

A Systematic Review on Regression Testing for
Web-Based Applications

Anis Zarrad*

Department of Computer Science and Information Systems, Prince Sultan University, Riyadh, Saudi Arabia.

* Corresponding author. Tel.: +966114948531; email: azarrad@psu.edu.sa
Manuscript submitted December 12, 2014; accepted April 16, 2015.
doi: 10.17706/jsw.10.8.971-990

Abstract: Web-based applications and their underlying parts are growing rapidly to offer services over the

internet around the world. Web applications play critical roles in various areas such as community

development, business, academic, sciences etc. Therefore their correctness and reliability become

important factors with each succeeding release. Regression testing is an important means to ensure such

factors for every new released version. Regression testing is a verification process to discover the impact of

changes in other interconnected modules. With the goal of selecting an appropriate regression testing

approach to respond adequately to any changes in Web applications, we conduct a complete systematic

study of regression testing techniques in Web applications. Out of 64, we identified a total of 22 papers

reporting experiments and case studies. We present a qualitative analysis for used tools, an overview of test

case section techniques and empirical study evaluation for every selected work. No approaches were found

clearly superior to other since results depend on many varying factors and the deployment environments.

We identified the need of evidences where approaches are evaluated cost effective rather than technical

description.

Key words: Regressing testing, web-based application testing, empirical study, test set, software testing.

1. Introduction

In today’s scenario, as the world became global and with the advent of internet technologies, Web-based

applications become more effective manner for enterprises, and academic entities to produce business

strategies and policies. Web applications help you to gain information, collect data and to find out anything

you want. The development of Web-based application differs from the traditional software development

cycle; due to the heterogeneous and dynamic nature of the such application, where their components

are built on different technologies and protocols like JSP, JS, PHP, XML, ODBC, JDBC, CSS, HTML5, HTTP

etc… as well as the necessity to maintained regularly by different developers around the world. As a

consequence error-prone is very high when maintenance is required. Therefore, efficient regression testing

is an important issue, even crucial, for organizations/enterprises to ensure correctness, and reliability of

Web components in new released versions.

Regression Testing involves a re-testing approach of system components and guarantee that any

modification have not caused unintended system functioning. For that there is a need to re-use test cases

already created in previous release and compare expected results with previous ones. Chittimalli et al. [1]

indicate that regression testing takes more than 80% of the total testing budget and more than 50% of

software maintenance cost is employed on testing. Regression testing is a well investigated field in software

Journal of Software

971 Volume 10, Number 8, August 2015

engineering community. Authors in [2]-[4] suggested more than 200 papers presenting various techniques,

tools, and surveys about regression Testing (RT). A comprehensive survey study was presented in [4].

While regression testing has been received a great deal of research effort in many software domains such as

test case selection based on code changes [5]-[9] and specification changes [10]-[12], regression testing for

database applications [13]-[15] , and regression testing for GUI [16], [17], contrary regression testing for

Web applications has received relatively limited attention from testing research community [18]-[20].

The main purpose of our systematic literature review is to identify the most influential and creative

techniques for Web application regression testing; justify why those techniques are so important for RT,

and how can we properly use those techniques in Web applications. Also, we investigate the tools proposed

and their efficiency in RT evaluation approaches. We presented the contents and structure of this

systematic review report following Kitchenham's method [21].

The paper is structured as follows: Section 2 introduces regression testing in Web applications and their

importance. Section 3 overviews the research methodology and research questions including Data sources,

search strategy, and selection criteria. Section 4 summarizes research works on regression testing for Web

applications, the results and evaluation findings. Section 5 discusses the unresolved problem, and the area

of success in regression testing for Web applications. Finally, the paper concludes in Section 6.

2. Regression Testing in Web-Based Applications

The general topic regression testing was first presented in paper conference in June 1972 at the

inaugural software testing conference in North Carolina [22]. Hartmann [23] chronicled the journey of

regression test selection over the past thirty years with most important milestones in its development

process. Early references to regression testing can be found in [23], [24]. In 1981 Fischer et al. [25]

suggested a general approach for regression testing using linear equations to define the relationships

between test cases and basic blocks (single-entry, single-exit sequences of statements in a procedure). The

proposed approach is applicable to static web application.

Testing Web application’s components after integration is vital for quality assurance and maintenance

purposes. Regression testing is one of important testing techniques to discover failures and defects in

multiple released versions. According to [26] regression testing is defined as a verification process to

ensure that previously functioning components are unaffected after rewriting and or modifying code.

2.1. Process of Regression Testing in Web Application

The process of regression testing for Web application can be defined as follow:

Version 1

1. Develop web application – WA1

2. Test WA with a required test set S1

3. Evaluate test results

4. Release WA1

Once a modification is required (Version 2 – WA2) a regression testing is needed.

Version 2 – New release

1. Modify WA1 into WA2

2. Test WA2 for new functionalities

3. Perform regression testing on WA2 to ensure that the code carried over from WP1 was not

affected

 and run correctly

Journal of Software

972 Volume 10, Number 8, August 2015

 Test Case minimization: Identify a test set S2 derived from S1

 Run S2 and evaluate test results

 4. Release WA2

The regression testing is an iterative process and can undergo as long as we have a new release for a

specific Web application.

2.2. Importance of Regression Testing in Web Applications

The reader will notice that starting from 2005; the number of publications related to RT in Web

application is increased. An explanation of this phenomenon is related to the appearance of new Web

technologies such as AJX, HTML5, PHP, JSP, and ASP.net; to develop fast and dynamic Web pages. Web

application development becomes an easy task. Therefore, the frequency of Web maintenance process is

increased and need to re-test the application in cost effective way to ensure quality for new releases.

Contrary to static Web where change takes effect only when Web developer updates and publishes the file

again in the server.

Regression testing for Web applications must be cost effective, efficient and low time consuming testing

techniques. In [27] authors mentioned three main reasons for testing Web applications; (1) to ensure that

the expected software can run smooth on different Web browsers, and various operating systems. (2)

Maintaining the security and protection from unauthorized access. (3) Verification process to ensure that

navigation functions based on hyper-textual links are not affected. To increase Web application quality in

practice, regression testing must be applied in accordance with functionalities updates.

3. Research Methodology

This systematic review follows the protocol proposed by Kitchenham [21]. In this section we first

introduced the research questions. Then we discussed libraries, search string, and the selection approach

used in this study.

3.1. Research Questions

The objective of this research is to better understand regression testing approaches in Web application,

characterize the approaches proposed in the literature, the tools efficiency and adopted experiments

methods. The research questions are divided into two main categories:

1) General Research questions (GQ)

a) GQ1: What is regression testing (RT)?

b) GQ2: What is the Importance of RT in Web applications?

2) Focused Research questions (FQ)

a) FQ1: What techniques and methods are used in RT?

b) FQ2: How efficient are the used tools in Web applications RT?

c) FQ3: How evaluation approaches are carried? Empirically evaluated?

d) FQ4: What are the best practices in Web applications RT?

e) FQ5: What are the limitations of Web applications RT?

f) FQ6: What are the future scopes of RT techniques?

General questions (GQ1 and GQ2) are already discussed in Section 2. Focused research question 1, 2, 3

and 4 are handled in the Section4. Remaining questions are considered in the discussion and conclusion

sections.

3.2. Search and Selection Standards

Journal of Software

973 Volume 10, Number 8, August 2015

In order to perform a rigorous study on research papers related to our selected topic, we emphasize on

widely used languages French and English. By using search terms and search strings, we scanned relevant

and reliable articles in literature resources. We narrow our search using the following key words:

<Regression> and (<test> or <Testing>) and (<Web> or <web application> or <web based application> or

<Web system>) \ <test de régression > and <application Web>.

The start search year was set to 1994 when the Internet became available to the public. In 1995, the

Internet has become a platform for a large number of users [28]. Also we may mention in this regard that in

January 1983, TCP/IP became the official standard [29] and the first Internet tentative starts around the

year 1960 as stated in [30]. In this systematic review, we searched related sources in six electronic

resources and databases (IEEE eXplore, Elsevier, ACM Digital library, Springer, and Wiley Online Library).

 We built a repository for regression testing in Web application which includes more than 60 papers from

1995 to 2014. We discard papers not written in English and French We also searched for Master and PhD

that have made a significant contribution to the development of regression testing for Web applications.

Results are listed in Table 1.

Table 1. A List of Master and PhD Works on Regression Testing in Web Application

Author/ Supervisor Title Type/
Year

University

D. Roest / Dr. Ir. A. Mesbah Automated Regression
Testing of Ajax Web
Applications [31]

MSC/ 2010 Delft University of Technology
Netherlands

Florian Haftmann Regression Testing on
Web-based Information
Systems [32]

MSC/ 2012 Not mentioned

Kinga Dobolyi / Dr. Westley
Weimer

An exploration of
user-visible errors in
Web-based applications to
improve Web-based
applications [33]

PhD/ 2010 University of Virginia

Tamim .A. Khan/Dr. Reiko
Heckel

Model-Based Testing Using
Visual Contracts [34]

PhD/ 2012 University of Leicester

As a result of searching Master's theses and PhD dissertations, we found a very limited number. This is

can be explained by that regression testing for Web application is still in an early stage. Lastly, we went

through a selection process to filter unrelated papers. A two-stage selection methodology is used, which

aims in finding efficient and contemporary approach in regression testing for Web applications.

First stage: abstract papers are analyzed for preliminary selection. Many papers described testing

approach in general for Web application. These papers are rejected an example of [35]. About 73 papers are

selected initially. The following question is asked: Is the study focus specifically on regression testing for

Web application?

After the first stage only 31 papers remained. The purpose on relying on abstract rather than title’s

article in the first stage is because some publications are not mentioning regression testing in their titles

but it is covered in the content; example article [36].

Second stage: papers content are evaluated carefully to select relevant articles. The following questions

are asked:

1) Are the techniques and tools described in the paper support current Web technology? For example

paper could discuss regression techniques [25] that can be applied in static web application, but

cannot support dynamic technology such as JAX, .Net, HTM5 etc…

2) Is the content already discussed in similar previous works or has been extended. Example [37]-[38]

3) Is proposed technique empirically evaluated?

Journal of Software

974 Volume 10, Number 8, August 2015

 After running the second stage only 22 articles become candidate for this study. The selection strategy

was more exclusive than inclusive. Only good papers are selected, comparing and surveys papers are

discarded. Selected articles were again assessed and evaluated by an external experienced researcher in the

testing field. Table 3 in appendix shows all qualitative results and the inclusion/exclusion causes of all

retained papers. Fig. 1 shows the articles selection procedure used in this study.

Fig. 1. Selection procedure.

 Using the selection procedure described in Fig. 1, only 22 articles are selected. Some surveys and reviews

are used as reference point for this study. The acceptance rate in our SLR is about 22%.

4. Regression Testing Approaches and Evaluation

One of the main sources of computational cost in regression testing is the running cost of executing large

test set. In regression testing for Web application we have mainly two attitudes: reduction of generated test

cases, and reduction of the execution cost. In response to our first there focused research questions (FQ1,

FQ2, FQ3, and FQ4) we present respectively our finding in three subsections: Approach evaluation,

empirical study evaluation, and tool evaluation.

4.1. Approach Evaluation

Authors in [39] discussed an automatic session data repairing algorithm for RT Web applications. A

white box examination map is used to detect any change. A case study was applied to ten different versions

of an online book store website. When modifications were made i.e. new hyperlink or dynamic pages are

added or removed, some of the session data becomes invisible. Thus, a new automated session data repair

algorithm which constructs a new version of session near to its original version to uncover missing paths

and parameters is created. The repair algorithm is as follow:

1) Edge Deletion: If an edge (link) between two pages is removed, but the nodes (pages) remain,

therefore there is a need to select new path navigation between both nodes.

2) Node Deletion: In case of node (page) deletion, links become invalid. In this situation, there is a need to

found a new navigation from node’s predecessor to its successor.

3) Default: Neither of the above cases applies: If both edges and nodes are deleted, in this situation a

“damage limitation” approach is used when no path in the new structure can be found. This approach

split old session into two sub sessions to which the repair algorithm is recursively applied.

Garg et al. [40] presented a regression testing technique called two-level prioritization approach using

FDG (functionality dependency graph) and IFD (inter-procedural control graph). The proposed approach

detects automatically modifications completed in system functionalities and prioritizes test cases needed.

Journal of Software

975 Volume 10, Number 8, August 2015

To effectively minimize the number of test cases an automated approach is used to detect modification in

functionalities and prioritizes test cases for them. Two priorities scheme are implemented FDG: Priority of

test cases and Priority of test cases for Interference Constrains Graph (ICG). A Unified Modeling Language

(UML) modeling was used to extract specifications of functions. A similar technique was proposed in [41]

by imposing parallel execution during the prioritization process. Also Harrold et al. [42] used the

prioritization technique to construct the FDG by identifying the functionalities in a Web application from

the UML diagram of that Web application. Authors in [43] proposed a regression testing (RT) techniques

based on event dependency graphs (EDG) and event test trees (ETT). Using the above techniques we can

easily reduce the number of test cases and tackle the dynamic issue of Web application. EDGs are

structured on cyclic dependency and to remove redundancy they introduced new step after making EDG

which is ETT.

Roest et al. [44] and [31] suggested a common way to provide correctness for Ajax Web based

application. The proposed approach automatically infers a model of the Web application and used as an

input for the test suite. To overcome the error-prone behavior of Ajax technology like asynchronous

nature and extensive use of Document Object Model (DOM) an oracle comparator is used.

A regression testing approach based on test selection prioritization was proposed in [45], [46]. Athira et

al. [45] presented an UML model based on test prioritization. An activity diagram was used to model the

system and capture coverage information. The priority rule is based on covering most important paths to

reduce the test cases. The model executed the complete test suite and collect information related to the

changes. The collected information is then used for test suite prioritization. Two models for RT are

presented using activity diagrams and activity paths. In [46] authors introduced the prioritization rule of

test cases using dependency based analysis approach. Initially they analyze the dependency relationship

with the help of control and data flow information in WS-BPEL. Then a weighted graph is constructed to

analyze the impact of modified objects. Finally test cases with high coverage are prioritized for

modified-affected objects with highest weights are selected. Besides reducing test cases, the approach can

eliminate fake dependencies in Business Process Execution Language (BPEL) process based on Business

Process Flow Graph (BPFG). A prediction RT approach was proposed in [47], to detect specific test cases

that need human inspection and attention. A model is used to harness the inherent similarities between

initial and changed Web-based application in order to reduce the execution cost of regression testing. An

automated tool called oracle comparator that relies on the semantics of HTML (or XML) output can decide if

a pair of test case outputs indicates an error by comparing both files. Proposed method does not require

manual seeding of faults and uses training data from other applications to automate this process. Lei et al.

[19] suggested Web applications modeling using System Dependent Graph (SDG) and then introduced a

slicing regression testing technique that emphasize on the indirect-dependent way. As a result, the usability

of SDG will increase the workload and cost of the testing process, however, slicing technique offer to the

user more effort on contents simplification, and improves the work efficacy. Authors in [48] proposed a

systematic regression testing platform. It is designed to execute safe end-to-end regression test selection

RTS for both intra- and inter-enterprise Web services using control-flow graphs (CFGs). The approach used

an algorithm developed by Rothermel and Harrold for monolithic applications based on control flow graphs

(CFG) [49]. The platform uses three phases: (1) create two CFGs for both old and new web application; (2)

detect dangerous edges by comparing both CFGs; (3) and finally identify test cases that need to be rerun.

For security reason a hash code technique is used to hide source code from testers. Regression testing is

integrated into effective change management system to reduce test case execution time. Ruth et al. [50]

developed a similar safe testing framework. The only reported enhancement rely on privacy-preserving

techniques to enable multiple parties to complete a common task without exposing more than necessary,

Journal of Software

976 Volume 10, Number 8, August 2015

and at the same time provide a secure model to protect sensitive information contained in both CFGs. The

main contribution of this work is to protect sensitive information contained in CFGs, without reducing the

effectiveness of the used regression testing selection (RTS) technique. A Web Service Regression Testing

Model (WSRTM) framework is described in [51] for semantic Web service and test case generation. A

model-based on retest process for end user is used to supports engineers in identifying WSDL-based

changes.

Edwards et al. [52] described a faster and easier approach to create scripts for functional testing and load

testing for Web application developed with AJAX Technology. The basic idea is to shorten the testing time

by integrating the process of recording and creating scripts. Details of user’s activities in the Graphical User

Interface GUI are extracted based on reading Model signals document object (DOM) specific to the browser.

Authors in [18] suggested a regression testing approach based on internal information in order to form

Time Labeled Transition Systems (TLTS) and Task Precedence Graphs (TPG) for each selected service. The

idea was initially proposed in [53] and then extended in [18]. Sensitive information was left unprotected

which implies that the technique suffers from security issue.

Authors in [11] suggested a novel testing methodology. The regression testing method is based on the

enhanced change reported to the component version in order to test the software system containing some

modified components. It is a collaborative process, between component developer and system tester. Kinga

et al. [54] proposed a regression testing approach using define invariant expressions of expected result

over program variables and assert their correctness at run-time. The regression testing approach is based

on dynamic analysis of JAVA SCRIPT code to infer invariants from a given Web application. According to

their result analysis, the approach achieved a reduction cost execution time. More details can be found in

the PhD dissertation [33]. Florian Haftmann introduced in his master work [32] an easy-to-use approach

for regression testing of Web interfaces using an iterative approach. It allows interactive use and does a

sophisticated reporting on changes. The applications are highly customizable and personalizable, so a lot of

states which directly influence the applications’ behaviour need to be tested to ensure consistency.

Gagandeep et al. [55] suggested a model based approach for regression testing of Web applications. The

proposed approach consists of four steps: 1. Domain Analysis and Modelling; 2. Model traversal and test

case generation; 3.Optimizing test cases using coverage criteria; 4. Regression test suite generation.

Graphical Web Model of the component is constructed. The generation of regression test-suite is optimized

using “all-path” coverage criteria in order to reduce the effort and cost of rigorous cycle of software

development and testing process. Also, Reiko et al. [56] presented a similar model-based approach for

regression testing for Web services applications, where service interfaces are described using three layer:

implementation, interface model, and observable behavior. The approach consider the impact of evolution

for selective retesting but we also propose a coverage analysis mechanism to see if there is any

requirement of new test cases to retain coverage as well.

Authors in [57] have introduced an automated tool to locate changes in PHP Web application. The idea is

based on WebCrawler to shorten the path between users and their destinations. More detail about the tool

is described in section C. Hussein et al. [38] presented an approach to detect areas affected by code changes

using impact analysis. A program slice is used to generate new test cases for the crashed areas using

program slices and consider both numeric and string input values. To do so, the researchers implemented a

PHP analysis and regression testing engine called (PARTE [58]). The focus is on Web applications written in

PHP. The approach is effective in reducing the amount of time needed to apply regression testing for

frequently patched Web applications. Due to the compatibility constrain related to the web programming

languages support, the proposed approach is not recommended. Authors in [36] suggested a

meta-modeling approach using UML. A high level representation of the Web application is modeled using

Journal of Software

977 Volume 10, Number 8, August 2015

Unified Modeling Language (UML [25]) for the assessment of static Web structure. Test cases are

generated based on the computation of the path expression [59]. The main contribution of this paper is in

the definition of a novel UML model used for analysis and testing techniques applied to Web applications.

However, this process requires many manual tasks. An enhancement must be reported as a future work.

In response to our research focused question number 4, our study results shows that the most common

best practice of regression testing in Web application is graph theory including CFG(Control flow

graphs), ETT(Event test tree), and FDG (functional dependency graphs). Fig. 2 shows percentages of used

approaches in RT for Web applications.

Fig. 2. Percentage of regression testing approaches applied in web applications.

As you can see the Graph theory has the heist percentage followed by test prioritization. Test case

prioritization technique is the second widely technique used in regression testing for Web application. It is

important to mention that some approaches [40], [41] used combined techniques such as UML and graph

theory in their proposed solution. Program slicing is very important tool for incremental regression testing

problem However, it is not appropriate for testing the initial copy of the Web application, because of the

block redundancy. Fig. 3 shows the number of publications using different kind of regression test selection

techniques for web applications.

Fig. 3. Number of publication using reduction technique for web applications.

Our results highlight several differences between various regression testing techniques, and explore

essential trade-offs that should be taken into consideration when choosing a technique for web application.

Journal of Software

978 Volume 10, Number 8, August 2015

Two main minimization techniques are used in the literature: cost execution minimization and test case

minimization. Authors in [55] suggested a combined approach where both cost and test selections are

applied. Most regression test selection minimization techniques are not designed to be safe. No safe

techniques can fail to select appropriate test case in the modified web application. Safe technique is an

alternative solution. A set of safety conditions must be satisfied during the test case selection process.

Recently, several safe regression test techniques have been presented in [18], [48].

4.2. Empirical Results Evaluation

In response to our second focused research question, we investigate and analyze empirical and case

studies used in each selected publication. We found in our proposed study that nearly all papers used the

number of generated test cases as a performance metric for RT in Web applications. We classify proposed

approach based on the size of experiments and the number of case study. Regarding the size we classify

them as follow: small, medium, and large, depending on the number of case study used, the number of test

cases generated, and the complexity of the Web application. A small study has less than 50 test cases using

simple Web application. A medium study has between 50 and 100 test cases. Finally large study has more

than 100 test cases generated and executed in their experimental section in complex application.

In [39] an online book store application is used to test the tool performance. A series of ten modification

where made to the book store application to implement new functionalities. Small size experiment, only 22

books are stored in the database. A case study is described to analyze the impact of the proposed tool in

terms of effort and rate of automation in the development of a new Web application project is suggested in

[1]. The experience generated 147 test cases on a help desk application Webpage and result showed that

their techniques decreased size of test cases to 44-90%. Authors in [44] used total of four case studies. Two

case studies were conducted one on open source contract management system and the rest is applied on a

highly dynamic Google Reader application. Their approach includes analyzing the DOM trees of both

original and modified versions. An air ticket reservation Web application is used in [45]. Kumar et al. [43]

performed their case study on SWLS (Simple Web Student Login System) and found that test cases were

reduced by 41.4%. In [40] an experimental evaluation was proposed for efficiency study. Authors randomly

seeded 20 faults in various modified functionalities of the Online Bookstore application. Three faults

categories are injected in application: Logical Faults, Form Faults and Appearance Faults. 130 test cases

were e generated from UML Activity diagrams of the Online Bookstore application.

Authors in [47] experimentally tested their hypothesis that Web site similarities are very helpful to aid in

the automation of various aspects of testing Web-based applications. A predictive model power at detecting

faults between test case and output pairs is used. Optimal results are obtained for two Web applications. An

empirical analysis for applying safe regression to Web services is proposed in [48]. Five Web services

systems selected from different domains. All selected systems were developed in Java environment using

the Apache Axis toolkit. A total of 461 test cases were generated. In [46] an ATM cases study was proposed

to investigate the applicability of our method. A rich series of experiments were performed in [50] to

evaluate the execution cost impact of the approach. In [51] authors illustrated an End User Regression

Testing method for a simple Web service Bank Account. Authors in [11] presented preliminary

experiments to validate the effectiveness of their proposed testing strategy. Medium scale systems are used.

Experiment results show that, the regression testing method is fairly feasible and cost-effective in practice.

Tarhini et al. [18] considered a real help desk Web application to evaluate a regression safe testing

selection technique. The application is implemented using .Net 2005 environment. Empirical section shows

promoting results, the test set size was reduced for about 44-90%. Authors in [54] presented a case study

conducted on nine open source Web applications to evaluate the proposed approach. The results show that

the approach is able to effectively generate stable assertions and detect JAVA SCRIPT regression faults with

Journal of Software

979 Volume 10, Number 8, August 2015

a high degree of accuracy and minimal performance overhead. Very elementary experience is presented

in [31] to test something simple (e. g. adding an entry to a low-level table). Used tool is still in an early

development stage.

A very simple Sign Up and Login System (WSL) application was proposed in [55] to demonstrate the

functionality of approach. No test case generation is specified. A small but real application is used to assess

the correctness of proposed approach presented in [56]. The selected application is derived from an open

source desktop application called BTsys is selected. The evaluation is based on an automatic bug tracking

system implemented in C# to report failure data. Authors in [57] have proposed an automated tool to locate

the changes in the Web application which. Therefore, regression testing effeteness is enhanced. Hyunsook

et al. [38] designed a controlled experiment using five open source Web applications that have multiple

versions, various sizes, and different characteristics to assess their approach. For evaluation purpose

authors used two open sources Web applications written in PHP. Applications were downloaded from

SourceForge. Different versions of osCommerce [60] and FAQForge [61] are used. This study was

performed using a virtual machine on multiple hosts. In [36] Over 15 Websites were periodically

downloaded and analyzed using the tools ReWeb and TeslWeb.

The qualitative assessments of empirical results were summarized in Table 2. The results were divided

into six different categories according to the test set size and Web application complexity used during the

testing process.

Table 2. Classification Scheme of Empirical Studies

Small Simple Web Application [31], [40], [43], [55]

Complex Web
Application

[51], [56]

Medium Simple Web Application [11], [45], [47], [50]

Complex Web
Application

[11], [18]

Large Simple Web Application [13], [39], [44], [48], [54]

Complex Web
Application

[36], [38]

Some works are not discussed in this section because of information shortage in their publications.

Empirical study judgment cannot be conducted about their works.

4.3. Tools Evaluation

Tools are important for regression testing. They enable the transformation of the process from

theoretical to practical area. In response to our focused research question 3, we classify available tools

based on their: Usability, Scalability, and Compatibility with Web application programming languages, and

operative type (manual or automatic). It important to mention that some tools cannot be evaluated due to

lack of information missing in their presented work.

Table 3 summarizes tools evaluation used in RT for Web application. There have been 16 tools

implemented. We can realize that tool development has received an increasing attention from research

community since year 2010.

Authors in [44] and [31] presented an open source testing tool called CRAWLJAX to handle the dynamic

aspect of AJAX applications. SWT-based GUI is integrated to analyze the difference between DOM trees of

both original and modified versions. In [40] a C# application is described to implement the proposed

prioritization approach and generated test cases. Test cases are then executed using Selenium test tool [13].

A semi-automatic too is suggested in [47]. A comparator judgment about XML/ HTML test case should be

made by checking the tree-structure features, rather than using textual difference.

Journal of Software

980 Volume 10, Number 8, August 2015

A comparison is made between both output documents to find any alignment between them. During the

test suite execution, user interventions required at several points. Authors [62] and [48] performed RT

testing using an open source tool Apache Axis for Java applications to simulate the functionality and

performance in an end-to-end manner. An approach calling it Code transformation by Java Interclass Graph

(JIG) to analyze the static and dynamic behavior and reduce the test cases used. The limitation of the

proposed tool is that application should be deployed in Axis server. Ruth et al. [50] designed a manual tool

to secure the information saved in each node. The proposed testing framework implements three

components, namely CFGs, test cases, and coverage information. Qing et al. [51] developed a manual tool

based on WSDL (Web service regression testing model interface) for semantic Web service. The Inputs,

Outputs, Preconditions, and Effects (IOPEs) paradigm are used to define Web service semantics. Usually in

Web service users are interested in the change of their WSDL and IOPEs and impacts on other components

in the system, and Web service unit/system test suits. eValid [52] is a new testing tool working on

events from the interaction of the end user with the Web application. eValid addresses both simple

applications and modern Web applications based on JavaScript. The scripting engine is fully incorporated

into the browser and behaves like a real client browser. eValid require user intervention for script editing.

Authors in [11] proposed a novel testing component-based approach that uses a collaboration channel

between the component provider and system tester. Developers detect the changed information from the

procedure call graph and deliver it to component users through XML files. Abbas et al. [18] described

regression testing tool to view Web application as event driven environment. The interaction is based on

following: data dependence, control dependence and call dependence. The proposed tool uses two event

dependency graphs. The first one is used to represent the original system. The second one and is used to

represent the modified system. Authors in [54] proposed an automated technique for JAVA SCRIPT

regression testing, which is based on dynamic analysis to infer invariant assertions. JSART extends and

builds on top of InvarScope [63] tool. For JAVA SCRIPT code interception, we use an enhanced version of

Web-Scarab’s proxy [64] to automatically analyze and modify the content of HTTP responses before they

reach the browser. A tool called HTTrace is implemented in [32] to record user actions within a Web

browser, save it persistent to a test run file. User must replay an arbitrary test run file as it was recorded on

the Web browser, then compare and report any difference between the browser pages as they were at

record time and as they are at replay time. The tool is still in an early development stage. The COM

technology used in HTTrace sometimes does not scale well, e. g. after playing many traces in sequence.

Gagandeep et al. [55] proposed a tool implemented in Visual C++ to analyze and model the application, and

then generate test sequences based on “all path” coverage criteria for optimization. The model is

implemented as a queue data structure. The algorithm complexity needs improvement for performance

evaluation. Authors in [56] evaluated their proposed approach using a bug tracker service tool by writing a

client in Java using the integrated development environment (IDE). The tool is semi-automated since user is

involved to generate manually the test set. Test set completeness is evaluated trough fault seeding.

Scalability is not supported; also no real projects are used to evaluate the implemented tool. Shikha et al.

[57] have introduced an automated tool for locating the changes in the Web application to increase the

effectiveness of regression testing. The basic idea is based on WebCrawler to shorten the path between

users and their destinations. The tool implement, 1) a Web crawler to crawls the Web application, 2) a tool

for constructing the HTML DOM tree representation for a Web page, 3) a comparator that compares the

new DOM tree with a previous version of the DOM tree stored in our system. Redundant Web blocks from

more than two Web pages and tree storage damage the approach scalability. A Testing tool that combines

PHP Analysis and Regression Testing Engine (PARTE) is implemented in [38]. The approach focuse on PHP

Web application, but can easily be applied to other languages by extending the front end file conversion

Journal of Software

981 Volume 10, Number 8, August 2015

functionality. The current path generator implementation does not provide Web elements, so they had to

be provided manually. Therefore, not all test cases can be run. Ricca et al. [36] presented automatic support

techniques for analysis and testing of Web applications. Two tools ReWeb and TestWeb where developed.

ReWeb downloads and analyzes the pages of a Web application with the purpose of building a UML model

of it, in accordance with the metamodel using spidering approach, similar to the one used in [39]. ReWeb’s

helps to understand the site organization, using navigation paths (history view) and of variable usage (data

flow view). TestWeb generate and execute a set of test cases for a Web application whose model was

computed by ReWeb. Contrary to [39], the whole process in [36] is semi-automatic, with user interventions

required at several points. Authors in [41] implement a C# module to evaluate the proposed approach.

Selenium test tool is used for automatic test suite execution. In [45], [46] authors described a manual

approach without mentioning any tools. Researches discussed in [65], [66] a similar tool presented in [13].

Fig. 3 shows the number of tools addressing each Web application programming language. Many articles

did not specify explicitly what Web programming languages can be supported by their tools example [13],

[40], [57]. Several other tools are discussed in [67]-[69] to support mobile application and database

applications.

Fig. 3. Compatibility with web programming languages.

Compatibility characteristic is relatively high compared to other of studies. Scalability aspect was not

strongly supported by previous work. This is mainly because of HTML DOM tree problem, COM, and path

selection approaches used in regression testing. Number of paths increases exponential when Web

application contains many pages, similarly redundant blocks increase when HTML DOM tree is used.

5. Discussion

Our evaluation results strongly support the conclusion that the scalability is a concern in regression

testing for Web application. As we observe from tool evaluation, technologies used in tool implementation

dos not support scalability. Due to rapid and frequent changes in Web application it is nearly impossible to

cover all modified paths and nodes. Large and complex Web applications require time and efforts to reveal

invisible paths. A challenge was presented in [39] to discover invisible path based on session data.

Automated RT techniques are useful and timeless, but on the other hand any error in test cases generation

could result in missing some paths due to dynamism. When a Web application contains many pages, more

paths are added in HTML DOM tree generation which involved redundant blocks. Also, correcting errors in

HTML can be hard. Similarly, when graph theory is used the number of nodes and edge tend to be increased.

Another limitation involves test case generation. Many approaches [50]-[56] require manual action for test

Journal of Software

982 Volume 10, Number 8, August 2015

set selection. As a result, not all faults were able to be detected during the regression testing. Again

scalability is recurred.

Regression testing for Web application is growing rapidly. Many efforts have been made to extend tool

compatibility for testing new Web programming languages. A meta-model technique was discussed for web

application in [70]. Developed techniques are not costly compared to other testing techniques such as

mutation testing and system testing. Based on existing achievement we can expect that the future will bring

more paradigms to develop more scalable approaches without over compromising on quality and cost.

More efforts must be placed on safe selection to guarantee the selected subset contains all test cases that

can reveal faults modified version. Security requirement must be investigated also during the regression

testing.

Table 3. Summary of Published Regression Tools for Web Applications

Tool Articles Automatic / Manual Compatibility with Web
Application Language

JSpider [36], [39] Academic environment
/Semi-automated

Supporting many
languages

UML and Selenium [13], [40], [41] Semi-Automated Not mentioned
CRAWLJAX [44] Open Source / automated

tool
Ajax

Apache Axis [48], [62] Open Source / Automated
tool

Java/ JavaScript

RTS [50] Manual tool Not mentioned
WSDL [51] Manual tool Not mentioned
eValid [52] Commercial

Semi-automated tool
JavaScript

Component-base [11] NA procedural or
Object-Oriented
application

Event dependency
graphs (EDG)

[18] NA .Net

JSART [54] Academic environment/
Automated tool

Java Script

HTTrace [32] Automated tool Supporting many
languages

Graphical Web Model
(GWM)

[55] Automated tool Supporting many
languages

bug tracker service [56] Semi-automated tool Java
Web Crawler [57] Automated tool Not mentioned
PHP analysis and PARTE [38] Automated tool PHP
ReWeb and TeslWeb [36] Semi-automated tool Supporting many

languages

6. Conclusion and Future Work

The paper has provided a detailed systematic review and analysis of trends on regression testing for Web

applications. The paper covers regression test selection methods, empirical studies, and regression testing

tools. From the data we collected, there has been much effort on cost and test case selection minimization

techniques. Our findings reveal that there is an increasing interest to regression testing for Web application

since, it plays crucial role in maintaining Web applications after modifications and changes are made.

Recent trends include new open source and industrial tools, which indicate the maturity level of this

research filed. We also find some evidence that there are an increasing number of new approaches for

security regression testing in Web application.

Recent work tends to focus on test set minimization rather than cost execution reduction. The desired

decision has risen because of the effect of larger test set requires extra cost execution. Our study found that

Journal of Software

983 Volume 10, Number 8, August 2015

only 20% of articles in the selected research pool did not discuss and present testing tool. We have

identified some basic problems in regression testing for Web applications domain. Proposed tools are not

evaluated sufficiently. In many studies, only one simple Web application is evaluated. Furthermore, original

source code is edited for modest testing. Only few studies draw powerful conclusion based on their rich

empirical studies.

Future works for the research community are scalability and safety selection issues. Security

requirement must be explored in Web application when component base model and Graph theory are

applied. Encourage compatibility to cover wide programming languages for future developed tools.

Appendix

Summary of Published Papers about Regression Testing for Web Applications

Ref Title Year/
Source

Size of the Empirical Study Used Approach / Tool Inclusion/Exclusion

[39] Automated Session Data
Repair for Web Application

Regression Testing

2008
IEEE

Regression Testing, Web
Applications.

Automate tool Jspider using
edge and node analysis

inclusion

[13] Extension of Selenium RC tool
to perform automated testing

with databases in web
applications Automation of

Software Test (AST)

2013
IEEE

Selenium RC, Software
Testing, Functional
Testing, Test Automation,
Database Testing.

extension of a very popular
functional testing tool for user
interface (Selenium RC) to
support database testing in
web based applications.

Exclusion approach
focus on database
testing in web
application

[44] Regression Testing Ajax
Applications:

Coping with Dynamism

2010
IEEE

Regression testing; Ajax;
web applications

Crawljax DOM tree using
inferred state flow graph.
Automated tool.

included

[45] Web Services Regression Test
Case Prioritization

2010
IEEE

Web services, Test
Prioritization, Activity
Diagram, Activity paths.

Manual approach using
activity and activity paths

inclusion

[43] Event Driven test case
selection for Regression

Testing Web Applications

2012
IEEE

Regression Testing, Web
Application, Event
Dependency Graph, Event
Test Tree

Event driven Technique
Manual approach

inclusion

[40] A Two-Level Prioritization
Approach for Regression

Testing of Web Applications

2012
IEEE

Regression testing, Test
case prioritization, Web
applications, Two level
prioritization

Automatic approach using
two level prioritization

inclusion

[47] Harnessing Web-based
Application Similarities to Aid
in Regression Testing

2009
IEEE

Regression testing;
automated solutions;
number of
false positives

automated oracle comparator
that relies on the semantics of
HTML (or XML)

Inclusion

[37] An Effective Regression
Testing Approach

for PHP Web Applications

2012
IEEE

Regression testing, impact
analysis, test case
generation,
PHP web applications

Automated approach using
PHP Analysis and Regression

Testing Engine (PARTE)

Exclusion similar
approach proposed
in [38]

[19] Regression Testing for Web
Applications Based on Slicing

2003
IEE

Web application;
Regression testing; slicing
method

Manual slicing approach that
emphasized on the

indirect-dependent among
data

Inclusion

[53] Regression Testing Web
Services-based Applications

2006
IEEE

Regression testing, event
dependency graph

Manual approach based on
TLTS (Timed labeled
transition system) for
WSDL(Web services

description language)

Exclusion topic
covered and
extended in [18]

[62] Applying Safe Regression
Test Selection Techniques to

Java Web Services

2006
IEEE

Web application;
Regression testing;

Regression test selection
(RTS)

Automated code
transformation approach

using Regression test
selection (RTS)

Exclusion topic
covered in [65]

[65] A Safe Regression Test
Selection Technique for Web

Services

2007
IEEE

Web application;
Regression testing;

Regression test selection

Automated approach based on
Regression test selection

(RTS)

Exclusion topic
covered in [48]

Journal of Software

984 Volume 10, Number 8, August 2015

(RTS); Control-Flow Graphs
[48] Towards Automatic

Regression Test Selection for
Web Services

2007
IEEE

Web application;
Regression testing;

Regression test selection
(RTS); Control-Flow Graphs

Automatic framework to
synchronize the RTS

processes

inclusion

[46] Test Case Prioritization for
Web Service Regression

Testing

2010
IEEE

Web service; regression
testing; test case

prioritization; impact
analysis; dependence

analysis

Manual approach using flow
graph

Inclusion

[35] Challenges in Audit Testing of
Web Services

2011
IEEE

Web service Composition,
Audit Testing, Regression

Testing.

Automated tool based on
change detection.

Excluded Topic
covering general RT
techniques. Out of
scope (web
application)

[50] Employing
Privacy-Preserving

Techniques to Protect
Control-Flow Graphs in a

Decentralized, End-to-End
Regression Test Selection

Framework for Web Services

2011
IEEE

Test Selection; Regression
Testing;

Web Services; End-to-End;
Decentralized;

Privacy-preserving

Manual approach to share
their control flow graph CFG

using
privacy-preserving techniques

to protect sensitive
information

inclusion

[51] An Approach of End User
Regression Testing for
Semantic Web Services

2011
IEEE

Semantic Web Services;
Regression Testing; WSDL;

Manual approach using
WSRTM (web service

regression testing model) for
semantic web service

Inclusion

[42] Prioritizing test cases for
regression testing

2001
IEEE
ACM

Test Cases, Regression
testing,

Average percentage faults
detected measure (APFD)
using SAS statistical package
and Bonferroni. Automatic
Tool

Exclusion: general
approach dos not
specifically tackle
web applications.

[52] Le Test Automatise des
Applications Web Modernes

2011

AJAX, Web 2.0, regression
testing, automatic testing

eValid [71]: recording
mechanism based on a clone
browser Internet Explorer.
Semi-automatic tool

Inclusion

[6] Program slicing-based
regression testing techniques.
Software Testing, Verification
and Reliability

1996
Wiley

Regression testing, slicing
technique, data flow

Slicing approach.
No tool mentioned

Exclusion: slicing
approach used in
[19].

[11] Regression testing for
component-based software
systems by enhancing change
information

2005
IEEE

Regression testing,
component metacontents,
component-based
applications

Metacontent aware tool for
code-based and
specification-based.

inclusion

[18] Regression testing web
applications

2008
IEEE

Regression testing, event
dependency graph, web
application

Select test cases based on the
event based dependency
graph (EDG). Mentioning a
tool without any detailed
information

inclusion

[54] JSART: JavaScript
Assertion-Based Regression
Testing

Springer Regression Testing;
invariant assertions;
invariant assertions.
JavaScript, dynamic analysis

Based on on-the-fly JAVA
SCRIPT source code
instrumentation and dynamic
analysis to infer invariant
assertions. Automated tool :
JSART

inclusion

[31] Master Thesis: Automated
Regression Testing of Ajax
Web Applications

2010 Regression testing; Ajax web
application; Test failure
Visualization.

Automated tool called
CRAWLJAX for handling the
dynamic aspect of AJAX
applications using Oracle
Comparator Pipelining (OCP)

Exclusion, approach
discussed in [44]

[32] Master thesis: Regression
Testing on Web-based
Information Systems

 Regression testing; Web
based

Automated tool called
HTTrace that uses COM
interface to Microsoft's
Internet Explorer.

Inclusion

[33] PhD thesis: An Exploration of
User-Visible Errors in

2010 Testing, error detection;
user-visible; web

Automated oracle comparator
approach towards comparing

Exclusion similar
approach in

Journal of Software

985 Volume 10, Number 8, August 2015

Web-based Applications to
Improve Web-based
Applications

application test case outputs in web-based
applications.

described in [54]

[55] Automatic Generation of
Regression Test Cases for
Web Components using
Domain Analysis and
Modeling

2010 Regression testing, Web
Components; Domain
Analysis; Test Automation

Analysis based modeling
approach.
An automated Graphical Web
Model tool implemented in
visual C++.

inclusion

[56] On Model-Based Regression
Testing of Web-Services Using
Dependency Analysis of
Visual Contracts

2011
Springer

Regression testing; web
services; Model based
approach

Model-based approach to
abstract the detail of
programming language.
Semi-automated tool called
bug tracking service.

inclusion

[57] An automated tool for
regression testing in web
applications

2013
ACM

Regression testing; DOM
tree generator; code change.

An automated tool composed
from web crawler; HTML DOM
tree generator and a
comparator

inclusion

[38] An efficient regression testing
approach for PHP web
applications: a controlled
experiment

2014
Wiley

Regression testing; impact
analysis; test case
generation;
PHP web applications;
empirical studies

Test case generation approach
by using program slices
considering both string and
numeric input values
An automated tool: Hypertext
Preprocessor (PHP) Analysis
and Regression Testing Engine
(PARTE).

inclusion

[34] PhD thesis: MODEL-BASED
TESTING USING VISUAL
CONTRACTS

2001
IEEE

Web applications, testing,
UML modeling

A semi-automated tool :
ReWeb and TestWeb

Exclusion: Similar
discussed in [56]

[36] Analysis and Testing of Web
Applications

2001
IEEE

Web applications, testing,
UML modeling, reverse
engineering

An UML model of Web
applications is proposed to
exploit a white box testing
criteria.
A semi-automated tool :
ReWeb and TestWeb

Inclusion

[41] Parallel Execution of
Prioritized Test Cases for
Regression Testing of Web
Applications

2013
IEEE

Regression testing, Test case
prioritization, Web
applications, Parallel
execution

Approach based on
partitioning test suite into test
sets according to the
functionalities and associate
the test sets with each module
of the FDG.

Inclusion

[25] A methodology for retesting
modified software

1981
ACM

Minimization-based
regression test, linear
equations

minimization techniques, to
select minimal sets in
regression technique

Exclusion :
Approach
applicable to static
web application

Acknowledgment

The author would like to thank Dr. Izzat Alsmadi for his assistance in collecting research papers and

valuable comments.

References

[1] Chittimalli, P. K., & Harrold, M. (2009). Recomputing coverage information to assist regression testing.

IEEE Transactions on Software Engineering, 35(4), 452–469.

[2] Engstr öm, E., Runeson, P., & Skoglund, M. (2010). A systematic review on regression test selection

techniques. Information and Software Technology, 52(1), 14–30.

[3] Hartmann, J., & Robson, D. (1988). Approaches to regression testing. Proceedings of the Conference on

Software Maintenance (pp. 368-372).

[4] Yoo, S., & Harman, M. (2010). Regression testing minimization, selection and prioritization: A survey.

Journal of Software

986 Volume 10, Number 8, August 2015

Software Testing, Verification and Reliability, 145-158.

[5] Ostrand, T., & Weyuker, E. (1988). Using data flow analysis for regression testing. Proceedings of the

Conference on Annual Pacific Northwest Software Quality (pp. 142-148).

[6] Gupta, R., Harrold, M., & Soffa M. (2006). Program slicing-based regression testing techniques. Software

Testing, Verification and Reliability, 6(2), 83-111.

[7] Harrold, M., & Souffa, L. (1988). An incremental approach to unit testing during maintenance.

Proceedings of the Conference on Software Maintenance (pp. 362-369)

[8] Hartmann, J., & Robson, D. (2014). Techniques for selective revalidation. IEEE Software, 7(1), 31-37.

[9] Pei, H., Xiaolin , L., Kung, D., Chih-Tung, H., Liang, L., Chen, C., et al. (1997). A technique for the selective

revalidation of OO software. Journal of Software Maintenance: Research and Practice, 9(4), 217-33.

[10] Rothermel, G., & Harrold, M. J. (1994). A framework for evaluating regression test Selection techniques.

International Conference on Software Engineering.

[11] Mao, C., & Lu, Y. (2003). Regression testing for component-based software systems by enhancing

change information. Proceedings Asia-Pacific Software Engineering Conference (pp. 256-301).

[12] Orso, A., Harrold, M., Rosenblum, D., Soffa, M., & H. Do. (2001). Using component metacontent to

support the regression testing of component-based software. Proceedings of the IEEE International

Conference on Software Maintenance (pp. 716-725).

[13] Castro, M. D., Macedo, G., Collins, E., & Neto, A. A. C. D. (2013). Extension of selenium RC tool to perform

automated testing with databases in web applications. USA Automation of Software Test (AST), 125–

131.

[14] Willmor, D., & Embury, S. M. (2005). A safe regression test selection technique for database-driven

applications. Proceedings of the IEEE International Conference on Software Maintenance (pp. 421-430).

[15] Scott, W., & Ambler, W. (2007). Test-driven development of relational databases. IEEE Software, 24(3),

37-43.

[16] Zhan, W. H., Chen, R., & Huang, S. (2010).GUI regression testing based on function-diagram.

Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (pp.

559 – 563).

[17] Chen, J., Mengxiang, L., & Shao, B. (2012). When a GUI regression test failed, what should be blamed?.

Proceedings of the IEEE International Conference on Software Testing, Verification and Validation (pp.

467-470).

[18] Tarhini, A., Ismail, Z., & Mansour, N. (2008). Regression testing web applications. Proceedings of the

International Conference on Advanced Computer Theory and Engineering (pp. 902–906).

[19] Xu, L., Baowen, X., Zhenqiang, C., Jixiang, J., & Huowang, C. (2003). Regression testing for Web

applications based on slicing. Proceedings of the Annual International Conference on Computer Software

and Applications (pp. 652–656).

[20] Xu, L., Xu, B., & Chen, Z. (2003). Survey of web testing. Computer Science, 30(3), 100-104

[21] Kitchenham, B., Pearl, B. O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic

literature reviews in software engineering. Information and Software Technology, 51(2), 7–15.

[22] Hetzel, W. (1973). Program test Methods (pp. 201-213). Prentice Hall,

[23] Hartmann, J. (2012). 30 years of regression testing: Past, present and future.

[24] Leung, H., & White, L. (1990). Insights into testing and regression testing global variables. Journal of

Software Maintenance, 209-222.

[25] Fisher, K., Raiji, K,. & Chrusckicki, A. (1981). A methodology for retesting modified software.

Proceedings of the Conference of the National Teleconference (pp. 1–6).

[26] Engström, E., Skoglund, M., & Runeson, P. (2008). Empirical evaluations of regression test selection

Journal of Software

987 Volume 10, Number 8, August 2015

techniques: A systematic review. ACM ESEM, 30(12), 971-978.

[27] Giuseppe, A. A., Lucca, D., & Fasolino, A. (2005). 7 Web Application Testing.

[28] Jazayeri, M. (2007). Some trends in web application development. Future of Software Engineering,

199-211.

[29] Postel, J. (1981). NCP/TCP Transition Plan. Retrieved September 27, 2014, from

http://www.rfceditor.org/rfc/rfc801.txt

[30] Kleinrock, L. (2010). An early history of the internet. IEEE Communications Magazine, 26-36.

[31] Master Thesis. Retrieved September 25, 2014, from

http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/Thesis_Danny_Roest.pdf

[32] Master thesis: Retrieved September 27, 2014, from

http://www4.in.tum.de/~haftmann/student/mthesis/thesis.pdf

[33] PhD Thesis: Retrieved October 09, 2014, from

https://www.cs.virginia.edu/~weimer/students/kinga-phd.pdf

[34] Tamin, K. A. PhD Thesis. Retrieved October 13, 2014, from

https://lra.le.ac.uk/bitstream/2381/27571/1/2012KhanTAPhd.pdf

[35] Nguyen, C., Marchetto, A. & Tonella, P. (2011). Challenges in audit testing of web services. Proceedings

of the Conference on Software Testing, Verification and Validation Workshops (pp. 103-106).

[36] Ricca, F., & Tonella, P. (2001). Analysis and testing of Web applications. Proceedings of the International

Conference on Software Engineering.

[37] Marback, A., Hyunsook, D., & Ehresmann. K. (2012). An effective regression testing approach for PHP

web applications. Proceedings of the International Conference on Software Testing, Verification and

Validation.

[38] Hyunsook, D., & Hossain, M. (2014). An efficient regression testing approach for PHP web applications:

A controlled experiment software testing. Verification and Reliability, 24(5).

[39] Harman. M., & Alshahwan, N. (2008). Automated session data repair for web application regression

testing. Proceedings of the 1st International Conference on Software Testing, Verification, and Validation

(pp. 298-307).

[40] Garg. D., Datta, A., & French, T. (2012). A two-level prioritization approach for regression testing of

web applications. Proceedings of the Conference on Software Engineering (pp. 150-153).

[41] Garg, D. & Datta, A. (2013). Parallel execution of prioritized test cases for regression testing of web

applications. Proceedings of the Conference on Thirty-Sixth Australasian Computer Science (pp. 23-32)

[42] Rothermel, G., Untch, R., & Harrold. M. (2001). Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(6), pp.929 –948

[43] Kumar, A., & Goel R. (2012). Event driven test case selection for regression testing web applications.

Proceedings of the International Conference on Advances in Engineering, Science and Management (pp.

121-127)

[44] Roest, D., Mesbah, A., & Van, D. A. (2010). Regression testing ajax applications: Coping with dynamism.

Proceedings of the International Conference on Software Testing, Verification and Validation (ICST) (pp.

127-136).

[45] Athira, B., & Samuel, P. (2010). Web services regression test case prioritization. Proceedings of the

International Conference on Computer Information Systems and Industrial Management Applications (pp.

438-443).

[46] Chen, L. Z., Wang. L., Hongmin, S., & Baowen X. (2010). Test case prioritization for web service

regression testing. Proceedings of the Symposium on Service Oriented System Engineering.

[47] Dobolyi, K., & Weimer, W. (2009). Harnessing web-based application similarities to aid in regression

Journal of Software

988 Volume 10, Number 8, August 2015

https://lra.le.ac.uk/bitstream/2381/27571/1/2012KhanTAPhd.pdf

testing. Proceedings of the International Symposium on Software Reliability Engineering (pp. 71-80).

[48] Ruth, M., Sehun, O., Loup, A., Horton, B., Gallet, O., & Shengru, T, (2007). Towards automatic

regression test selection for web services. Proceedings of the Conference on Computer Software and

Applications (pp. 729-736).

[49] Rothermel G., & Harrold, M. (1997). A safe, efficient regression test selection technique. ACM Trans.

Software Engineering Methodology, 6(2), 173-210.

[50] Ruth, M. (2011). Employing privacy-preserving techniques to protect control-flow graphs in a

decentralized, end-to-end regression test selection framework for web services. Proceedings of the

International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (pp.

139-148).

[51] Zhang, T., Yao, Q., Zheng, X., Chunyan, M., & Wang, H. (2001). An approach of end user regression

testing for semantic web services. Proceedings of the International Conference on Management and

Service Science (pp. 1-4).

[52] Edward, F., & Miller, A. (2011). Le test automatise des applications web modernes. Genie Logiel, 6-12.

[53] Tarhini. A., Fouchal, H., & Mansour, N. (2006). Regression testing web services-based applications.

Proceedings of the International Conference on Computer Systems and Applications (pp. 163-170).

[54] Mirshokraie, S., & Mesbah, A. Java script assertion-based regression testing web. Engineering Lecture

Notes in Computer Science , 7387, 238-252

[55] Gagandeep, A., & Sengupta, J. (2010). Automatic generation of regression test cases for web

components using domain analysis and modeling. International Journal of Computer Applications, 12

(4), 14-17.

[56] Ahmed, K. T., & Heckel, R. (2011). On model-based regression testing of web-services using

dependency analysis of visual contracts. Fundamental Approaches to Software Engineering. Springer

Lecture Notes in Computer Science, 6603, 341-355.

[57] Raina, S., & Prakash, A. A. (2013). An automated tool for regression testing in web applications. ACM

SIGSOFT Software Engineering Notes archive, 38 (4), 1-4.

[58] Marback, A., & Do, H. (2010). A regression testing engine for PHP web applications: PARTE (fast

abstract). Proceedings of the International Symposium on Software Reliability Engineering (pp.

404–405).

[59] Beizer, B. (1990). Software Testing Techniques (pp. 193-212). International Thomson Computer Press.

[60] OSCommerce. Retrieved September 212, 2014, from http://www.oscommerce.com/

[61] FaqForge. Retrieved September 12, 2014, from http://sourceforge.net/projects/faqforge/

[62] Feng, L., Ruth, M., & Shengru T. (2006). Applying safe regression test selection techniques to java web

services. Proceedings of the International Conference on Next Generation Web Services Practices..

[63] Groeneveld, F., Mesbah, A. & Van, D. A. (2010). Automatic Invariant Detection in Dynamic Web

Applications. Technical Report TUD-SERG-2010-037, TUDelft.

[64] Bezemer, C., Mesbah, A., & Van, D. A. (2009). Automated security testing of web widget interactions.

Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering.

[65] Ruth, M., & Shengru T. (2007). A safe regression test selection technique for web services. Proceedings

of the International Conference on Internet and Web Applications and Services.

[66] Chen, Y., Rosenblum D., & Vo, K. (1994). Testtube: A system for selective regression testing.

Proceedings of the Conference on Software Engineering (pp. 163-171).

[67] Singh, Y., Arvinder, K., Bharti, S., & Singhal, S. (2012). Systematic literature review on regression test

prioritization techniques. In Informatica.

Journal of Software

989 Volume 10, Number 8, August 2015

http://sourceforge.net/projects/faqforge/

[68] Pasala, A., & Bhowmick, A. (2001). An approach for test suite selection to validate applications on

deployment of COTS upgrades. Proceedings of the Conference on Asia-Pacific Software Engineering (pp.

401-407).

[69] Szabo, C., Samuelis, L., Ivanovic, M., & T. Fesic. (2012). Database refactoring and regression testing of

Android mobile applications. Proceedings of the IEEE International Symposium on Intelligent Systems

and Informatics (pp. 135-139).

[70] Yanelis, H., Tariq, M., Jairo, P., & Peter, J. (2009). A meta-model to support regression testing of web

applications. Proceedings of the Conference on Annual Southeast Regional (pp. 123-129).

[71] EValid. Retrieved September 12, 2014, from http://www.e-valid.com

Anis Zarrad was born in Ksar Hellal, Tunisia, in 1961. He received his B.E degree in computer

science and software engineering from University of Ottawa, Ottawa, Canada, and the master’s

degree in computer science from Concordia University, Montreal, Canada, and the Ph.D.

degree in computer science from University of Ottawa, Ottawa, Canada. He is currently an

assistant professor in Prince Sultan University, Riyadh, Saudi Arabia. His research interests

include wireless network protocol testing based on state transition testing, and mobile

collaborative virtual environment.

Author’s formal
photo

Journal of Software

990 Volume 10, Number 8, August 2015

http://www.e-valid.com/

