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Abstract: Extended Finite State Machine modeling is a widely used technique to model state-based systems.
Although EFSM models are usually mainly used to simplify the design and implementation of the systems,
their use can be extended to enhance and speed up system maintenance (e.g. Error localization,
performance enhancement, change management, etc.). In this paper we present a classification approach
for EFSM transitions based on their criticality during maintenance. The purpose of this classification is to
give the system maintenance team a tool for estimating criticality level for each transition in the EFSM
model and consequently to allow them to better plan and manage the change process according the
identified criticality of the transitions involved in the required change. Our classification approach is based
on transitions’ complexity as well as the dependencies between the transitions in the model. An empirical
study shows that the classification can be used to enhance and speed up the maintenance process for a
required change.

Key words: Extended finite state machine, system modeling, state-based modeling, transition classification,
criticality analysis.

1. Introduction

The demand for large and complex software systems has been steadily increasing over time. The
development and maintenance of these systems are difficult and costly due to the increased complexity of
the systems. System models such as the Extended Finite State Machine (EFSM) are often used during the
development of a software system to reduce ambiguity, misunderstanding, and misinterpretation of system
specifications [1]. Additionally, they are used for test generation and prioritizing [2-6], test suite reduction
[7], model checking [8].

During software maintenance of large and evolving software systems, the specification and
implementation are frequently modified to fix defects, enhance or change functionality, add new
functionality, or delete an existing functionality. One of the main challenges during software maintenance is
to determine the severity of the consequences of applying a change to the system. Considering one
component of the system at a time, it will be helpful for the maintenance team to know:

» Ifachange is applied on the component, will other components be affected by the change? If so, what
are these components? And what percentage do they make from the total number of components in
the system? Usually, the higher the parentage is, the more severe the expected consequences of the
change are.
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+ If a change is not applied on the component under consideration, what is the likelihood that the
component will still be affected by the change? The higher the probability that a component will be
affected by a change applied elsewhere in the system, the more sensitive the component is
considered.

Knowing these two points for each component beforehand enhances and speeds up the maintenance
process since the maintenance team will be able to forecast the scope of the change and properly plan the
implementation of the change.

In this context, we propose classifying components into different levels of criticality based on 1) the
estimated severity of a change applied on the component and 2) the sensitivity of the component to a
change applied on other components in the system. Components have the highest level of criticality when
their change severely propagates to other components in the system AND when they have high probability
to be affected by a change applied elsewhere in the system.

In this paper we mainly target state-based systems, and we use their existing EFSM models to perform
the classification. EFSM models focus on the behavioral aspect of the system. They describe how the system
reacts to different events. They consists of two types of components, states and transitions. A states is a
snapshot of the system at a particular point in time. A transition is the active component which models the
circumstances that lead the system to change its state. Our proposed classification approach is applied on
EFSM transitions since they are the active components of the model. We perform the classification of
transitions by statically analyzing the dependencies between the transitions. For each transition in the
EFSM model we calculate a criticality index and then we rank the transitions accordingly.

The main contribution of our work is:
» Defining the criteria for critical EFSM transitions in the context of systems maintenance

» Defining a formula to calculate a criticality index for each EFSM transition and classifying them
accordingly.

The rest of the paper is organized as follows: Section 2 provides an overview of state based modeling and
model dependencies. Section 3 identifies the criteria considered for the classification and presents the
proposed classification approach. In Section 4 an empirical study is performed, and the results of the study
are presented. Section 5 outlines the related work, and in Section 6, conclusions and future research
directions are discussed.

2. Preliminaries

2.1. State-Based Modeling

EFSM is a very popular technique for modeling state-based systems [9] such as communications systems,
control systems, and embedded systems [10], [11]. As defined in previous work [12], [13], an EFSM consists
of a set of states (including a start state and an exit state) and transitions between states. A transition is
triggered at its originating state when an event occurs (e.g., an input is received) and an enabling condition
(e.g., a Boolean expression) associated with the transition is satisfied. When the transition is triggered, a
sequence of actions can be performed (which may manipulate variables and produce an output) and the
system is transferred to the terminating state of the transition. The following elements are associated with
a transition: an event, a condition, and a sequence of actions.

Fig. 1 shows a graphical representation of an EFSM transition. We distinguish three types of actions: an
input action (read), an output action (write), and an assignment action. In our model assignment, actions
have syntax of assignment statements and enabling conditions have syntax of conditional statements of C
language.
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Event(parameters)
[Condition]/
Action
Fig. 1. EFSM transition.

An EFSM M is expressed formally as a 7 tuple: M = (2, Q, Start, Exit, V, O, R) where:

2 is the set of events,

Q is the set of states,

Start € Q is the start state,

Exit € Q is the exit state,

V is a finite set of variables,

0O is the set of actions,

R is the set of transitions, where each transition T is represented by the tuple: T = (E, C, 4, Sp, S¢) where:

E e 2 is an event,

Cis an enabling condition defined over V,

A is a sequence of actions, A= <ay, az,...., a>, where g; € O,

Sp € Q is the transition’s originating state,

Se € Qis the transition’s terminating state.

In addition, the following notation related to a transition T is introduced:

Sp(T) is the originating state of transition T,

Se(T) is the terminating state of transition T,

C(T) is the enabling condition (a Boolean expression) associated with transition T,

E(T) is the event associated with transition T,

A(T) is a sequence of actions associated with transition T.

In M, X is a set of events, each of which is an external stimulus (input) that may be associated with a list of
arguments; i.e, an event E € X is represented by E(argi, argy, ..., argx). States in Q are passive elements in
the EFSM model. States are just snapshots of the system and they are not involved in any kind of decision-
making or computation. The states Start and Exit are where the system starts and terminates, respectively.
The variables in V provide storage for values that is accessible by enabling conditions and actions in
transitions. An action a; € O is one of the following types: assignment action, output action, or function call.
An assignment action assigns a value to a variable. An output action displays a variable or a constant to the
external environment. A function call to some function f{v1, v, ..., Vi) returns the evaluated value.

A transition T in R is triggered when the system is in the originating state S;(T), the event E(T) occurs,
and the enabling condition C(T) is evaluated to TRUE. When transition T is triggered, the A(T) sequence of
actions is performed and the system is transferred to the terminating state S¢(T). If a transition T is
specified at a state with no enabling condition, no other transition from that state can be associated with
E(T).

EFSM models may be depicted as graphs where states are represented by nodes and transitions are
represented by directed edges between states. A simple EFSM model of an ATM system is shown in Fig. 2.
This ATM system supports three types of transactions: withdrawal, deposit and balance. Before ATM
transactions can be performed, user must enter a valid pin that is matched against the pin stored in an ATM
card. A user is allowed a maximum of three attempts to enter the valid pin. For example, transition T2 is
triggered when: 1) the model is in state S1, 2) event PIN(p) is received, 3) the value of parameter p does not
equal to variable pin, and 4) the value of variable attempts is less than three. When the transition is
triggered: 1) an error message is displayed, 2) the value of variable attempts is incremented, and 3) the
user is prompted to enter PIN. Notice that in this example, for transition 72, Sb(T2) = S1, Se(T2) =51, C(T2)
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= (p != pin) and (attempts < 3), E(T2) = PIN(p).

In this paper, we assume that the EFSM model is executable, i.e., enough details are provided in the model
so that the model executor can execute the model based on the model specification (or an executable
program corresponding to the model can be generated from the model specification). In order to support
model execution, some actions may not be implemented (they are represented by “empty” actions).
However, all actions are implemented during the development of the system. An input to the EFSM is a
sequence of events with values for arguments associated with the events. For example, consider the
following input for the EFSM of the ATM system of Fig. 2:

t = Card(1234, 200), PIN(1234), Deposit(20), Continue(), Withdrawal(50), Continue(), Exit().

When the model of Fig. 2 is executed on the sequence of events t above, the following sequence of
transitions is executed: (t) = <T1, T4, T6, T7, T11, T7, T8>.

Continue/Print b; Display menu

PIN(p)[(p != pin) and (attempts < 3)]/ Withdrawal(w)[w<=b]/

Display error; b=b-w

attempts = attempts+1;
Prompt for PIN;

Withdrawal(w)[w>=b]/
Display error

T2

Card(x, y)/ PIN(p)
Prompt for PIN; [p==pinl/ -Ta4
T. pin=x;b=y Display menu

D .
attempts = 0 eposit(d)/

b=b+d

PIN(p) To
[(p != pin) and (attempts == 3)]/ Exit/
Display error; Eject card \ Balance/
Eject card; I Display b

LT38

Fig. 2. EFSM model for ATM.

In this paper, we assume that the EFSM model is deterministic, i.e., for every event E;(x;) where x; = arg;,
argy, .., argy, in t there is one and only one possible execution of model M (at most one transition is
executed for a given event Ej(x;)). When model M is executed for a given sequence of events t = <E1(x1),
E>(x2), ..., En(xn)>, a sequence of transitions (t) = <Tu, Tiz, ..., Tim> is executed.

2.2. Model-Dependence

The concept of data and control dependencies is well known at the code level and expanded on the model
level [14]. Model dependencies are used in different research work for different goals: slicing [15],
generating test cases, and prioritizing test cases for regression testing. In this paper, we use model
dependencies to measure how critical applying a change to the model can be.

We identify two types of dependencies between transitions: data dependency and control dependency
[16]-[18].

Transition dependence analysis with respect to data dependence focuses on occurrences of variables
within the system model. Each variable occurrence is classified as being a variable definition or a variable
use. We refer to these as definition and use, respectively. A definition of a variable v in a transition is any
occurrence of v at which v is assigned a value. A transition can define a variable v by defining v as a part of
the action(s) (e.g., v=x+5). A use of a variable v in a transition is any occurrence of v that references the
value of v. A transition can reference a variable v in a Boolean expression associated with the transition
(e.g., [v < 0]) or by using v in action(s) associated with the transition (e.g., x = v + 5).

Let T be a transition. The following concepts related to transition T are introduced:

D(T) is a set of variables defined by transition T, i.e., variables defined by an action(s) or by a triggering
event of T.
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» U(T) is a set of variables used in transition T, i.e., variables used in a condition and an action(s) of T.
For example, in the EFSM model of Fig. 2, for transition T1, D(T1) = {pin, b, attempts} and U(T1) = {x, y}.
Data dependence captures the notion that one transition defines a value of a variable and another

transition may potentially use this value. There exists a data dependence between transitions T; and Ty if
transition T; modifies the value of variable v, transition Tk uses v, and there exists a path (transition
sequence) in the model from T; to Tx along which v is not modified. More formally, there exists data
dependence between transitions T; and T if there exists a variable v such that: 1) v € D(Ti), 2) v € U(Tx), and
3) there exists a path (transition sequence) in the EFSM model from T; to Tx along which v is not modified;
such a path is referred to as a definition-clear path. For example, there exists a data dependence between
transitions T1 and T7 in the model of Fig. 2. This is because transition Ty assigns a value to variable b in the
action “b = y”, transition T7 uses variable b in the action “Print b”, and there exists a path from T; to T7 along
which b is not modified (sequence of transitions T, Ts, T1o, T7).

—— » Data Dependence

- Caontrol Dependence

Fig. 3. Model dependence graph of the ATM model.

Control dependence was originally defined for a program’s Control Flow Graph (CFG) [19]. Control
dependence captures the notion that one node in the control graph may affect the execution of another
node. Control dependence in an EFSM exists between transitions and it captures the notion that one
transition may affect traversal of another transition. Control dependence between transitions is defined
similarly to control dependence between nodes of a CFG i.e., in terms of the concept of post-dominance. Let
Y and Z be two states (nodes) and T be an outgoing transition (edge) from Y. State Z post-dominates state Y
if Z is on every path from Y to the exit state of the EFSM. State Z post-dominates transition T if Z is on every
path from Y to the exit state of the EFSM through transition T. Transition Tk is control dependent on
transition T; iff: (1) Sp(Tx) does not post-dominate Sy(T;) and (2) Ss(Tx) post-dominates transition T;. Notice
that the definition of control dependence presented in this paper captures the same view as the definition
of control dependence between nodes in a CFG.

For example, transition T4 has control dependence on transition T in the model of Fig. 2 because state S,
does not post-dominate state S1 (condition 1 of control dependence definition is true) and state S, post-
dominates transition T4 (condition 2 is TRUE).

Data and control dependence can be graphically represented by a directed graph where nodes represent
model transitions and directed edges represent model data and control dependencies.

More formally, let M = (%, Q, Start, Exit, V, O, R) be an EFSM model and let G=(R, E) be a model dependence
graph of model M where:
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Ris a set of nodes (set of transitions)

Eis a binary relationon R, & E R X R, referred to a set of directed edges where: edge (T;, Tx) € E, if
there exists data or control dependence between transitions T; and Tx.

Throughout this paper, we will be consistent on using the statement “there exists dependence between
transitions T; and Tx”. It will always mean that Tx depends on T; (not the opposite), so in the dependence
graph, the relation will be represented by the directed edge (T; Tx).

Due to space limitation, Fig. 3 shows only a partial model dependence graph of the model of Fig. 2.
Variables associated with data dependencies are also not shown. Note that data dependencies are shown as
solid edges and control dependencies are shown as dashed edges.

3. Identifying Critical Transitions

Software criticality is usually considered from the safety point of view. In this paper, however, our focus
is on system maintenance. In this context, we define critical transitions as influential and/or important
transitions which require greater attention during the maintenance process. During system maintenance
for state based systems, a change can be applied to one or more transition/s. For a given transition Ti, when
a change is applied on the model, the change is either (1) applied to Ti or (2) it is applied to other
transitions in the model. Consequently, we identify two criticality measures for each transition.

* The first measure considers the criticality of a transition with respect to a change applied to the
transition itself. When the change is applied to Ti, if the change propagates to a large number of other
transitions in the model, we consider that Ti is a critical transition as its change affects a large
portion of the model. We call this measure: change-severity of Ti.

» The second measure considers the criticality of a transition with respect to a change applied to other
transitions in the model. When the change is applied on a transition other than Ti, we consider that Ti
is critical if it has a high probability to be affected by the change. We call this measure: Ti’s sensitivity
to change

* The overall criticality of a transition can be calculated using both measures and taking into
consideration the probability that the transition will undergo a change.

3.1. Calculating Severity and Sensitivity Measures

To measure the criticality of a transition Ti when a change is applied to it, we identify the transitions that
are control or data dependent on T;. Recursively, for each identified transition, we identify their dependent
transitions. We call the set of all identified transitions Affected transitions (with respect to T;) because a
change performed on T;propagates to these transitions either directly or indirectly, and consequently they
are affected by the change. The larger the set of affected transitions is, the more critical T; is.

Similarly to measure the criticality of a transition Ti when a change is applied to other transitions in the
model, we identify all transitions on which T; is recursively either control dependent or data dependent. We
call these transitions Affecting transitions (with respect to T;) because if a change is performed on any of
these transitions, the change propagates to, and potentially affects, Ti. The larger the set of affecting
transitions is, the more critical the transition is. To formally define the set of affecting transitions and the
set of affected transitions, we define the relationship “affects” as follows:

Let G=(R, E) be the dependence graph of the model M. A transition T in R “affects” another transition T'in R
if and only if there is a non-null path from T to T' in G.

Since the dependence relationship itself is not transitive, then we can look at the “affects” relationship as
the transitive relation of the dependence relation between transtions. For example, if transition T depends
on transition Q, and transition Q depends on transion S, then S “affects” T.

Definition 1: Let G=(R, E) be the dependence graph of the model M. The set of affected transitions for a
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transition T in G is the set of all transitions T', where T “affects” T'. Formally, we define this set as:

AD(T) = R, where R'S R,and T e R'if and only if “T affects T’ ” on R. (1)

Definition 2: Let G=(R, E) be the dependence graph of the model M. The set of affecting transitions for a
transition T in G is the set of all transitions T’ that “affects” the transition T. Formally, we define this set as:

AG(T) = R’, where R'S R,and T' € R'if and only if “T’ affects T ” on R. (2)

After identifying the set of affecting transitions and the set of affected transitions for each transition T in
the model, transitions are classified according to two different classifications: one classification is based on
the severity of a change applied to a transition Ti, the second classification is based on the sensitivity of a
transition Ti to a change applied on other transitions in the model. Accordingly, for each transition two
criticality indices are considered; severity index and sensitivity index.

The severity index for a transition T;(denoted as Svy;) gives an indication of the severity of applying a
change to Ti. It is calculated as the size of the set of affected transitions calculated as a percentage of the
total size of the model; where the size of the model is calculated in terms of the number of transitions in the
model. The size of the affected transitions is denoted as |AD(Ti)| and the size of the model is denoted as |M]|.

The sensitivity index for a transition Ti (denoted as Sny;) gives an indication of Ti's sensitivity to a
change applied to other transitions in the model. It is calculated as the size of the set of affecting transitions
calculated as a percentage of the total size of the model.

The following formulas are used to calculate the sensitivity and the severity of a given transition Ti.

_ lap(ri)|

Svr = M (3)
_ AG(TD)|
Snp; = T (4)

Table 1. Criteria for Severity and Sensitivity Criticality Levels

Criticality Classification Classification
Level Criteria based on Criteria based on
Severity Sensitivity
Very High Svr; = 60% Snr; = 60%
High 40% < Svr; 40% < Snr;
< 60% < 60%
Medium 20% < Svq; 20% < Snp;
< 60% < 60%
Low 0 < Svp; <20% 0<Snp < 20%
Negligible Svri =0 Snp; =0

Once the severity and the sensitivity measures are calculated for each transition in the model, the
transitions can be ranked into different levels of criticality. Table 1 declares boundaries for five levels of
criticality. The ranges are only sample suggestion. For different systems, the maintenance team may setup
different ranges for the criticality levels based on the nature of the system. The suggested criticality levels
are: very high, high, medium, low, and negligible. According to Table 1, when the severity of applying a
change to Ti is greater than 60%, it means that the change at Ti can propagate to more than 60% of the
other transitions in the model. We classify transitions with a severity of 60% or more in the highest
criticality level based on severity. On the other hand, the criticality of a transition Ti is ranked as highly
critical within the sensitivity classification if Ti is affected by any change performed on any transition out of
more than 60% of the transitions in the model. Tablel declares the boundaries of each level within each
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criticality category.

3.2. Calculating Overall Criticality Index

Finally, we calculate the overall criticality for each transition Ti taking into consideration the probability
that Ti will be changed or affected by a change. For a given transition Ti, when a change is applied on the
model, there are three possible scenarios:

1) The change is applied directly to Ti

2) The change is applied to a transition that Ti depends on, and consequently Ti can be affected by the

change

3) Tiis neither directly changed nor indirectly affected by the change

For the first scenario, to calculate the probability that a change will be applied to a given transition T on
the model, we look at the transition’s complexity. In EFSM, as explained in Section 2, transition T is
represented by the tuple: T = (E, C, 4, Si, Se) where: E is an event, C is an enabling condition, A is a sequence
of actions, A= <aj, az,...., a;>, Sp is the transition’s originating state, and S. is the transition’s terminating state.
The event, originating state, and terminating states are the mandatory components of a transition, while
the condition and actions are optional. A basic transition has only the mandatory components, while a more
complex transition include an enabling condition and a set of actions. During maintenance, a change can be
applied to any of the transition’s components. Complex transitions have higher probability to undergo a
change compared to basic ones because they have more components that can be subject to change. For a
model M consisting of N basic transitions, we assume that they all have equal probability to change, and
consequently the probability that a change will be applied to a particular transition T is 1/N. A realistic
EFSM model, however, contains transitions of different complexity, and therefore the probability that a
transition change should be calculated as a function of the transition’s complexity.

To measure transitions complexity, we follow a simple approach of counting the constituent parts of each
component of the transition. For the events, the number of parameters is counted. For conditions and
actions, the variables, values, and operators are counted. We assume that a basic transition consists of a
simple event without parameters, and it doesn’t have any conditions or actions. A basic transition is
assigned a complexity value of 1. For more complex transitions, the complexity of transition is calculated as
the sum of the event’s complexity, the condition complexity, and the actions complexity.

Formally, we write the complexity formula for a given transition Ti as follows:

Cx(T;) = Cx(E) + Cx(C) + X Cx(ay) (5)

where:
Cx(E) = 1+ number of paramters”

Cx(C) = number of variables, values, and operators
Cx(a) = number of variables,values, and operators, for assignment actions
Cx(a) =1, for output actions
Cx(a) = 1+ number of parameters, for funtion calls™
*The 1 represents the complexity of a transition which have a simple event without any parameters
*The 1 represent the complexity of a function call without any parameters

The probability that a given transition Ti will change based on its complexity compared to the
complexity of the other transitions in the model, where the model consists of n transitions, is formulated as
follows:

Cx(Ti)

(6)
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For the second scenario listed above, the probability that a given transition Ti can be affected by a change
applied to a transition on which Ti has control or data dependence is calculated as follows:

2w Tean(T;) Cx(Tj)
Pc(AG(Ti)) = —L———— 7
(AG(Ti)) = 5o ™)
Whether a transition changes or is affected by a change, once a change reaches Ti, it can propagate to
other transitions in AD(Ti) as measured by the severity index Svi. Consequently, the overall criticality of a
transition Ti is the severity of the transition Ti taking into consideration the probability that the transition

is either changed or affected by a change. The overall criticality is formulated as follows:

Cr(Ti) = Pc(Ti) + Pc(AG(T)) * (Svr, + %) (8)

The fraction (1/n) in the formula is added to the severity because the severity index considers the
transitions affected by Ti excluding Ti itself, so adding the fraction will include Ti itself. This will also avoid
getting an overall criticality of zero when the severity index is zero (for transitions that do not affect any
other transitions in the model).

The possible criticality values generated from this formula is a positive number less than or equal to one.
The minimum possible value diverges to zero for basic transitions in very large models and which don’t
have any dependencies with any other transition in the model. The maximum value of 1 is very rare as it is
obtained when a transition Ti is always either changed or affected by a change (so Pc(Ti) + Pc(AG(Ti) is 1),
and all other transitions in the model have dependency on it (so Svr; is 1). In fact, any value more than 0.5 is
very rare as it requires a transition which have both the sensitivity and severity values higher than 70%.

After calculating the overall criticality for all transitions in the model, they are classified into five
different criticality levels: very high, high, medium, Low, and very low according to the criteria presented in
the table below.

Table 2. Criteria for Overall Criticality Levels

Level Criteria
Very high Cr(Ti) >0.36
High 0.18 <Cr(Ti) < 0.36
Medium 0.06 <Cr(Ti)<0.18
Low 0.03 <Cr(Ti) < 0.06
Very low Cr(Ti)<0.03

4. Empirical Study and Evaluation
4.1. Methodology

To evaluate the effectiveness of the presented classification approach, we apply it to six different EFSM
models. We show and discuss in details the results for one of the models, and we present and discuss the
summary results for all of the six models. The main purpose of applying the classification approach on six
models, is to validate that the approach can be useful during system maintenance. A high concentration of
transitions in one or two levels of criticality is an indication that all transitions of the models are relatively
homogeneous with respect to transitions’ severity, sensitivity and complexity, and in this case the
classification is not necessary. On the other hand, classifying transitions proportionally into three or more
transition is an indication that the classification can be useful during maintenance to distinguish between
highly critical transitions and transitions with low criticality.
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Table 3. Details of Six EFSM Models
Model Description

Model Number of Number of Number of

variables states transitions
Fuel Pumps 10 9 15
Cruise 18 5 20

Control

ATM 8 8 19
TCP-Dialer 31 17 46
ISDN 4 20 92
Print Token 5 11 98

The six EFSM models used for this study are publicly available, and they are: an ATM (Automatic Teller
Machine) model, a cruise control model, a fuel pump model, the Transfer Control Protocol-communication
dialer (TCP), Print-Token, and the Integrated Service Digital Network (ISDN) protocol. The sizes of the
models range from 5 to 20 states and 20 to 89 transitions. More details about the models are shown in table
3 above.

As shown in Fig. 4, the fuel pump model provides a basic specification for pay-at the pump fuel
dispensing applications. The system supports two types of payment methods: Cash or Credit. After
selecting the type of payment, the system supports two choices Gas filling: Regular Gas or Super Gas. The
model consists of 8 state and 15 transitions. The classification approach was applied to the model, and the

detailed results are shown in the Table 4 and Fig. 5.
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Fig. 4. Fuel pump model.

As shown in Fig. 4, the fuel pump model provides a basic specification for pay-at the pump fuel
dispensing applications. The system supports two types of payment methods: Cash or Credit. After
selecting the type of payment, the system supports two choices GAS filling: Regular Gas or Super Gas. The
model consists of 8 state and 15 transitions. The classification approach was applied to the model, and the

detailed results are shown in the Table 4 and Fig. 5.
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Table 4. Fuel Pump Model Criticality Values

T  AG(T) AD(T) Sv Sn Cx(T) Pec(Ti) Pc(AG(T)) Cr(T)
1 { {7.14} 0.533 0 7 0.092 0 0.0552
2 0 {3.5,7.14} 0.733 0 1 0.013 0 0.0104
3 {2} 0 0 0.067 1 0013 0.013  0.0017
4 {2} {5,7.14} 0.6 0.067 3 0.039 0.013 0.0348
5 {246} 0 0 02 1 0013 0.132  0.0096
6 { {5,7.14} 0.6 0 6 0.079 0 0.0527
7 {1,246} {9..14} 04 0.267 3 0.039 0.224 0.1226
8 {1,24,6} {9..14} 04 0.267 3 0.039 0.224 0.1226
9 {124,678} {10,12,13} 0.2 0.4 5 0.066 0.303 0.0983
10 {1,2,4,6,7,89,10} {10,12,13} 0.2 0.533 21 0276 0.645 0.2455
11 {1,2,4,6,7,8} 0 0 04 4 0.053 0.303  0.0237
12 {1,246,78910} {} 0 0533 12 0.158 0.645 0.0535
13 {1,24,6,789,10} {} 0 0.533 7 0.092 0.645 0.0491
14 {1,2,4,6,7,8} 0 0 04 1 0013 0.303  0.0552
15 {3 0O 0 0 1 0.013 0 0.0104
Total 76 1

According to the severity classification, T2, T4, and T6 are classified with very high criticality. Although
this is not easily visible from the EFSM model, a change performed on T2 can propagate to 73% of the
model given the recursive dependencies of other transitions on T2. On the other hand, 73, 5, T11, T 12, T13,
T14, T15 are ranked with negligible criticality since no other transitions depend on them. T1, T7, and T8 are
ranked with high criticality while T9 and T10 are ranked with medium criticality.

According to the sensitivity classification, transitions T10, T12, and T13, followed by 79, T11, and T14 are
all ranked with high criticality. This is mainly because T10, T12, and T13 use a large number of variables
which are defined by other transitions, consequently they are highly sensitive to any change done to these
variables by the other transitions. As for T9, T11, and T14, their execution depends on the successful
execution of a large number of transitions in the model. Transitions T2 and T10 are the most interesting
transitions to discuss for this model.

Transition T2 has the highest severity index of 73.3%. This is mainly because T3 and T4 both have
control dependency on T2. Recursively, T5, T7, and T8 have control dependency on T4, and T9, T10, T11,
T12, T13, and T14 have dependencies on T7 and T8. So, recursively, all these transitions can be affected by
a change applied to T2. This large number of transitions potentially affected by T2 is the reason behind
ranking T2 as highly critical with respect to its change severity. On, the other hand, T2 doesn’t have any
dependencies on any transition in the model. This means that a change applied to a transition other than T2
will not propagate and affect T2, and consequently T2 is ranked with negligible sensitivity. The overall
criticality of T2 depends on the probability that T2 will be the subject of a change during maintenance. The
calculated probability is mainly based on the transition’s complexity, and since T2 is a basic transition with
a complexity of 1, it has a very low probability to change (1/76 = 1.3%). With this low probability and
despite of its high severity, T2’s overall criticality is 0.0104 which is considered very low.

As for transition T10, it has the highest complexity in the model which highly increases the probability
that it will undergo a change during maintenance. Combined with its medium severity and high sensitivity,
T10’s overall criticality is the highest in the model, and consequently it is ranked as very highly critical.

Finally, while the reasons for the classifications of some transitions is very obvious to a developer (e.g.
the classification of T15, T3, and T5 with very low criticality), the classification of other transitions reveals
invisible critical aspects of the transition (e.g. T10 is unexpectedly ranked as the most critical transition in
the model).
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Fig. 2. (a) Transitions classifications according to severtiy (b) Transitions classifications according to
sensitivity (c) Overall transitions criticality classification for fuel pump model.

4.2. Results for All Six EFSM Models

The classification approach is applied on all six EFSM models, and the summary of the classification
results are presented in the Fig. 3 below. The main purpose of applying the classification approach on these
six models, is to validate that the approach can be useful during system maintenance. The results show that
out of the six models, two models will not greatly benefit from classifying their transitions. These two
models are the cruise control and print-token models. These two models don’t benefit from the
classification approach since all their transitions are classified within only two or three criticality levels out
of 5, and more than 60% of their transitions are classified as very highly critical. With the very high
transition-per-state ratio and with the cyclic nature of these two models, it is natural to get this result. On
the other hand, for the remaining four models (which have a more regular distribution of transitions over
states), the transitions are distributed over three to five levels. For these models the classification can be
very helpful as it clearly draws the maintainer’s attention to a relatively small set of highly critical
transitions which need careful planning during maintenance.
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4.3. Evaluation

The presented empirical study shows that our approach for transition classification can be helpful when
applied to certain type of models such as protocol modeling similar to ISDN and TCP. For example, when a
system requirement should be changed, the system maintainer can use the severity classification to check
the expected severity of the change based on severity of the transitions involved with the change. On the
other hand, when an erroneous behavior is reported, and the system should be checked to identify the
source of the problem, the system maintainer can use the sensitivity classification to identify the transitions
affecting the erroneous transition. Additionally, the sensitivity classification can be used during regression
testing after updating the system. Transitions classified with high criticality are the ones that have the
highest probability to reveal erroneous behavior, so the system maintainer can start validating the system
by running test cases with the highest number of sensitive transitions. Finally, the overall criticality
classification can be useful when a performance issue should be addressed in the system. In this case it is
helpful to look at complex transitions classified as highly critical first.

5. Related Work

Criticality analysis within the “failure mode, effects and criticality analysis” [20] is a well-known
analytical technique in certain fields of engineering such as automotive and aviation. It is applied during the
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design and production of new products to address potential risks and hazards, and to assess their criticality.
FEMCA is mostly used in the context of safety, and it is based on brain storming the potential failures for a
product, the consequences of these failures and their criticality especially in the context of safety. In
software maintenance context, impact analysis is usually applied to assess the potential impact of a
required change. There is a large number of code based impact analysis techniques and tools [21], as well
as other research work exploring model based impact analysis techniques [22], [23]. While impact analysis
techniques are applied to assess the impact of a well specified change on the system, our approach to
criticality classification doesn’t consider a specific change, instead it attempts to predict the criticality of the
EFSM transitions for any change expected in the future.

6. Conclusion

In this paper we presented a classification approach for transitions; the active components of EFSM
models. Two different classifications were presented, the first classification is based on the transition’s
sensitivity to change, and the second one is based on the severity of a change applied to the transition. An
overall classification taking into account the transition’s complexity in addition to its severity and
sensitivity is also presented. The presented empirical study shows that the classification approach can be
very helpful during maintenance, and it can be useful to: estimate the severity of a requested change in
order to plan the development project, locate the source of an erroneous behavior, prioritize test cases
during regression testing, and enhance a performance issue with the model. Additionally, the empirical
study shows that for some highly cyclical models with high and disproportional transition-to-state ratio
don’t benefit from the classifications as the transitions are classified within only two to three levels of
criticality and most of them fall within the highest level. The correlation between the design of an EFSM
model and the criticality of its transition needs further investigation in a future study.
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