

JAMEJAM: A Framework for Automating the Service
Discovery Process

Islam Elgedawy

Computer Engineering Department, Middle East Technical University, Northern Cyprus Campus, Guzelyurt,
Mersin 10, Turkey.

* Corresponding author: Tel.: +90-392-6612963. email: Elgedawy@metu.edu.tr
Manuscript submitted January 25 2016; accepted April 25, 2016.
doi: 10.17706/jsw.11.7.646-655

Abstract: The service discovery problem is not trivial, as it requires solutions for many complex

sub-problems such as service semantic description, service identification, service composition, service

selection, service evaluation, service adaptation and presentation. Currently, companies manually construct

their discovery processes in an ad-hoc tightly-coupled manner using different platform-services that

separately handle the identification, composition, selection, evaluation, adaptation and presentation

sub-problems. However, when users’ requirements change, the already constructed discovery process

needs to be manually reconstructed and reevaluated again. This creates a need for an automated approach

that allows different users to dynamically construct their discovery processes on the fly. Therefore, we

propose JAMEJAM, a framework for service discovery automation. It enables users to create their

customizable discovery processes on demand as an executable BPEL process that describes the required

matching aspects, matching schemes and matching policies. JAMEJAM realizes such process by dynamically

searching for the suitable platform-services in a context-sensitive manner using different types of

knowledge (e.g., aspects, services, and matching schemes knowledge), captured via different software

ontologies. Experimental results show that JAMEJAM increases the accuracy and the adaptability of the

service discovery process.

Key words: JAMEJAM, discovery analytics, service discovery, software ontology.

1. Introduction

According to the internet of services vision, users (i.e., people, businesses, and systems) should allocate

and consume the required computing services via the Web in a context-aware seamless transparent manner,

according to predefined Service Level Agreements (SLAs). Hence, services need to find other services in the

Web without a priori knowledge of their existences. This is known as the service discovery problem. Such

discovery problem is not trivial, as it requires solutions for many complex problems such as service

semantic description, service identification, service composition, service selection, service evaluation,

service adaptation and presentation [1], [2]. The output of a discovery process is a list of atomic and/or

composite services that fulfill users' requirements. A discovery service is the service that implements and

executes the service discovery process. We believe the service discovery process should be divided into the

following main sequential stages: 1) Service Description: Service providers should provide services’

descriptions in a machine-understandable format to enable discovery services to understand the services’

semantics and use them to accurately identify the services suitable for users’ requirements. Service

646 Volume 11, Number 7, July 2016

Journal of Software

description must include different service aspects. A service aspect is a specific view, an interpretation, a

facet, a distinct feature about the service. An aspect could be emergent (such as behavior, security,

performance), or non-emergent (such as interfaces, architecture patterns, business scopes). 2) Service

Matching and Identification: Users' functional and nonfunctional requirements are given as queries to the

identification and matching platform-service. The output of this stage is a list of candidates. Such list is

obtained by applying different service matching and identification approaches that examine different

aspects of the service. Every aspect is examined via a specific matching scheme that realizes a given aspect

matching approach. The same aspect could have multiple matching schemes. Hence, we need to capture

more semantics about the matching schemes to know, which scheme can be applied in which context.

However, this is not the end of the story, as each candidate needs to be evaluated against the required SLA. 3)

Service Evaluation and Analysis: Such stage takes the list of candidates from the previous state as input,

then performs a more comprehensive Fit-GAP analysis on each candidate such as verifying the static QoS

parameters against the required SLA, which is known as the service selection process. The output of this

stage is an accurate list of atomic and composite services that can fulfill users' requirements. 4) Service

Adaptation and Presentation: Such stage takes the list of atomic and composite services from the

previous stage as input, and checks for services that needs adaptation. It tries to automatically create the

required service conversation adapters using different types of semantics as in [2]. The output of this stage

is a list of customized services that exactly fulfill users' requirements. We include the adaptation stage as

part of the discovery process, as there is no benefits from finding a service that cannot be used for

heterogeneity reasons.

We argue that in order to build a customizable automated discovery process that could be dynamically

constructed in a context-sensitive manner, users should be able to define any aspects they need in their

queries. Also they should define any matching schemes and their arrangement to construct the required

discovery process. To fulfill these requirements, we propose JAMEJAM, a framework for service discovery

automation (i.e., named after the Persian myth of the divine cup that can provide answers for any question).

It enables companies to create their discovery process as an executable BPEL process that describes the

required matching aspects, matching schemes and matching policies. JAMEJAM realizes and executes such

BPEL process by finding the suitable platform-services for every stage using different types of knowledge

regarding: 1) the emergent and non-emergent aspects of the published services, 2) the aspects’

description models, 3) the semantics of the services’ application domains, 4) the semantics of the adopted

matching approaches, 5) users’ preferences, contexts and goals. JAMEJAM extends our previous work in [3]

to include service evaluation and adaptation stages. We believe JAMEJAM is an essential platform-service

needed for realizing the internet of services vision. JAMEJAM acts as a big tent for existing discovery

approaches, as any existing service description model could be encapsulated in JAMEJAM via a software

ontology, and any discovery approach could be encapsulated in JAMEJAM as a matching scheme.

Experimental results show that JAMEJAM helps in increasing the accuracy and the adaptability of the

discovery process. The rest of the paper is organized as follows. Section 2 provides an overview of the

JAMEJAM framework. Section 3 explains how to use the framework. Section 4 presents the formal models

needed by the framework; Section 5 discusses the framework query management. Section 6 discusses

related work, while Section 7 summarizes the verification simulation experiments. Finally, Section 8

concludes the paper.

2. Jamejam Framework Overview

As we can see in Fig. 1, JAMEJAM mainly consists of four main subsystems: the aspects knowledge

management subsystem, the services knowledge management subsystem, the matching schemes

647 Volume 11, Number 7, July 2016

Journal of Software

knowledge management subsystem, and the service discovery subsystem. JAMEJAM subsystems also need a

vertical layer of auxiliary services that help them to accomplish their tasks.

Fig. 1. JAMEJAM framework.

JAMEJAM subsystems could be summarized as follows: 1) Aspects Knowledge Management Subsystem:

It is the subsystem responsible for managing aspects knowledge, and its corresponding repository. An

aspect knowledge is the facts, information, and skills acquired through experience, education, theory and

practice regarding such aspect. JAMEJAM aims to capture such knowledge in a machine-understandable

format following a dynamic, incremental, and context-sensitive manner, then stores such knowledge in a

common repository, so that it can be shared between users and companies. One way to encapsulate such

knowledge in a machine-understandable format is via ontologies. Hence, JAMEJAM enables the company

experts to dynamically create their aspects’ ontologies and aggregate them into software ontologies by

providing the needed primitives, constructs, and infrastructure. Details are given in Section 4.

2) Service Knowledge Management Subsystem: It is the subsystem responsible for managing services

knowledge, and its corresponding repository. Every service could have different semantic description

models based on the software ontologies the service provider want to support, forming what is known by

the service knowledge. JAMEJAM aims to capture such service knowledge in a machine-understandable

format following a dynamic, incremental, and context-sensitive manner, then stores such knowledge in a

common repository, so that it can be used during the service discovery process. Service creators should

register their services with JAMEJAM by defining a dynamic service descriptor (DSD) for each service, which

contains the aspects values defined according to the adopted aspects ontologies. JAMEJAM enables service

Query Formation

Module

Aspect-Oriented Service

Identification Module

Aspects Knowledge

Repository

Customized Services

Ranking Module

Aspects Knowledge Repository

Manager

Service Provider

DSD Repository

Service Registries

DSD Repository

Manager

Services Knowledge ManagementAspects Knowledge Management

Service Discovery

Management

Aspect

Knowledge

 Extractor

Aspect Expert

Matching Schemes

Repository

Application

Domains

Ontologies

uses

JAMEJAM Framework

Matching Schemes Repository

Manager

Matching Expert

Matching Schemes Knowledge Management

uses

Application

Domains

Ontologies

Query History

Log Module

Aspect

Recommender

Module

Service Functional

Composition Module

Component Adaptation

Module

Query

Management

Service Presentation

Management

Service Identification

Management

Service Evaluation

Management

SLA Verification

Module

Aspects Aggregation

Scoring Module

User

List of Customized ServicesContext, Policy, Request

Suggested Aspects and SLA Constraints

Auxiliary

Services

Indexing

Services

Clustering

Services

CSEG

Mediation

Service

Recommendation

Services

Security

Services

Governing

Services

648 Volume 11, Number 7, July 2016

Journal of Software

creators to enter the DSDs manually or automatically via extractors that retrieve the required knowledge

from the service package. During the service discovery phase, only the aspect descriptors suitable for users'

needs and goals will be used. 3) Matching Schemes Knowledge Management Subsystem: It is the

subsystem responsible for managing the matching schemes knowledge, and its corresponding repository.

JAMEJAM aims to capture matching schemes knowledge in a machine-understandable format following a

dynamic, incremental, and context-sensitive manner, then stores such knowledge in a common repository,

so that it can be used during the service discovery process. 4) Service Discovery Management Subsystem:

It is the subsystem responsible for managing the service discovery process. Once a company defined its

software ontology, matching schemes, and its services DSDs, it will be ready for service discovery. Such

discovery management subsystem consists of other four subsystems: the query management subsystem,

the service identification management subsystem, the service evaluation management subsystem, and

service presentation management subsystem. 5) Auxiliary Services: These are the services that

JAMEJAM subsystems use to accomplish their tasks such as indexing and clustering services. We require the

JAMEJAM framework to be deployed as a cloud platform service, so that it can be accessed by different

user-bases.

3. JAMEJAM Usage Process

This section explains how users should use JAMEJAM. We summarize such usage process into the

following main steps: 1) Models Preparation: In this stage, the company experts should prepare models

required for JAMEJAM processing. JAMEJAM requires different ontologies to work namely, application

domains, matching schemes, and the matching aspects ontologies, which constitute the required software

ontologies. Every company could create its own models and/or could select from existing ones. 2) Models

Registration: Once the company finalizes all the models required in the preparation stage, they should

register these models with JAMEJAM (via a specific registration API). In this stage, the company experts

should upload all the files corresponding to the defined ontologies and matching schemes. 3) Models

Values Extraction: For every service registered with a given software ontology, JAMEJAM builds its

dynamic service descriptor by invoking the defined extractors and/or interacting with the company

users/experts to get the missing values. The service descriptors are created according to the different

ontologies given in the registration stage. Once this step if finished, users will be able to use JAMEJAM for

the registered software ontologies. 4) Query Formation: Users should submit their queries in a form of a

JAMEJAM query, which is an XML file that contains their preferred matching aspects, preferred aspects'

values, and preferred matching policy, then submit their query file to JAMEJAM (via a query API). Users

can define any group of aspects they find suitable for their business need to be included in the query.

However, they should specify only one matching policy per query, as this policy shows JAMEJAM the order

in which the aspects will be processed and how their scores will be aggregated. If users are naive and

cannot construct the JAMEJAM query, JAMEJAM has a recommendation system and templates that could be

used to help them construct the JAMEJAM query, as shown in Section 5. If users requires the evaluation and

adaptation stages to be incorporated, they have to explicitly mention that in their queries. Once JAMEJAM

receives the query file, it constructs an executable BPEL process based on the defined aspects.

4. JAMEJAM Formal Models

In this section, we provide the required formal models needed to realize the framework.

A) Aspects Knowledge Formal Model: Company experts could define any aspects (emergent and

non-emergent) that they find necessary to appear in their services' descriptions such as service goals,

external behavior, supported interfaces, configurations parameters, usage statistics, maturity level, etc.

649 Volume 11, Number 7, July 2016

Journal of Software

Once the company experts select the required aspects, JAMEJAM aims to capture such aspects knowledge in

an ontology and stores such knowledge in a common repository, where aspect experts keep updating their

knowledge in a cooperative and dynamic manner. JAMEJAM does not restrict aspect description to specific

ontologies, but it allows a given aspect to be described using different ontologies capturing different

semantics, provided that all of these ontologies are registered with JAMEJAM. Hence, JAMEJAM requires

some other meta-data regarding the aspects given in the form of aspect descriptors. . Formally, JAMEJAM

defines an aspect descriptor as a tuple <AspectName, Category, ADORef, AORef, SourcesRef, ExtractorsRef>,

where AspectName is the name of the aspect according to the adopted application domain ontology

referenced by ADORef. Generic names are assumed if there is no adopted application domain ontology, the

value should set to Generic. Category specifies the service knowledge category the aspect belongs to, which

should have one of the following four values: Nontechnical, High-Level-Functional, Low-Level-Functional, or

Nonfunctional [1]. AORef is the reference for the ontology describing the aspect. SourcesRef specifies list

of references to the required knowledge sources that indicate which files, documents, and information

sources are needed to be packaged with the service by the service creators. . If there is no specific sources

for such aspect, the aspect knowledge sources attribute should be set to the value Generic, and the aspect

description value has to be manually entered by the service creators following the structure provided by the

aspect ontology. ExtractorsRef is the list of references to the extractors that can be used to generate the

aspect description from SourcesRef. This is important to automate the service knowledge extraction

process, otherwise aspect descriptions will be entered manually by the service creators, and the value

should be set to Manual. Of course, other meta-data attributes could be added to the JAMEJAM meta-model

such as relations to other aspects, and adopted knowledge languages, however in this article, we focus only

on those important attributes

Example 1: A Reputation Aspect. If a company likes to add a service reputation aspect to their services’

descriptions such that it takes a value from 0 to 5, which represents the number of stars that consumers

give to the service. The reputation aspect descriptor could be defined as <"Reputation", “Nonfunctional",

"Generic", "http://www.semanticweb.org/ontologies/Reputation", "Generic", "Manual">, such aspect

descriptor indicates that the reputation aspect is defined according to the referenced reputation ontology,

and the aspect value entry is manual.

B) Matching Schemes Knowledge Formal Model: To register a matching scheme with JAMEJAM,

matching experts are required to enter the corresponding matching scheme descriptor. We define a

matching scheme descriptor as a tuple <SchemeRef, AspectName, ADORef, AORef, MatchingService,

PreConditions, PostConditions, SchemeLogicType, SchemeApproach, ResultsExactness > such that

SchemeRef is a unique reference for the matching scheme. AspectName is the name of the involved

comparison aspect. ADORef is the reference to the adopted application domain ontology. AORef is the

reference to the adopted aspect ontology. MatchingService is the reference to the web service encapsulating

the matching approach. We require matching services to return a normalized matching score value (i.e.

from the range [0..1]) for each examined service, where 0 means no match, 1 means perfect match, any

value in between is a partial match (i.e., the greater the value, the closer the match). PreConditions is the set

of preconditions that must be satisfied before invoking the matching service. PostConditions is the set of

post-conditions that must be satisfied after successfully invoking the matching service. SchemeLogicType

indicates if the matching scheme logic is syntactic or semantic (i.e. it takes on of the following values

Semantic, Syntactic). SchemeApproach indicates if the matching scheme is structured or generic (i.e. it takes

on of the following values Structured, or Unstructured). ResultsExactness indicates if the obtained matching

results are exact or approximate.

Example 2: A Behavior Matching Scheme. For example, the company experts need to match the

650 Volume 11, Number 7, July 2016

Journal of Software

behavior aspect using the semantic approach discussed in [1], hence, the semantic behavior matching

scheme should be defined as <BehaviorSemanticScheme, ExternalBehavior,

“http://www.semanticweb.org/Elgedawy/Ontologies/Banking-ver2-2008",

"http://www.semanticweb.org/Elgedawy/Ontologies/GPLUS-ver1","http://www.WebServices.org/Elgeda

wy/Schemes/SMP-Matching",{},{}, Semantic, Structured, Exact >. This enables the company to create its

matching knowledge repository. Once the matching repository is built, matching experts could compare

approaches’ performance and accuracy.

C) Software Ontology Formal Model: Once the company experts defined their preferred aspects and

matching schemes, they can group these definitions into software ontologies. A software ontology is

simply a collection of aspects and matching schemes descriptors defined before. We formally define the

software ontology as the tuple <SWORef, AspectsList, MatchingSchemesList>, where SWORef is a reference

to the software ontology, AspectsList is a list of required aspect descriptors, and MatchingSchemesList is a

list of the required matching schemes descriptors. Use of software ontologies will make things easier for the

users, as they just need to reference the required software ontology in their queries, and JAMEJAM will

simply know the involved aspects and matching scheme definitions.

D) Service Knowledge Formal Model: Service knowledge is the collective knowledge regarding the

service various aspects. That for every aspect defined in the aspect knowledge module, a corresponding

value should appear in the service description. Such service description should be captured in a

machine-understandable format so that it can be understood by the discovery agent. Such service

description is dynamic as aspects' values may change overtime, also aspects could be added/removed from

the JAMEJAM framework according to the adopted company policies. Hence, every service registered with

JAMEJAM should have a dynamic descriptor known as a DSD (i.e., Dynamic Service Descriptor). We define

the service DSD as set of aspect value descriptor, where an aspect value descriptor is defined as the tuple <

AspectName, Category, ADORef, AORef , AspectValue >, where AspectName is the name of the aspect,

Category specifies the service knowledge category that the aspect belongs to, ADORef is the reference to the

adopted application domain ontology, AORef is the reference for the ontology describing the aspect, and

AspectValue is the aspect value according to the adopted aspect ontology. Such DSDs should be defined in

any machine-understandable format such as XML format. Every aspect value is defined according to its

corresponding aspect ontology. For example, business scopes are defined based on the ontology given in [4].

Once the service DSD is created, it is stored in the DSD repository so it can be used during the service

discovery process. JAMEJAM stores services DSDs in a different repository from the services repositories, so

it can have total control over the services DSDs, as service repositories could be external to JAMEJAM.

5. Query Management

Users should define the required query aspects and their values, their contexts, goals, and SLA obligations.

Also they should define the required matching policy. The notion of a matching policy is introduced to

enable users to define their preferences and logic regarding the service identification process. The matching

policy contains the logical constructs of how to use the aspects’ matching schemes to build the

identification process. Users can arrange such matching schemes in any way they find suitable. Such

matching policy could be easily described as an abstract BPEL process, as the BPEL language is powerful

enough to express complex processes, where the BPEL partners will be the retrieved platform-services

corresponding to the identified matching schemes. Once all this information are defined in the JAMEJAM

query, users should submit their query in a machine-understandable format. For simplicity, we propose to

use standard XML format for defining the aspects and their required attributes’ values, as shown in Fig 2.

The figure shows different aspects to be used in the search process, also it shows the required matching

651 Volume 11, Number 7, July 2016

Journal of Software

policy and the matching schemes’ preferences. The query contains a goal and targets business scope,

external behavior, and reputation aspects. Every aspect is defined according to its corresponding ontology.

The required aspects, their corresponding descriptors, the adopted application domain and aspect

ontologies are encapsulated in the adopted software ontology. Users could directly define the required

software ontology, or just refer to the required aspects and application domain ontologies. If no ontologies

are defined, the query is assumed generic, and generic matching schemes are used to match the aspects. For

naïve users, the query management system could provide recommendations and query templates for the

users to create the query.

<Query>
 <AspectName=``BusinessScope”, Category= ``Nontechnical”, ADORef=`..’/>
 <AspectName=``Reputation”, Category= ``Nonfunctional”, ADORef=``> <

Condition> <Comparator> GTE </Comparator> <Value> 2 </Value>
</Condition>

 </Aspect>
<AspectName=``Behavior”, Category= ``High-Level-Functional”, ADORef=``...”,
AORef =``...” >

 <Operation >
 <Inputs> ...…</Inputs>
 <Outputs> ...…</Outputs>
 <PreConditions> ….</PreConditions>
 <PostConditions> ….</PostConditions>
 </Operation>
 </Aspect>
 <Matching Policy, method = ``Hierarchal ”>
 <Sequence>
 <MatchingScheme stage=Identification >
 <AspectName> ``BusinessScope”
</AspectName>
 <SchemeLogicType> Syntactic
</SchemeLogicType>
 <SchemeApproach> Structured
</SchemeApproach>
 <ResultsExactness> Exact
</ResultsExactness>
 </MatchingScheme>
 <MatchingScheme stage=Identification >
 <AspectName> ``Reputation” </AspectName>
 <SchemeLogicType> Syntactic
</SchemeLogicType>
 <SchemeApproach> Structured
</SchemeApproach>
 <ResultsExactness> Approximate
</ResultsExactness>
 </MatchingScheme>
 < MatchingScheme stage=Evaluation>
 <AspectName> ``Behavior” </AspectName>
 <SchemeLogicType> Semantic
</SchemeLogicType>
 <SchemeApproach> Structured
</SchemeApproach>
 <ResultsExactness> Exact
</ResultsExactness>
 </MatchingScheme>
 </Sequence>
 </Matching Policy>
 <Correctness Criteria> …... </Correctness Criteria>
 ...
 </Query>

Fig. 2. JAMEJAM query example.

652 Volume 11, Number 7, July 2016

Journal of Software

6. Related Work

Currently, we did not find any existing automation framework that covers all the stages of the service

discovery process. However, existing approaches covered some stages of the discovery process. Hence, in

Table 1, we provide a comparison of some of the existing approaches with JAMEJAM in terms of their stages

coverage. We consider a stage is fully covered if the approach proposed a semantic solution for the stage

problem. However, the stage is partially covered if the proposed solution is approximate (i.e., only

addressing one aspect) or generic (i.e., adopts only keywords). As we can see in the table, only JAMEJAM

managed to cover all the discovery process stages.

Table 1. Service Discovery Process Realization Comparison

Works
Service

Description
Service Identification

Service

Evaluation

Service

Selection

Service Adaptation

[1] Full Full Full Partial

[3] Full Full

[5] Partial Partial Partial

[6] Full Partial Full Partial

[7] Full Full Full Partial Partial

[8] Partial Partial Partial

[9] Full Partial Full Partial

[10] Full Partial Full Partial

JAME JAM Full Full Full Full Full

7. Experiments

This section provides information regarding the simulation experiments performed to verify JAMEJAM’s

adaptability and accuracy. Hence, we create different usage scenarios and compare the resulting discovery

accuracy using the well-known precision and recall metrics, and compute the time taken to construct the

discovery process to check adaptability speed. However, lack of real life data that contains semantic

descriptions for services still a big challenge for researchers till today [1], [5], [6]. Hence, researchers opt to

use artificial data for their experiments. Such approach has been widely adopted by many works such as the

works in [1], [5], [6]. Hence, in this article we will follow the same approach and generate the artificial data

suitable for our experiments.

We adopt the same steps used to generate artificial data mentioned in [1], [3]. However, due to space

limitation we will no mention the steps here, and interested readers will find the details in [1], [3]. In this

dataset, we generate DSD for a number of services (i.e. arbitrary chosen as 10,000 service), such DSDs

contain the business scope aspect (described as in [4]), the behavior aspect, and the reputation aspect. The

behavior models are extracted from defined operations’ sequences and concepts obtained from a generated

artificial application domain ontology [1]. The corresponding matching approaches described in [1] and [4]

are encapsulated as services. To generate the query set. We select a random 100 distinct service DSD from

the generated dataset. For each DSD in the query set, we generate a random number of DSD replicas. Such

number is chosen from the arbitrary range of (0-50) to ensure having different number of services for each

service description. Finally, such generated replicas are added to the dataset and randomly distributed

among the DSDs. By doing so, we can automatically identify the correct answer for each query, which is the

corresponding service and its replicas. Hence, recall and precision could be automatically computed. Once

the dataset and query sets are generated, we insert the required matching policies in the queries, so we can

see how JAMEJAM will react. The first matching policy scenario, we required the aspects to be matched in a

cascade order starting by the business scope aspect, followed by behavior aspect, followed by the

reputation aspects, then we computed the corresponding precision and recall, as shown in Fig. 3. That

653 Volume 11, Number 7, July 2016

Journal of Software

shows by combining the three approaches using JAMEJAM, we managed to increase the discovery accuracy

compared to the cases when only one aspect is used, as combining between different aspects minimizes the

chance for the appearance of false positives. The discovery process construction took less than 1 sec, as the

matching schemes repository were indexed and quite small in size, as most of the time is consumed

searching such repository.

Fig. 3. Cascading matching policy. Fig. 4. Weighted matching policy.

To show the adaptability of JAMEJAM, we repeated the same experiments but with using a weighted

matching policy scenario, in which all the matching schemes are invoked in parallel, and the final obtained

matching results scores are aggregated based on matching schemes weights (i.e., behavior weight = 0.5,

scope weight= 0.3, and reputation weight =0.2), then we computed the corresponding precision and recall,

as shown in Fig. 4 just by changing the query, the whole discovery process will change accordingly.

Discovery process construction time did not change from the previous case, however Fig. 5 shows that by

combining the three approaches using JAMEJAM, we also managed to increase the discovery accuracy

compared to individual aspects cases. However, we can notice, the weighted matching policy performed

better than the cascading matching policy for the generated data set. Such information is obtained due to

the help of JAMEJAM, which provides the infrastructure required for service discovery analytics. Hence, we

can say JAMEJAM can help users to customize their discovery process to obtain the best discovery accuracy

by trying different discovery process configurations (i.e., aspects, matching schemes, and matching policies)

over their data, then choose the best performing configuration.

8. Conclusion

In this paper, we proposed JAMEJAM, an automation framework for the service discovery process that

enables users to create customizable discovery processes on the fly. This is done by adopting different types

of knowledge namely: application domains knowledge, aspects knowledge, services knowledge, matching

schemes knowledge, and discovery process knowledge. We discussed the framework’s main components

and provided the required formal models. Experimental results show that JAMEJAM helps in increasing the

accuracy and the adaptability of the discovery process.

References

[1] Elgedawy, I., Tari, Z., & Thom, J. A. (2008). Correctness-aware high-level functional matching

approaches for semantic web services. ACM Transactions on Web, Special Issue on SOC, 2(2).

[2] Elgedawy, I. (2011). On-demand conversation customization for services in large smart environments.

IBM Journal of Research and Development, Special issue on Smart Cities, 55(1/2).

654 Volume 11, Number 7, July 2016

Journal of Software

[4] Elgedawy, I., & Ramaswamy, L. (2009). Rapid identification approach for reusable soa assets using

component business maps. Proceedings of IEEE 7th International Conference on Web Services.

[5] Bislimovska, B., Bozzon, A., Brambilia, M., & Fratetnali, P. (2014). Textual and content-based search in

repositories of web application models. ACM Trans. Web, 8(2), 11:1–11:47.

[6] Kririkos, K., Plexousakis, D., & Paterno, F. (2014). Task model-driven realization of interactive

application functionality through services. ACM Trans. Interact. Intell. Syst, 3(4), 25:1–25:31.

[7] Roman, D., et al. (2005). Web service modeling ontology. Applied Ontology, 1(1), 77–106.

[8] Bianchini, D., et al. (2014). Service identification in interorganizational process design. IEEE

Transactions on Services Computing, 7(2), 265–278.

[9] Zisman, A., Spanoudakis G., Dooley, J., & Siveroni, I. (2013). Proactive and reactive runtime service

discovery: A framework and its evaluation. IEEE Transactions on Software Engineering, 39(7), 954–974.

[10] Brogi, A., Corfini, S., & Popescu, R. (2008). Semantics-based composition-oriented discovery of web

services. ACM Trans. Internet Technol, 8(4), 19:1–19:39.

Islam Elgedawy is an associate professor at the Computer Engineering Department,

Middle East Technical University, Northern Cyprus Campus. He received his B.Sc. and M.Sc.

degrees in computer science from Alexandria University, Egypt in 1996, and 2000,

respectively, and his Ph.D. degree in computer science from RMIT University, Australia in

2007. His work focuses on the areas of service-oriented computing, organic computing,

and software engineering. He has a growing record of international publications,

consultancy and professional services.

655 Volume 11, Number 7, July 2016

Journal of Software

[3] Elgedawy, I. (2015). USTA: An aspect-oriented knowledge management framework for reusable assets

discovery. The Arabian Journal for Science and Engineering, 40(2), 451-474.

