements, rather several sets of requirements exists anchored in the views of different stakeholders

with different interests. In step 3, method constitute are decided, decision is done on the basis of the

requirement of the redundant product entities for the project-in-hand. The method retrieved from step 2

can be atomic or compound, decision on constitutes varies accordingly. In atomic methods the method

concept can have the property of essentiality or redundancy at its conceptual level that is the lowest level of

granularity. Whereas in a compound method, the essentiality is defined at two levels of granularity: The

method component level and the method conceptual level. This simply reflects the change in the

composition of the selected method. However this negotiation of the composition is done in the method

configuration process. The choices are indicated through the selection of the variables, either to add to or

suppress them from situational method. Suppose, from the above configurable method, method user need

to build ERconf having only single valued attribute and only binary relationship. The configurable method is

varied accordingly, and the set of purposes and dependencies are modified, and the modified method is

build automatically.

Since, some product entities have been neglected and do not constitute the final product, the Purposes

and Dependencies of the original method shall be engineered to form the desired coherent method. For our

configuration process, the operation is performed by Development Engine part shown. Again, the

complexity of process depends upon the method type. In an atomic method, method conceptual model is

engineered to form desired method. On the other hand in compound methods both method component

model and method conceptual models are engineered to form desired method.

6.1. Engineering Configured Method from Atomic Methods

The algorithms for engineering the atomic and compound methods are relatively simple. It starts with the

all elements in the method conceptual model and ends when there is no link left that would connect the

current excluded variable with any other element.

PROCEDURE engineering atomic method (cm, si)

// cm-conceptual model, si-set of elements in cm, si=<Ei or Vi>

// Ei-method concepts with essentiality as common.

// Vi -method concepts with essentiality as variable.

//Exclusion of a product entity Vi requires the following deletion to be done in the chunk of purposes and

dependencies generated at the time of method creation.

Begin:

Find all the purposes (pi) where Vi participates

For all pi

 delete < Vi, forward purpose> and delete < Vi, inverse purpose>

Find all fixed structure (fi) where Vi participates as a sub-concept or as a super concept

Journal of Software

611 Volume 10, Number 5, May 2015

 delete < Vi, {completeness, conformity and fidelity}>

// when a project specific method is created using the algorithm above, the dependency list should be

checked for the completeness and coherency of the method formed.

For each deleted purpose pi

Check

{ Deletion of a purpose deactivates its inverse.

Deletion of a purpose requires the deletion of all its method constraint and completeness purposes for all

its super-concept as well as the method constraint fidelity purposes for all its sub-concept.

 }

For each deleted variable Vi

Check

 {

If a product entity is deleted, all the purposes activated as a result of its creation become inactivated.

 }

END

6.2. Engineering configured method from Compound methods

The process is defined for compound methods. Compound methods are composed of method

components. These components along with their essentiality are defined in method component model. The

input to the process is the method component model that contains the set of method components along

with essentiality property.

PROCEDURE engineering compound method (mc, si)

// mc-component model, si -set of elements in mc, si=< Ei or Vi >

// Ei -method components with essentiality as common.

// Vi -method components with essentiality as variable.

// Method components in a compound method communicate with each other through the operations

defined in the Integration class.

/*These operations are represented by a triplet, < Vi, MCi, O> where, Vi is the variable method component

to be excluded, MCi is the method component to which Vi is communicating and O is the communicating

operation. */

Begin:

//Disable all communication coming-In and Out from the dispensable method component.

For each deleted variable Vi

Disable

{

< Vi, MCi, export> and its inverse < Vi, MCi, withdraw>

 < Vi, MCi, import> and its inverse < Vi, MCi, dump>

 < Vi, MCi, correspond> and its inverse < Vi, MCi, seperate>

 < Vi, MCi, convert> and its inverse < Vi, MCi, deconvert>

}

END

7. Method Extension

Journal of Software

612 Volume 10, Number 5, May 2015

Our approach for method configuration consists of one basic process i.e. method configuration and one

extended process i.e. method extension. We propose that the configuration process is the essential to the

process and method extension should be attempted only when configurability fails to deliver the desired

method. The failure can happen if a method concept is missing to make a complete desired method.

During method extension, the method engineer selects and integrates the missing product entities to

form the desired method. For method extension, we consider the external view of the method that

represents only the functionality of the method.

The new product entity must enter into the chunk of purposes i.e. Basic life cycle purpose, Relational

purpose, Constraint Enforcement Purpose and Integration class purposes. Since the set of purposes get

modified the dependencies and the constraints have to mutate accordingly.

8. Discussion and Conclusion

Presently the methods used for software development are not situation specific and does not adapt to the

requirements of given project. This issue has been raised for a long time leading to several proposed

solutions to make the methods more situation specific and suiting to requirements of the project. The most

of these solutions are proposed by method engineers after continued research. However, very few of them

have been practically implemented in bits and pieces. Our current research presents an approach for

situation specific software development method popularly known as Method configuration approaches.

Though our approach is based on established method engineering principals, the effort is to reduce the

impact of difficulties.

Method configuration in this paper has been treated as a specific kind of situational method engineering.

A Method Configuration process with respect to the instantiation of a Configurable Meta model and Method

configuration to the finest level of granularity has been envisaged in the present research. The fundamental

part of the configurable meta-model is the configurable construct as a means to facilitate efficient and

rationally motivated modularization of systems development method. The benefits of using the configurable

method component is that the process can be performed more efficiently since pre-configured components

are available and can be used over and over again. Hence, there is no need to perform a complete

configuration for each new project.

The Configurable method supports a new attribute called Essentiality in the method. The Essentiality

attribute can take two values either common or variable. Common are the non-configurable part of the

method component and Commonality can be defined as the essentiality in the method component which if

omit method will lose its identity.

The research work is based on the assumptions that it is possible to elicit situational characteristics for

the situation in hand by means of any of the previous approaches proposed.

Since the proposed configuration process does not rely on a complex query language for administrating

and retrieval of methods. The decreased complexity improves possibilities to perform method configuration

process interactively with method users. The reusability advantage is obvious since pre-made

configurations can be used over and over again. Hence, there is no need to perform a complete method

configuration for each new project.

Our future work will concentrate on method extension process -How the individual configured methods

can be assembled to form situated methods? Basically, it will show the storage and retrieval of the new

product entities. The procedure for engineering new extended configured method formed and structures it

as a desired coherent method.

References

Journal of Software

613 Volume 10, Number 5, May 2015

[1] Van, G. J. (2000). Variability in software systems the key to software reuse. Licentiate Thesis, University

of Groningen, Sweden.

[2] Henderson, B. S., & Ralyte, J. (2010). Situational method engineering: State-of-the-art review. Journal of

Universal Computer Science, 16(3), 424-478.

[3] Karlsson, F. & Ågerfalk, P. J. (2004). Method configuration: Adapting to situational characteristics while

creating reusable assets. Information and Software Technology, 46(9), 619-633.

[4] Karlsson, F., & Agerfalk, P. J. (2012). MC Sandbox: Devising a tool for method-user-centered method

configuration. Information and Software Technology, 54, 501-516.

[5] Wistrand, K., & Karlsson, F. (2004). Method components–Rationale revealed. Proceedings of the

Advanced Information Systems Engineering 16thInternational Conference.

[6] Karlsson, F., & Wistrand, K. (2006). Combining method engineering with activity theory: Theoretical

grounding of the method component concept. European Journal of Information Systems, 15, 82-90.

[7] Gupta, D., & Dwivedi, R. (2012). Method configuration from situational method engineering. Software

Engineering Notes, 37(3), 1-11.

[8] Gupta, D., & Dwivedi, R. (2012). A step towards method configuration from situational method

engineering. Software engineering: An International Journal (SEIJ), 2(1), 51-59.

[9] Gupta, D., & Prakash, N. (2001). Engineering methods from their requirements specification.

Requirements Engineering Journal, 6, 135–160.

[10] Prakash, N. (1997). Towards a formal definition of a method. Requirements Engineering Journal, 2(1),

23-50.

[11] Prakash, N. (2000). On generic method models. Requirements Engineering Journal, 11(4), 221-237.

[12] Glass, R. L. (2000). Process diversity and a computing old wives’/husbands. IEEE Software, 17(4), 128-

127.

[13] Glass, R. L. (2004). Matching methodology to problem domain. Communications of the ACM, 47(5), 19-

21.

[14] Ralyté, J., Brinkkemper, S., & Sellers, B. H. (2007). Situational method engineering: Fundamentals and

experiences. Proceedings of the IFIP WG 8.1 Working Conference.

[15] Harmsen, F., & Brinkkemper, S. (1995). Description and manipulation of method fragments for method

assembly. Proceedings of the Workshop on Management of Software Projects.

[16] Harmsen, A. F., Brinkkemper, S., & Oei, H. (1994). Situational method engineering for information

systems projects. Proceedings of the IFIP WG8.1 Working Conference Cris.

[17] Rolland, C., & Prakash, N. (1996). A proposal for context-specific method engineering. Proceedings of

IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering.

[18] Kelly, S., Lyytinen, K., & Rossi, M. (1996). Metaedit+: A fully configurable multi-user and multi-tool case

and came environment. Proceedings of the 8th Conf. on Advanced Information Systems Engineering.

[19] Rolland, C. (2009). Method engineering: Towards methods as services. Software Process Improvement

and Practice, 14(3), 143-164.

[20] Rony, F. (2002). Metamodeling in EIA/CDIF-meta-metamodel and metamodel. ACM Trans. Model.

Comput. Simul, 12(4), 322-342.

[21] Ågerfalk, P. J., Sjaak, B., Cesar, G. P., Brian, H. S., Fredrik, K., Steven, K., & Jolita, R. (2007). Modularization

constructs in method engineering: Towards common ground, situational method engineering.

[22] Tran, H. N., Boulette, B., & Dong, B. T. (2005). A classification of process patterns. Proceedings of the

International Conference on Software Development.

[23] Becker, J., Knackstedt, R., Pfeiffer, D., & Janiesch, C. (2007). Configurative method engineering-on the

applicability of reference modeling mechanisms in method engineering. Proceedings of the Americas

Journal of Software

614 Volume 10, Number 5, May 2015

Conference on Information Systems (AMCIS 2007).

[24] Anat, A., Iris, R. B. (2011). Semi-automatic composition of situational methods. Journal Database Manag,

22(4), 1-29.

[25] Denecker, R., Kornyshova, E., & Bruno, C. (2010). Contextualization of method components.

Proceedings of the 4th IEEE International Conference on Research Challenges in Information Science (pp.

235-246).

[26] Iacovelli, A., Carine, S., & Rolland, C. (2008). Method as a Service (MaaS).

[27] Chen, P. P. (1983). A preliminary framework for entity relationship diagram, Information modelling and

analysis. Elsevier science publisher.

[28] Booch, G. (2006). Object oriented analysis and design.

[29] Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modelling reference manual.

[30] Slooten, K. V. (1995). Situated methods for systems development, dissertation. University of Twente.

[31] Bucher, T. et al. (2007). Situational method engineering–On the differentiation of "context" and "project

Type".

[32] Bucher, T., & Winter, R. (2008). Dissemination and importance of the "method" artifact in the context of

design research for information systems. Proceedings of the third International Conference on Design

Science Research in Information Systems and Technology.

Rinky Dwivedi has received the B.Tech. degree in computer science from Guru Gobind

Singh Indraprastha University, Delhi, India and received the M.E. degree from Delhi College

of Engineering, Delhi, India. She is now pursuing PhD from Delhi Technological University,

Delhi India. Her areas of interests include method configuration, software methodologies

and Agile Methods.

Daya Gupta is a professor in the Department of Computer Engineering, Delhi

Technological University New Delhi, India. She has done M.Sc. Post M.Sc. (computers Sc.)

from IIT, Delhi, and PhD from Delhi University. She is a senior member of IEEE and a life

member of CSI. Her research interests are requirement engineering, method engineering,

information security, image characterization and software estimation. She has published

several research papers in international journals and conferences and has chaired sessions and delivered

invited talks at many national and international conferences.

Journal of Software

615 Volume 10, Number 5, May 2015

