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Abstract: AutoInfer is a tool that is the state of the art in invariant detection. Invariants are properties of 

program components that remain unchanged throughout the execution of that component. AutoInfer 

automatically detects invariants for the programs under test which may or may not have a few invariant 

already present in them. AutoInfer uses AutoTest to generate a test suite for a given Program under test. The 

test suite (TS) is generated randomly using routine coverage as the coverage criteria. The generated TS is 

run on the program to create a change profile for the program, which in turn is used to activate relevant 

templates to generate quantified expressions. These expressions are the candidate contracts. Candidate 

contracts when run against the test cases are validated if they do not fail any test case. AutoInfer’s results 

are heavily based on the generated Test Suite. The better the generated Test Suite is better the final 

contracts will be. The work in this paper proposes that using Whole Test Suite (WTS) generation instead of 

random generation to generate the TS will results in a faster generation of the TS and will capture more 

errors as compared to AutoInfer. WTS is the state of the art in TS generation so it will result in better 

coverage and an improved fault detection capability.  
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1. Introduction 

Software testing is the process in the life cycle of the software development that takes up the most time. 

The reason why so much time is taken in this phase is because in practice most of the testing is done 

manually. This emphasizes the need to automate the testing process. The literature contains a large body of 

work containing the test automation tools. These tools are aimed at saving time and cost that is incurred 

when testing is done manually [1].  

Most of the test automation tools are TS generation [2] tools while a relatively smaller number attempt to 

generate automated oracles too. Oracles are files that contain the expected output of the programs under 

test. Oracles are used to validate if the test cases has produced the correct result or not [3]. Generally in 

practice the oracles are humans but there are tools that derive oracles automatically from formal and 

informal specifications. In the absence of the Specifications there are tools that derive oracles from other 

artifacts like program executions or documentation. 

Invariant detection is one such technique where the programs behavior is captured in the form of 

invariants, post-conditions and pre-conditions. These three together form the contracts for a routine under 

consideration. Contracts are a form of oracle that can validate the subsequent versions of the program 

during regression testing [4]. 

AutoInfer is the tool that infers or detects invariants, post-conditions and pre-conditions for a program 

Journal of Software

816 Volume 12, Number 10, October 2017



  

under test automatically. It basic working is based on the Daikon tool. The invariants are detected based on 

the templates that are selectively activated based on the change log for the Program under Test. First TS to 

exercise the Program under Test is generated randomly. This TS is used to create a change log for the 

programs routines. The routines are first instrumented, to capture the variable values after and before the 

routine is executed. This data is analyzed to detect possible invariants or contract for the routine. These 

expression capture the behavior of the program. All the candidate contracts are validated against the TS. 

The invariants that do not fail any test case are considered valid invariants. 

The better the generated TS, the better the detected invariant will be. The more coverage they TS will 

achieve the better chance will the contracts have of capturing errors. It is therefore proposed to use Whole 

Test Suite Generation instead of proposed to use Whole Test Suite (WTS) [5] Generation instead of 

randomly generation to create the initial TS for AutoInfer. WTS is the state of the art that uses the genetic 

Algorithm (GA) to generate the entire TS evolutionally at the same time. 

Section 2 contains the past work in the literature on invariant detection. Section 3 outlines the working of 

AutoInfer along with the possible improvements in the tool. Section 4 explains the proposed technique in 

detail and gives the pseudo code for the technique too. Section 5 contains the future work and section 6 

contains the conclusion. 

2. Related Work 

Any system being developed needs to be tested to reduce the chances of failure. Early fault detection is 

the key to reducing the maintenance cost as well as the time and effort required to make a project succeed. 

Software testing is done throughout the software development life cycle to reduce cost and effort. It is said 

that almost 60% of the software development budget is used in testing.  

Test cases are written to test different parts of the SUT (System Under Test) as the size of the system 

grows so does the Test Suite meant to exercise the system. Huge Test Suites increase computational cost as 

well as the human effort required to test the system.  One solution where the human effort can be greatly 

reduced is by generating Test Suites automatically. The issue with automated Test Suite generation is that it 

generally produces prohibitively large Test Suites. 

In testing an oracle is an entity that decides if a test case ran as expected or not. Generally the oracles in 

the development practices are humans; this adds unreliability and computational cost to the problem but if 

the oracles too are automated then no human intervention is required to complete the testing process. 

Automated oracle generation can be divided into three parts based on the resources they are generated 

from [6]. Specified oracles are generated from formal specifications, derived oracles are generated from 

artifacts other than the specifications and implicit oracles are the oracles that mostly test quality traits 

instead of stated requirements.  

All the past techniques that are used to automatically detect the invariants are considered in the 

literature. Major trends in context of the methods commonly employed to infer invariants are explored and 

the major limitation of the past work are also discussed 

Invariants are properties, traits or qualities of the code that remain unchanged throughout the life of that 

piece of code. Example of an invariant can be the condition that a certain variable within a loop will never 

have a value above 10. Common invariants are loop invariant, class invariants etc. Invariants are added to 

the code in the form of assertions along with pre and post conditions. This is the main feature of contract 

based programming [7]. 

A technique by Earst et al. [8] that was implemented in a tool called Diakon [9] is a popular in automated 

invariant detection technique. The program under test is run using a chosen Test Suite and the likely 

invariants are detected at runtime dynamically. 
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Dynamic analyses for invariant detection can get computationally expensive therefor there have been 

techniques in literature that employ static analysis instead of dynamic analysis to infer invariants. These 

techniques are relatively less computationally taxing [10]-[13]. 

Another major trend observed is the techniques that make use of models to infer invariants; [14], [15] 

these techniques express the invariant in the form of models like FSM (Finite State Machines). Ratcliff et al. 

used mutation testing to aid in the detection of invariant through heuristics from search based software 

testing [16]. 

Wei et al’s work [17], [18] attempts to improve the quality of the inferred invariants by generating the 

test suite in two part, the first set of test cases is used to infer invariant whereas the second set id designed 

to violate the inferred invariants thus making the test suite more capable of detecting faults. 

3. AutoTest 

Auto Test is used in the first step of AutoInfer [19]. It is used to generate the TS that is used to generate 

the change log. It uses random TS generation to generate TS’ for the System Under Test (SUT). It first 

generates objects for the classes randomly by calling the constructors for the classes. These objects of 

different types are all stored in an object pool.  

AutoTest is unit test generation tool i.e. it generates test cases for the each class. Each class is exercised by 

calling its routines using a randomly picked object from the object pool with randomly generated argument 

values. If a fitting object type is not present in the test Pool an object of that type is created from the class 

and added to the object pool as shown in Fig. 1 after the first step the randomly generated objects are then 

added to the object pool in the second step. If the object for a class does not exist in the pool the third step 

in Fig. 1 forms a loop where the missing objects for the classes are added to the object pool. In case the 

object of a class exists then that control is transferred to the third part of the Fig. 1 that runs the class 

routine. 

 

Fig. 1. Workflow of autotest. 
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The objects are randomly selected and run on the system until a predefined; user provided time frame is 

exceeded. The coverage criteria considered in AutoTest is the routine coverage. 

Although this method for Test Suite generation is simple and straight forward, test generation using 

conventional methods is liable to get stuck in infeasible routines. Whole Test Suite generation method 

overcomes this problem by generating the Whole Test Suite at the same time evolutionally. Random Test 

generation may or may not cover all the areas of the system under Test or may take really long to reach a 

decent coverage. The resulting TS may have high redundancy resulting in wasted time and effort. 

4. Proposed Model 

Whole Test Suite Generation tool is the state of the art in test suite generation. A set of Test Suites that are 

randomly generated using random objects is created. All the Test Suites are put in a Test pool. The initial 

population is selected from the test pool. The number of Test Suites that are selected from the pool is taken 

as input from the tester. 

The selected Test Suites are crossed over and mutated to produce the child generation. The Test Suites 

are ranked based on their fitness. The fitness of the test suite is based on how many routines it can cover. If 

a Test Suite that covers all the routines is generated then the algorithm terminates and gives that test suite 

as output but if no test suite is found that fulfill the fitness criteria then the selection, crossover and 

mutation operators are repeated until either the maximum number of iteration is reached or the fitness 

criteria is fulfilled..  

5. Pseudo Code 

5.1. Generate Initial Population 

The first step is to generate the initial population for the genetic algorithm. The initial population consists 

of randomly generated test suites of varying sizes. Each Test Suite Consists of a random number of Test 

Cases while each Test Case is a set of random function calls. Like AutoTest the test suites are generated by 

randomly selecting objects. 

 

 

ARRAY AllStatements[]: (Populate array with routine calls from the system under Test); 

 

//Generate TestCases 

FOR(i=0 TO MAXTestCase) 

   ARRAY TestCase[] = RAND(AllStatements[]) 

END FOR 

 

    //Generate TestSuites 

FOR(i=0 TO MAXTestSuite) 

   ARRAY TestSuite []= TestSuite[] + TestCase[RAND] 

END FOR 

 

 

5.2. Selection 

The second step is to select the test cases based on their fitness to form the first parent population. The 
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no of test Suites that are used for selection is taken as an input from the user and the population size can be 

changed in each run. AutoInfer does not contain selection crossover etc. because it generates test suites 

purely randomly. Selection is done based on the Roulette Wheel selection so that even the solutions with 

lower fitness have a chance and the diversity is maintained. 

5.3. Crossover 

Crossover is performed on the selected Test Suites by swapping the test cases in the test suites using One 

point Crossover. After crossover the child population of the same size as the parent population is generated. 

Elitism is ensured to preserve the solutions which have high fitness values. The selection therefor is done 

from the parent and the c child generations combined. 

5.4. Mutation 

Mutation in the Genetic Algorithm is meant to maintain diversity in the search space exploration. In WTS 

Gen the mutation is of three types. A random number is generated to decide what type mutation should be 

performed. The three possible types are i. interstion ii. Deletion and iii. Modification..  

5.5. Main Flow of the Program 

The Main flow of the program performs Crossover and Mutation on the selected Population in each 

iteration until the coverage criteria is fulfilled i.e. the fitness function f(T) becomes 0. The results from here 

are passed onto the next stage where the invariants are inferred. 

 

// Perform Mutation on the child Population 

MutationProb = RAND(1-3) 

// Remove a Random Test Case 

If MutationProb = 1 

    MutationTestCase[] = TestCase[RAND] 

    Remove MutationTestCase [RAND] 

 

// Add a Random Test Case 

ELSE IF MutationProb = 2 

    MutationTestCase[] = TestCase[RAND] 

    Add MutationTestCase [RAND] 

 

// Replace a Random Test Case 

ELSE IF MutationProb = e 

    MutationTestCase[] = TestCase[RAND] 

    Modify MutationTestCase [RAND] 

END IF 

 

 

   

  Initialize Population() 
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   // Genetic Algorithm Iteration 

FOR(I=1 TO MAXIteration) 

   Perform Selection() 

   Perform Crossover() 

   Perform Mutation() 

   Check Fitness() 

IF (Fitness = RequiredFitness) 

   Terminate program  

    Output TestSuite 

END IF 

END FOR 

 

6. Future Work 

This hypothesis is still an idea under development. Experiments and empirical evaluation will allow us to 

gain more confidence in our hypothesis. Future work will contain empirically evaluating the idea and 

coding a tool for it is  

7. Conclusion 

This paper identified the limitations in the existing Autoinfer tool and proposed a method to overcome 

the limitation. It presents the hypothesis that Test Suite generation using WTS generation will yield better 

coverage in less time as compared to random test generation. The pseudo code for WTS generation is also 

presented. Diakon is the existing tool that is most commonly used for invariant detection, this concept 

papers proposes that daikon should be modified so that the part of the tool that generates test cases should 

do so intelligently based on ‘Whole Test Suite’ generation. The direction of the future work is to implement 

the proposed concept and perform empirical studies to verify or disprove the claims made here. 
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