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Abstract: According to the traditional GA and EDA weakness, on the basis of MMEA, the orthogonal design 

initialization, convergence criterion and K-means clustering analysis method were introduced in this paper 

and it proposed a new model multi-objective evolutionary algorithm OMEA. The practice results showed 

that the OMEA had been greatly improved on both convergence and diversity of the solutions, reaching a 

good balance on diversity and convergence. Its comprehensive performance was better than the SPEA2, 

NSGA-II and other traditional multi-objective evolutionary algorithm.  
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1. Introduction 

In solving multi-objective problems , the early GA ( short for Genetic Algorithm ), such as MOGA [1] 

proposed by Fonseca and Fleming , NSGA and NSGA-II [2], [3] proposed by Srinivas and Deb , NPGA [4] 

proposed by Horn and Nafpliotis , SPEA-1,2 [5], [6] proposed by Zitzler E, Thiele and so on, all had the best 

potential to reach the solutions to the optimal solution. But given the great blindness of its global search, it 

was necessary to use some special methods to make the algorithm search have a certain "purpose". EDA 

(Estimation of Distribution Algorithm) that was introduced to solve MOPs had achieved good results [7]. It 

is thought that in the process of the evolution algorithm, the distribution of the population would have 

certain rules. Through the establishment of a probability model on the distribution, the search could be 

guided to obtain more information. M. Laumanns and N. Khan et al. proposed a multi-objective optimization 

algorithm based on Bayes [8], [9]. Thierens and Bosman et al proposed a multi-objective optimization 

algorithm based on EDA probability model [10]-[14]. Later, Tatsuya Okabe and Zhou Aimin et al 

respectively proposed a multi-objective optimization algorithm based on the distribution rule model of 

Pareto solution set [15]-[17]. 

Although Zhou's MMEA [16], [17], a multi-objective algorithm based on model, had a good effect in 

solving multi-objective problems. Owing to using principal component analysis (PCA) as the clustering 

analysis algorithm, it would consume more time in each generation. At the same time, MMEA often used 

random initialization, so the distribution of the initial population in the early stage was chaos. 

The algorithm OMEA proposed in this paper was aimed at the limitations of the above. It has the 

following characteristics: 1) The initial population was generated by the orthogonal design, so that the 
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individual could be more representative of the feasible solution region. 2) The idea of probability model 

was introduced into, and the ability of the algorithm to explore the unknown region was improved by 

establishing the model of Pareto set distribution rule. 3) K-means cluster analysis was employed instead of 

L-PCA clustering analysis on the traditional evolution algorithm (MMEA) based on the model in order to 

improve the efficiency of the algorithm.  

In this paper, some numerical experiments were carried out by some of the current typical and 

representative test functions. The results showed that the new algorithm OMEA both in terms of the 

diversity and the convergence of solution had been improved. It reached a good balance between diversity 

and convergence, avoiding the premature convergence to the local Pareto solution set. 

2. Orthogonal Design Initialization 

If the individual was well distributed within the feasible solution domain in the population initialization, 

the algorithm in the next iteration process would be easier to make the individual fall in the Pareto optimal 

solution set. However, in the practical multi-objective optimization problems, there was no prior 

knowledge about the Pareto Solution Set. Quantization technology could be introduced to initialize the 

population in the orthogonal experiment which made the individual more representative distributed in the 

feasible region. 

For the decision vector 1 2( , , , )Nx x x x X  . ix is noted as the ith factor in the orthogonal experiment. 

N is the number of the experimental factors. The N factors are distributed in a continuous domain which is 

not directly solved by traditional orthogonal design methods, so it is needed to carry out numerical 

quantification on the N factors. Each factor is quantified into finite numeric. Supposing [ , ]i i ix l u . If it is 

quantified into Q levels ( Q is an odd number) which are noted as ,1 ,2 ,, , ,i i i Qa a a , after quantization, each 

variable has Q  levels. Therefore, the feasible solution space contains 
NQ sample points. Then the 

orthogonal design is introduced to get a smaller and representative sample which will make the 

distribution regular in the feasible solution space. 

To facilitate the calculation, the paper used a special kind of orthogonal array ( )P

ML Q . Here Q was a 

prime parameter and satisfied 1Q N  , 
2M Q , 1P Q  . Literature[18] presented the algorithm 

to create the orthogonal array ( )P

ML Q . It first created a basic column and then created a non-basic column. 

The details on it were as follows: 

 

Algorithm 1: The generation of orthogonal population.  

Structure ( )P

ML Q , where 1P Q  . 

For 2(int  1; ; )  i i Q i       
,1 ( 1) / mod ;ia i Q Q     

 For 2(int  1; ; )  i i Q i         
,2 ( 1) mod ;ia i Q   

 For (int  1; 1; )t t Q t      
2 1 2( ) mod ;ta a t a Q     

For (int  1; ; )  i i M i     

 For (int  1; ; )  j j p j     

  , ;i ja    

If the number of factors was N , N columns from the orthogonal array ( )P

ML Q ( )P N above were 

selected to get orthogonal array ( )P

ML Q . 
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And then, M sample points could be got from 
NQ combinations. Each line represented a combination, i.e. 

an individual. In addition, the value of P was usually far greater than the population size N in the 

evolutionary algorithm. So in the algorithm initialization, the orthogonal array was first got. And then the 

rank sorting mechanism of NSGA-II was reused on P combination, i.e. individuals to help selecting 

operation. Finally, the front N individuals as the initial population from the orthogonal array were 

generated. 

3. Clustering Analysis of Population 

The original ideas of algorithm were owing to the potential distribution rule of Pareto solution set, which 

was mostly a principal curve or surface [19]. The principal curve was a one-dimensional smooth curve 

through the sample set as shown in Chart 1 below. In the same way, the principal surface was a 

two-dimensional smooth surface through the sample set.   

 

 
Chart 1. Principal curve diagram. 

 

According to the existence of the potential rules, if the distribution rules of principal curve or surface 

could be dug out, they could guide the search for Pareto optimal solution set through the curve or surface 

model.   

Definition 1: The population ( )P t is divided into K sub populations according to the similarity between 

individuals.  

{ | 1, , }, 1, ,K k k

iC X i N k K                        (3-1) 

kN is the number of individuals in kth sub population. And the formula satisfies: 

(1) , 1,2, , ;iC i K    

(2) . , 1,2, , ; ;i jC C i j K i j    

(3) 1 2

1

{ , , , }.
K

i n

i

C X X X


  

Because there was no prior knowledge about the global distribution of the principal curve, the clustering 

analysis of population as shown in formula (3-1) was introduced to divide and rule the population. The 

distribution of individuals within each cluster was dug out. And then the probability model was established 

based on clustering analysis for principal curve or surface. Finally the probability model was employed to 

generate new offspring individuals. 

3.1. Principle of Principal Component Analysis (PCA) [20] 

Definition 2: Let
'

1 2( , , , )nx x x x be a N dimensional random vector, and its ith principal component 

is: 
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'

1 1 2 2i i i ni n iF u x u x u x u x                              (3-2) 

Here 
' 1i iu u  , and satisfies the following conditions: 

(1) 1F is the maximum variance of all the formula like 
'F u x . 

(2) 2F which is not related to 1F  is the maximum variance of all the formula like 
'F u x . 

(3) ( 3,4, , )kF k n which is not related to ( 1)iF i k   is the maximum variance of all the formula like 

'F u x . 

3.2. Local PCA Clustering Analysis [17]  

Definition 3: L is noted as a line passing through the point x , and its direction is 1eig  corresponding 

to the 1st biggest eigenvalue. Then the Euclidean distance between the sample point , 1, ,jx j m ( m  is 

the total number of sample) to L is noted as ( , )jd x L . And the dividing evaluation standard is made as 

following: 

, 2

1 1

min [ ( , )]
kNK

k i

k

k i

d x L
 

                                 (3-3) 

Here kL is the line passing through the center point 
k

x of clustering kC , and
,k ix is the ith sample point of 

clustering kC . kN is the total number of sample in clustering kC . According to the dividing standard above, 

sample points could roughly distribute along with the clustering center line, and it could better describe the 

distribution rule of individuals. As shown in chart 2, the clustering shape got by the standard is roughly 

rectangular. 

 

 
Chart 2. The result of PCA clustering. 

 

3.3. K-means Clustering Analysis [21]  

K-means clustering algorithm steps are as following: 

(1) giving clustering number K . 

(2) Randomly selecting K points 1 2, , , Kc c c from 1 2, , nX X X as K center points of clustering sets. 

(3) Taking 1 2, , , Kc c c  as the center points to divide 1 2, , nX X X . 

If ( , ) ( , ). , 1,2, ,i j i md X c d X c j m K  and j m , put iX into jC . 

(4) Calculating new center point 
* * *

1 2, , , Kc c c  according to the points in 1 2, , , KC C C . 

* 1
, 1,2, ,

j i

i j

X Ci

c X i K
C 

                          (3-4) 
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 Here iC is the point number of iC .  

(5) If 
* , 1,2, ,i ic c i K  ends the calculation, the current center point is the result of clustering, else 

let 
*

i ic c  and return (3). 

                 
                       

Chart 3. The result of K-means clustering analysis.   Chart 4. Introducing extended factor. 
 

The K-means algorithm searched the result of clustering by iteration. It can simply rapidly and efficiently 

complete population clustering analysis. Chart 3 is the result of K-means Clustering Analysis. The clustering 

shape got by this standard is roughly circular. 

The literature [22] used local PCA to do clustering analysis, although it can more accurately describe the 

distribution rule of solution set. Its computational complexity is very expensive. When evaluating each 

cluster, it needs to use the Jacobi [23] to calculate the eigenvalue and eigenvector of the clustering sample. 

The Jacobi for high dimensional matrix iterative computing process is quite time-consuming. This makes 

the efficiency and efficacy of local PCA algorithm not balanced. Therefore, this article uses the general k - 

means dividing population to improve the efficiency. 

4. The Establishment of Probability Model and Individual Reproduction 

After clustering, it is now to establish 1-D or 2-D linear model for principal curves or surface in each
kC . 

It is different from traditional EDA. The probability model of evolutionary algorithm based on model is 

made of two parts: the deterministic model and the stochastic model. The purpose of establishing 

deterministic model is to obtain the rule of population distribution, and the purpose of the stochastic model 

is to describe the dynamic disturbance of the individual near the principal curve or surface. 

In
kC , assuming

k

i as its ith biggest eigenvalue and writing its corresponding eigenvector as 
k

iV , and 

noting the center sample point of 
kC as , 1,2, ,

k

X k K , the projection of all the points in
kC on the 1st 

and 2nd eigenvector is calculated as following: 

1, 1( )
kk k T k

i is X X V  , 2, 2( )
kk k T k

i is X X V                          (4-1) 

Here 1,2, ,k K ; 1,2, , ki N . 

If there were two objective functions in MOPs, establishing 1-D linear model in each sub population, 

making the linear model pass through the center point 
k

X and its direction being 1

kV , its model equation 

was as following: 

1( )
kk kH s sV X                                      (4-2) 

Here min 1,1, ,
min { }k

k k

ii N
s s


 , max 1,1, ,

max { }k

k k

ii N
s s


 . 

If there were more than two objective functions in MOPs, establishing 2-D linear model in each sub 

population, the method was as following: 
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1 1 2 2( )
kk k kH s sV s V X                                 (4-3) 

Here 1 2( , )Ts s s , 1 1,min 1,max[ , ]k ks s s , 
1,min 1,1, ,

min { }k

k k

ii N
s s


 , 

1,max 1,1, ,
max { }k

k k

ii N
s s


 , 

2 2,min 2,max[ , ]k ks s s , 
2,min 2,1, ,

min { }k

k k

ii N
s s


 , 

2,max 2,1, ,
max { }k

k k

ii N
s s


 . 

The above formula is called as a deterministic model. 

In the experiment, through the introduction of the Pareto solution set distribution rule and the Gauss 

model to establish the probability model of the dynamic population:   

min max( ) , [ , ]k k k k kH H s s s s                                (4-4) 

Here ( )kH s is a deterministic model to describe the current feasible solution set distribution rule, while 

k is a random vector satisfying 
2(0,( ) )kN I  normal distribution. I is n n unit matrix. 

1

kN
k

i
k i

k

d

N n
 


                                       (4-5) 

Here
k

id is the Euclidean distance between the ith  sample point to its principal curves in the kth  sub 

population. 

According to the probability model in formula (4-4), 
kN new sample points in each sub population were 

generated. These points roughly distributed on the principal curves as shown in chart 4. In order to make 

the algorithm have better ability to search unknown fields at both ends of the principal curve, extension 

factor [0,1]   was introduced to extend the s  in ( )kH s and 

min max min max max min[ ( ), ( )]k k k k k ks s s s s s s      . 

As the same to EDA, if the probability model was used to produce offspring in the early stage, it would 

make the algorithm easily premature convergence. This paper introduced the convergence criterion to 

determine when to perform local search:  

2

1

3

2

(2 )

( )

(3 )

k

k

k

k

objective problems

k

objective problems













  






                     (4-6) 

When ( ) 0k  , it indicated that the all sample points of kth sub population had distributed on the 

principal curves or surface. In the experiment it was set as 0.4. 

If the current clustering satisfied the convergence criterion, it indicated that the current sub population 

points had roughly distributed near the principal curves. Right now the distribution rule of Pareto solution 

set had been clear, and the probability model could be employed to guide the local search in each sub 

population. 

5. The Algorithm Flow and Numerical Experiments 

The overall flow of OMEA which is put forward in this paper is shown in chart 5: 

Genetic operation of the algorithm is in accordance with the NSGA-II [3], the smaller rank individuals are 
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the first to be selected. If the two individuals were in the same rank, it was the first to select the one with 

bigger crowding distance. This can not only make the non dominated frontier near to Pareto frontier, but 

also make the distribution and diversity of the solution set better. 

 

 
Chart 5. OMEA flow. 

 

5.1. Test Functions 

For the two objective problems, the OMEA selected 5 test functions of ZDT except ZDT5 to be tested. At 

the same time, due to the comparison with MEA/HA and MEA/HB in Zhou literature [16], [17], it improved 

ZDT3 to ZDT3.2[17]. The Pareto solution set of ZDT3 was 3 1 2{0 1, 0}ZDT nx x x       , while the 

Pareto solution set of ZDT3.2 was 3.2 1 2 1{0 1, }ZDT nx x x x       , its Pareto solution set 

distribution became more complex. For the three objective optimization problems, it selected DTLZ1 and 

DTLZ7 [24] to be tested. The description on the test problems were shown as Table 1. 

 

Table 1. Test Functions (n is the size of the decision space ) 
Problem n  Property 

ZDT1 30 High dimension, Pareto frontier is convex.  

ZDT2 30 High dimension, Pareto frontier is non convex.  

ZDT3 30 High dimension, Pareto frontier is discontinuous.  

ZDT3.2 30 High dimension, Pareto frontier is discontinuous. 
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ZDT4 

10 As many as 219 Pareto frontier, the closer to the true Pareto frontier is, the more densely 

populated the local optimal frontier is, this function is usually used to test the algorithm 

with ability of processing multi-modal problems. 

ZDT6 
10 Its distribution on the global Pareto optimal frontier is uneven, the closer to the Pareto 

optimal frontier is, the lower the density of solution is. 

DTLZ1 7 as many as（115-1）Pareto frontier 

DTLZ7 22 High dimension, as many as 22 discontinuous area on Pareto optimal solution  

 

5.2. Performance Evaluation Standard 

 metric andmetric[3] put forward by Deb were widely and commonly used as evaluation standard, so 

the paper selected these two metrics to evaluate the algorithms. They were defined as following: 

5.2.1.  Convergence metric   

The precondition of this standard is multi-objective Pareto optimal solution set. First of all, H points on 

the Pareto frontier in the objective space are sampled. Then the minimum Euclidean distance between each 

approximate Pareto optimal solution to the sample points is calculated, and is the mean of these 

minimum Euclidean distances. Its formula is as following:                   

,0
min ( , ) /

H

i fronti
d f f n


   

    (5-1) 

 

Here n is the number of solutions and f is the objective vector. The smaller the is, the better the 

convergence is. 

5.2.2.  Diversity metrics   

Multi-objective algorithm was hoping to get a solution set distributed evenly on the Pareto frontier. So 

firstly, the Euclidean distance id between the two adjacent solutions and the extreme solution ,f ld d in the 

objective space were calculated. And then the mean d of these distances was calculated. Finally, the 

diversity metricswas expressed as the  following formula :                   

1

1
| |

( 1)

N

f l ii

f l

d d d d

d d N d




  

 
  



 

         

(5-2) 

 

The smaller the is, the better the diversity is. 

 

Table 2. Parameter Setting of the OMEA 
Population 

size 

( N ) 

Generation 

 number 

Crossover 

probability 

Mutation 

probability 

SBX-

C
 

SBM-

m
 

Cluster 

number 

( K ) 

100 100 1.0 0.1 20 10 3 

 

5.3. The Experimental Environment and Parameter Settings 

The experimental environment was as follows: CPU-PIV 3.0 GHZ, Memory-2.00GB, OS-Microsoft 
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Windows XP Professional version 2002 Service Pack3, Development platform - Microsoft Visual Studio, 

NET 2008. 

Experimental parameter Settings were as follows: in OMEA, employing real code, using SBX and real 

polynomial mutation to do genetic operation, c and m separately indicate crossover and mutation 

parameters. The parameters of the OMEA were set in Table 2. 

5.4. Numerical Experimental Result and Analysis  

All the test functions were independently ran 10 times. The statistical results were as follows: 1) the 

mean and its standard variance of convergence metric ; 2) the mean and its standard variance of diversity 

metric . 

(1) For the two objective test functions, the mean and the standard variance of   and were shown in 

table 3. The results of OMEA algorithm proposed in this paper were shown in bold. The parameter settings 

and experimental results of other algorithms(SPEA2, NSGA-II, PAES) could be obtained from literature[3]. 

 

Table 3. The Statistical Results of the Two Objective Test Functions 
Algorithm 

 
ZDT1 

Convergence   Diversity   

NSAGA-II 0.033482 0.004750 0.390307 0.001876 
SPEA2 0.001799 0.000001 0.784525 0.004440 
PAES 0.082085 0.008679 1.229794 0.004839 

OMEA 0.00122027 0.000143742 0.352306 0.0272603 

 
Algorithm 

 
ZDT2 

Convergence   Diversity   

NSAGA-II 0.072391 0.031689 0.430776 0.004721 
SPEA2 0.001339 0.000000 0.755148 0.004521 
PAES 0.126276 0.036877 1.165942 0.007682 

OMEA 0.000813525 0.000077 0.353621 0.0239713 
Algorithm 

 
ZDT3 

Convergence   Diversity   

NSAGA-II 0.114500 0.007940 0.738540 0.019706 
SPEA2 0.047517 0.000047 0.672938 0.003587 
PAES] 0.023872 0.000010 0.789920 0.001653 
OMEA 0.00125884 0.0000789053 0.541039 0.0199432 

Algorithm 
 

ZDT4 

Convergence   Diversity   

NSAGA-II 0.513053 0.118460 0.702612 0.064648 
SPEA2 7.340299 6.572516 0.798463 0.014616 
PAES 0.854816 0.527238 0.870458 0.101399 

OMEA 0.000968052 0.000103285 0.376844 0.0177152 

 
Algorithm 

 
ZDT6 

Convergence   Diversity   

NSAGA-II 0.296564 0.013135 0.668025 0.009923 
SPEA2 0.221138 0.000449 0.849389 0.002713 
PAES 0.085469 0.006664 1.153052 0.003916 

OMEA 0.000890605 0.000309398 0.550322 0.0418366 

 

Because the ZDT4 has
921 local optimal frontier, it was commonly used to measure the algorithm with the 
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ability to process multi-peak function. ZDT6 optimal frontier was convex and its distribution on the 

objective space was uneven. So some of the traditional evolutionary algorithm was easy to fall into local 

solution in solving these two functions, and the distribution was extremely uneven. But from the table 3, 

OMEA can converge near to the global optimal frontier and the performance of the algorithm in 

convergence and diversity were improved significantly. 

Table 4 showed the statistical results on ZDT3.2 ran 10 times by OMEA, where MEA/HA and MEA/HB 

were respectively proposed in literature [16], [17]. The parameter settings and experimental results of 

NSGA-II and SPEA2 on ZDT3.2 can also be got in literature [17]. From table 4, the OMEA had certain ability 

to mine the distribution rule of Pareto set. So the algorithm had better ability to do the local search and the 

convergence of the algorithm was better than NSGA-II and SPEA2. At the same time, from the comparison 

on MEA/HA and MEA/HB, the performance of OMEA was between these two algorithms. Because the 

convergence criterion was not introduced in MEA/HA, this made MEA/HA randomly use probability model 

or genetic operation to generate new individuals. If probability model was established when the population 

distribution was not convergent, the quality of its individual was not high. While OMEA introduced the 

convergence criterion and only if the current clustering satisfied the criterion, the K-means clustering was 

used to establish the model in the sub population to direct the local search. This made the convergence of 

OMEA better than MEA/HA. In MEA/HB, it employed computationally expensive L-PCA to cluster. Its model 

could better characterize the distribution rule of current population and make the algorithm do better on 

local search. But this method was at the expense on large computing time. 

 

Table 4. The Statistical Results on ZDT3.2 Ran 10 Times by OMEA and Others 

Method 

Convergence   Diversity   
ZDT3.2 ZDT3.2 

Mean Std. Mean Std. 
MEA/HA 0.00995 0.00000 0.42006 0.01347 
MEA/HB 0.00392 0.00000 0.34086 0.00902 
NSGA-II 0.00754 0.00001 0.75214 0.00332 
SPEA2 0.00824 0.00009 0.94170 0.00065 
OMEA 0.00534 0.00007 0.56482 0.00432 

 

(2) For the three objective test functions, it compared the convergence on DTLZ1 and DTLZ7, where 

 -MOEA and  -DEMO were the experiment results in literature [25]. Table 5 showed the statistical 

results on DTLZ1 and DTLZ7 ran 10 times by OMEA. The results of OMEA algorithm proposed in this paper 

were shown in bold. Obviously, the of OMEA was better than the others. 

 

Table 5. The Statistical Results on DTLZ1 and DTLZ7 

Algorithm 
 

DTLZ1 DTLZ7 

Convergence   Convergence   

NSAGA-II 0.574227 0.502424 0.0252602 0.000731946 
 -MOEA 7.871200 1.868758 0.062187 0.032882 
 -DEMO 1.687799 0.182301 0.044138 0.021600 

OMEA 0.00464681 0.000367051 0.0220803 0.00338758 
 

6.  Conclusion  

In summary, in the process of numerical experiments, 8 different functions were used to test the 

performance of the OMEA and the diversity and convergence performance metric and mentioned above 

were respectively adopted to evaluate the algorithms. From the performance values and the final optimized 
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Pareto optimal solutions, it can be seen that in all of the 8 test problems, the multi-objective evolutionary 

algorithm OMEA proposed in this paper had been greatly improved on both convergence and diversity of 

the solutions, reaching a good balance on diversity and convergence. Comprehensive performance was 

better than the SPEA2, NSGA-II and other traditional multi-objective evolutionary algorithm. 
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