

Predicting Costly Maintenance Packages Using Package
Cohesion

Waleed Albattah*

Information Technology Department, Qassim University, Qassim, KSA.

* Corresponding author. email: w.albattah@qu.edu.sa
Manuscript submitted August 31, 2018; accepted October 10, 2018.
doi: 10.17706/jsw.13.10.547-558

Abstract: Poorly designed software systems leads to difficult and costly maintenance activities.
Object-oriented software metrics try to reflect the quality of the system design. Package cohesion metrics
are found to be related to software maintainability. In our previous work, we developed a new package
cohesion metric based on Martin’s well-known and well-accepted package design principles. This metric
was found to have a correlation with software maintainability and software testability. In this paper, we
continue this empirical investigation by predicting costly maintenance packages using package cohesion.
The prediction models created by logistic regression analysis show that costly packages can be predicted
using package cohesion as early as the design phase of the software development lifecycle. This early
prediction helps software engineers to discover any weak designs of the system and then these packages
can be re-designed or at least carefully tested and documented, which contribute to considerable reductions
in maintenance costs. The results demonstrate that the new package cohesion metric is promising and can
help in locating low maintainable software packages.

Key words: Cohesion, maintainability, maintenance, measurement, metric, package, software.

1. Introduction

Software maintenance is the last and the longest phase in the software development lifecycle. It aims to

keep a software product up to date and free of faults and defects. However, this phase depe nds on the early

phases of the software development lifecycle, which makes it a very critical phase, since it spans starting

from the delivery of the software product until it becomes outdated or obsolete. Although there are

different definitions of software maintenance in the literature, all definitions concentrate on the changes

applied to the software after its first installation. IEEE Standard [9] defined software maintenance as the

“modification of a software product after delivery to correct faults, to improve the performance or other

attributes, or to adapt the product to a modified environment.” During this long phase, different software

maintenance activities (including predictive, preventive, adaptive, and corrective changes) are conducted

[2], [3]. Software maintenance has the largest share of the total cost of software [4], and developers spend

at least half of their time analyzing and understanding software [5]. Unfortunately, although this phase is

costly and a very challenging phase, it is poorly managed according to [10]. Therefore, designing a well

maintainable software product is a very important goal. Giving that software maintainability is “the ease

with which a software system or component can be modified to correct faults, improve perform ance or

other attributes, or adapt to a changed environment” [1], developing good predictors for the software

maintenance effort in the early phases of software, namely the design phase, can avoid much of the costs

and efforts spent in every maintenance activity. The main goal of this research is to provide software

developers with an evaluation of design alternatives at an early phase, the design phase, or even at the

Journal of Software

547 Volume 13, Number 10, October 2018

maintenance phase in order to meet maintainability objectives. The research tries to pres ent a prediction

model for predicting costly maintenance packages during the design phase by using package cohesion and

package size metrics.

Many research works have studied software design to improve the quality of open source software

products. However, the measurement of software maintainability during an early phase, i.e. the design

phase, can reduce maintenance cost and effort. During the design phase, one successful approach to identify

costly maintenance packages is to create prediction models using object-oriented design metrics, such as

cohesion and size metrics. These prediction models can be built and verified using real maintenance

historical data. Prediction models can help to identify packages with potentially high maintenance cost and

effort during the design phase. This early prediction can help developers take another design option to

avoid unnecessary potential refactoring or high expected maintenance costs and efforts.

In object-oriented, design principles provide a roadmap to design maintainable software products. R. C.

Martin [6] presented design principles to improve software design, which became well-known and

well-accepted in the field of software design. Martin believes that following his design principles could

improve software maintainability and quality. The current research has been established based on three

package cohesion principles. Our previous work [11], [12] presented the new package cohesion metric that

has been created based on Martin’s package cohesion principles. This new metric has also been empirically

validated [13], [14]. Package cohesion is meant to be the coherence of a package among its classes that

should be closely related. Cohesion is an internal attribute of software quality that affects its maintainability.

Following Martin’s design principles [6], high cohesion is a goal to achieve software maintainability and

promote its reusability [7], [8]. According to design principles [6], package design should maximize its

cohesion and minimize its coupling with other packages in the software system. Our cohesion metric

considers the factors that can affect software maintainability, and it has shown some encouraging results

about the correlation between cohesion on one side and maintainability [13] and testability [14] on the

other side. The current work is an extension to these previous studies in investigating the ability of our

package cohesion metric along with a package size metric in predicting the maintenance of costly software

packages.

The rest of this paper is organized as follows. In Section 2, we present the background of the topic,

including internal and external attributes, related work, and our proposed package cohesion metric. Section

3 describes the design of the conducted study, while Section 4 reports and discusses its results. We discuss

future work and close with conclusions in Section 5.

2. Background

Design level metrics have gained their importance as early potential predictors of the significant impact

of the quality of software design on its maintainability [26]. Early prediction of software maintainability can

reduce much of the maintenance costs and efforts. We hope that our cohesion metric helps to predict a

costly maintenance package as early as the design phase which leads to cost reductions as well as to

maintenance improvements. Although some research studies performed to predict software

maintainability were based on measures taken after the coding phase, our cohesion metric has an

advantage of measuring cohesion in an earlier phase, the design phase.

While there is no one single predictive measure for software maintainability [17], cohesion as one factor,

which is measured by the proposed cohesion metric (CH), in this research study, can be counted as a

predictor for software maintainability.

This paper presents a prediction model for costly maintenance packages at an early phase, the design

phase, using a package cohesion metric developed based on a solid theory of the package design principles

Journal of Software

548 Volume 13, Number 10, October 2018

[6] to predict software maintainability. The next sections presents an overview of the cohesion metric and

related work.

 Internal and External Attributes 2.1.

Software product quality has internal and external attributes [19]. External attributes, such as

maintainability, depends on different factors such as software environment, package design, the experience

of the maintenance team, and the age of the system [18], [20]. As the software system get older, it is more

likely to require more maintenance efforts because its size is likely to increase. As the size is increased, the

software is more likely to be less organized and less understandable [20]. Although the package external

attributes, such as maintainability, cannot be known before it has been maintained, the package’s external

attributes can be predicted using package internal attributes, such as cohesion, as indicators for the

external ones.

In this empirical study, we followed the approach that has been utilized in different research studies in

the literature, such as Al Dallal [20], Morasca [21], and Li and Henry [22]. We consider package cohesion as

the internal attribute to predict the external attribute, package maintainability, using probabilities and a

probabilistic model. Using a probabilistic approach has two advantages [21]. First, it is a theoretically

well-defined and well-studied mathematical concept. Second, from the application point of view,

probabilities are practically and commonly used in the field.

For the package internal attribute, package cohesion is used as an independent vari able to predict the

package external attribute, package maintainability. We include another package internal attribute, which is

the package size (i.e., the number of classes in the package), to control for its effect and improve model

prediction. The prediction process requires the actual data collection of maintenance from the actual

software histories. We use three measures for package maintainability. The first measure is the Revised

Package (RP), to predict packages likely to be involved in at least one revision. The second measure is

Frequently Revised Package (FRP), to predict packages likely to be frequently revised. The third measure is

the Costly Package (CP), to predict packages likely to show a substantial amount of Revised Lines Of Code

(RLOC), i.e., added, deleted, or modified. These three measures will indicate the package maintainability.

 Related Work 2.2.

This section presents some related work on the measurement of software maintainability. Most of the

studies in the literature provide maintainability indicators on a class level cohesion. Some of these studies

theoretically or empirically studied the relationships between internal attributes, e.g., cohesion, and

maintainability.

The literature also has several software metrics to evaluate internal quality properties, such as cohesion.

Researchers and practitioners have proposed a number of cohesion metrics on a class level in

object-oriented systems and related them to software maintainability and its qualities [36]. Whereas some

of these metrics were hypothetically approved, just a couple of them were empirically validated. Li and

Henry [22] made an investigation of the validity of objected-oriented metrics in predicting the efforts of

software maintenance. This exploration tested whether there’s a reliable connection between efforts in

maintaining a software product and object-oriented software metrics. By measuring the quality of software

through the use of Martin’s design metrics [6], where cohesion metric H is one of the metrics, and applying

it on software design, Atole and Kale [23] concluded that the design metric was able to make a software

design quality evaluation. Dagpinar and Jahnke [24] confirmed that software metrics could effectively

predict software maintainability. But they found that Bienman and Kang’s loose class cohesion metrics (LCC)

[25], did not significantly predict the class maintainability. Chidamber and Kemerer [26] proposed LCOM, a

software metric that gives the results of a statistical analysis which is conducted on two software systems

Journal of Software

549 Volume 13, Number 10, October 2018

and demonstrated that there was a substantial connection between the studied software metrics and efforts

of maintaining the software. Another proposed cohesion metric based on design principles to assess

software maintainability was conducted by Briand et al. [30]. They continued their research later [31] by

defining a ratio-scale metric for cohesion for prediction of proneness to errors in the design of the software.

Though the results of the experiment demonstrated that software metrics could predict how a software

product is prone to errors, this approach was not validated. By precisely examining the connection between

various internal class quality properties (cohesion, size, and coupling) and class maintainability, Al Dallal

[20] proved that the higher the cohesion, the higher the maintainability of the class. The study proposed

maintainability prediction models using statistical techniques. The study found that these models are

reliable in evaluating the class maintainability. The results demonstrated that internal properties, for

example cohesion, size, and coupling can affect maintainability of the class.

Carefully examining the current research, an investigation was done utilizing a cohesion metric on the

class level, while others were not approved or just approved hypothetically with no specific approval of the

association with software maintenance. some investigations did not depend on the reported maintenance

history of the researched software systems. The disadvantage in such experimentation is that the support

information gathered for the exploratory examinations does not present the accurate maintenance

information.

some of the studies did not explore the capability of software measures in the prediction of software

maintainability. That means the study does not include whether the internal property has an impact or not

on the external property. A few investigations have a relatively small example size of the experimental study,

which makes the outcomes challenging to be summed up. Other investigations are restricted to size and

complexity properties and do not consider other imperative ones, such as coupling and cohesion.

Conversely, our investigation is distinct in a few different ways. It proposes a cohesion metric on a

package level, both hypothetically and empirically approved, and utilizes real data from the systems’

repositories. In our insight, this study will fill the gap in exploring the connection between package level

cohesion and the used software maintenance measures, which makes this exploration unique and essential

on this issue.

 Package Cohesion Metric 2.3.

In our previous work [11]-[16], we deeply discussed Martin’s package cohesion principles [6]. Based on

these principles [6], two separate cohesion metrics were created [11] to measure two parts of package

cohesion, Common Reuse (CR) and Common Closure (CC) based on package cohesion principles. While CR

measures the package in following Common Reuse Principle, CC measures the package in following

Common Closure principle. Each metric is calculated separately, and then can be combined together to

represent the overall cohesion value of the package. The CR metric is defined as follows: “Let c C, and

suppose there is an incoming relation to c from a class in a different package. Then c is called an in-interface

class. The cardinality of the intersection of the hub sets of all the in interface classes in C divided by the

number of classes in C is the CR of P.”

CR= | In-interface class hub sets| / |C|

where

Hubness(a) = {b C: if there is a path a -> b}
C: set of classes in package P

a and b: classes in C

The CC metric is defined as follows: “The cardinality of the intersection of the reachable sets divided by

the cardinality of the union of the sets represents the CC of P.”

Journal of Software

550 Volume 13, Number 10, October 2018

CC= (| Reachable Package sets | / | Reachable Package sets |)

The combined cohesion CH is defined as follows:

CH =
√2 − 𝐷

√2

𝐷 = √(1 − 𝐶𝑅)2 + (1 −𝐶𝐶)2

3. Descriptive Statistics

The experiments of this study is performed on some open-source software systems because of the

availability of the maintenance data for such systems. The main goal for the experimental study is to explore

how package cohesion can be used to predict costly software maintenance packages. This section describes

some details about the software systems and the maintenance data collection. The package cohesion metric

(CH), presented in Section 2 is included in the experiments as the independent variable.

 The Software Systems 3.1.

In the experimental study, four Java software systems were included, based on a set of criteria. We believe

these criteria will allow for the results to be generalized. All the four systems had: (1) to be developed using

Java, (2) maintenance repositories publicly available, (3) different versions. Table 1 and Table 2 provide

some details about these systems in the experiments.

Table 1. History Studied
 Base Release End Release History Studied

System 1 2.0.0 2.2.0 Aug/09 – Feb/10

System 2 7.0.6 7.0.22 Jan/11 – Oct/11

System 3 7.5 7.6 July/10 – Jan/11

System 4 4.5.0 5.1.0 Jan/12 – July/13

Table 2. Details of the Systems
 #LOC #Classes #Packages #Revised-Packages

System 1 143732 5111 264 179

System 2 170461 1725 113 62

System 3 77194 1026 65 65

System 4 111861 1238 35 23

 Maintenance Data 3.2.

Similar to studies in the field, subversion (SVN), which is available online for public use is the

maintenance data source for this study. The maintenance activities of open source software systems can be

viewed using an SVN. Each entry in the repository log in the system maintenance history has a number and

a note that describes the maintenance action. This study considered all types of maintenance activities. We

don’t distinguish between perfective, adaptive, corrective, or preventive activities because we believe all of

them require maintenance efforts and consequently maintenance costs.

Following the approach suggested by Al Dallal [20], we considered three package maintenance measures:

The first measure is the Revised Package (RP), to predict packages likely to be involved in at least one

revision. The second measure is Frequently Revised Package (FRP), to predict packages likely to be

frequently revised. The third measure is the Costly Package (CP), to predict packages likely to show a

Journal of Software

551 Volume 13, Number 10, October 2018

substantial amount of Revised Lines Of Code (RLOC), i.e., added, deleted, or modified. These measures can

represent the maintenance effort and costs [20], [33], [32]. As much as the packages is maintained it

becomes more fault-prone and less consistent [20], [10]. Additionally, all the three measures can be

obtained from the publicly available maintenance data [20]. We believe that these three measures will

indicate the package maintainability.

Two main software tools were used to collect maintenance data, TortoiseSVN [41] and JHawk tool [42].

TortoiseSVN provides the access to software maintenance repositories that include the details of each

revision or maintenance action. The maintenance data were collected on the package level. JHawk tool

provides the list of packages and the classes within packages for each software system. All the maintenance

data was collected manually and randomly checked for the purpose of the data validity to increase the

confidence about the data collected. Table 3 presents an overview of the collected data.

Table 3. Maintenance Data
 #Revisions Mean #Revisions #RLOC Mean #RLOC

System 1 1614 6.11 60688 229.87

System 2 636 5.63 22027 194.93

System 3 354 5.45 21857 336.26

System 4 323 9.23 9981 285.17

 Independent Variables 3.3.

Package cohesion data was gathered using the package cohesion metric (CH) already presented in Section

2. The metric has been used to construct the maintainability prediction model. For the purpose of cohesion

data, we have developed our Java tool to measure the CH package cohesion metric. For each system, a list of

all the packages, the number of classes in each package, and the associated cohesion values were generated.

We consider package cohesion (CH) and package size (# Classes) as the independent variables for this

study.

4. Empirical Analysis and Results

In this section, we present another empirical study we performed that has been motivated by our

previous works in investigating how package cohesion is related to package maintainability [13] and

package testability [14]. Using logistic regression analysis, the study investigates the relationship between

package cohesion and maintainability in terms of maintenance effort. We expect that a package that has low

cohesion will likely require a high maintenance effort. We have used the logistic regression analysis, which

is based on maximum likelihood estimation [17], to analyze the relationship between package cohesion and

maintainability. Logistic Regression is a statistical modelling method used to predict a binary dependent

variable [27], [39]. It measures the relationship between one or more independent variables and one

dependent categorical variable, which can take only two values [17]. This kind of regression analysis is

widely applied to predict the software external quality attributes, such as maintainability [20], [38], fault

proneness [34], [35], [37], reusability [29], and testability [28], [39], [40].

In this study, we use logistic regression to predict the dependent variable (maintenance effort) from

independent variable(s) (package cohesion and package size). Both univariate and multivariate logistic

regression analysis has been performed. The univariate analyses are performed to investigate the individual

effect of package cohesion on maintainability. The multivariate analyses are performed to evaluate the

combined effect of package cohesion and package size on maintainability. The general univariate logistic

regression model, in terms of the risk of the predicted variable, p, is given by:

Journal of Software

552 Volume 13, Number 10, October 2018

 =
 1

1 + 1

The general multivariate logistic regression model is given by the following equation:

 =

1 +

Where is the probability of finding a high maintenance effort package. xi, i=1,2,…, n, are the

independent variables and 𝛽, i=1,2,…,n are the estimated regression coefficients for each independent

variable xi. The strength of the impact of the independent variable is determined by the absolute value of

the coefficient. For each independent variable, xi, the p-value is computed and assessed by the (𝛼 = 0.05)

significance level [39]. R2 is the proportion of the total variance in the dependent variable that is explained

by the model. As high as the R2 value just as high is the impact of the independent variables on the

dependent ones, and as accurate is the model [17], [39].

 Dependent Variables 4.1.

Three binary dependent variables in this study are used to measure the maintainability of packages. We

consider maintainability from the maintenance effort point of view. As presented by Al Dallal [20], we

consider predicting three practical problems: (1) to predict packages likely to be involved in at least one

revision, (2) to predict packages likely to be frequently revised, and (3) to predict packages likely to show a

substantial amount of RLOC. Predicting these three types of packages will help developers duri ng the

software design phase to focus on packages that are more likely to be frequently revised and those are more

likely to be costly in terms of RLOC [20]. Based on the above practical problems, three dependent variables

are defined for the logistic regression analysis as follows:

 Revised Package (RP) is the package that has been involved in at least one revision during the

maintenance history of the software. RP takes 1 value if it has been involved and takes 0 if it has

not at all.

 Frequently Revised Package (FRP) is the package that has been involved in revisions more than

the average number of revisions of all the packages in the system. If the number of revisions of

the package is equal to or greater than the average, the FRP is equal to 1; otherwise, it equals 0.

 Costly Package (CP) is the package that has a number of RLOC equal to or greater than the

average RLOC number among all the packages in the system. In such a case, CP takes the value of

1; otherwise, it takes the value of 0.

 Statistical Analysis 4.2.

Binary Logistic regression provides us with another look at the relationship between the new proposed

measure of the package cohesiveness CH and package maintainability. For logistic regression, package

maintainability assessed by three binary distributed variables. These variables are modified (dichotomized)

versions of the same variables used in the regression analysis to assess package maintainability. This

modification of the variables allows us to look at package maintainability with consideration to the

inherited nature of dichotomy in the distributions of the original variables used to assess package

maintainability. The first variable is revised package (RP) which takes a value of one if the package has been

revised at least one time and a value of zero if the package has not been revised at all. The second variable is

the frequently revised package (FRP), which takes a value of one if the number of revisions of the package is

Journal of Software

553 Volume 13, Number 10, October 2018

equal to or more than the average number of revisions of all packages and zero if the number of revisions of

a package is less than the average number of revisions across all the packages. Finally, the third variable of

assessing package maintainability is a costly package (CP). This variable takes a value of one if the numb er

of revised lines of code is equal to or more than the average number of the revised lines of code RLOC across

all packages and a value of zero if the number of revised lines of code is less than the average number of

revised lines of code across all packages. Table 4 presents the distributions of the three binary variables of

package maintainability from the combined data sets of the four systems.

Table 4. Distributions of the Package Maintainability Measures RP, FRP and CP

Values
RP FRP CP

N % N % N %

0 144 30.19 377 79.04 381 79.87

1 333 69.81 100 20.96 96 20.13

 N=477

Table 5 presents descriptive statistics (means and standard deviations) for the three binary measures of

maintainability, RP, FRP, CP, the proposed measure of package cohesion (CH) and package size (#Classes).

Table 5. Means and Standard Deviation for RP, FRP, CP, CH and Classes

Statistics RP FRP CP CH #Classes

Mean .698 .210 .201 .445 16.23

STD .460 .408 .401 .389 29.154

N = 477

 Results and Discussion 4.3.

We set up the favourable outcome for any of the above three binary variables, revised package (RP), the

frequency of package revisions (FRP) and costly package (CP) to be equal to one. Logistic regression helps

us predict the probability of the favourable outcome in each of the above three variables of maintainability

controlling for the package size (#Classes).

RP logistic regression model

Table 6 presents a summary of the results of the logistic regression for the revised package (RP) outcome

variable. The proposed package cohesion measure (CH) and package size (#Classes) are the predictors of

the status of the package as it has been revised versus the package which has not been revised. The logistic

regression results indicate that the overall model was statistically reliable in distinguishing between revised

and non-revised package (-2log Likelihood = 444.042, 2 (2) = 140.240, p <.000). The model correctly

classifies (Hit rate) 77.4 per cent of the cases. Table 6 presents the regression coefficients with their

statistical significance, the odd ratios associated with the coefficient, and their 95% confidence intervals.

Table 6. Regression Coefficients for Predicting RP by CH and #Classes
 B Wald df Sig. Exp(B) 95% C.I. for EXP(B)

 Lower Upper

CH -1.237 12.498 1 .000 .290 .146 .576

#Classes .130 23.093 1 .000 1.139 1.080 1.201

Constant .473 57.452 1 .147 1.604

Wald test statistics for the proposed measure of package cohesion (CH) is 12.498, which is statistically

significant at p=.000. There is little (.290) change (decrease) in the odd ratio of package revision (RP) for

Journal of Software

554 Volume 13, Number 10, October 2018

one unit increase in the package cohesion. That is as package cohesion increases by one unit, the odds of the

package being revised will drop by .290.

FRP logistic regression model

Table 7 presents the results of the logistic regression analysis for the frequency of package revisions (FRP)

variable for package maintainability. Similar to the revised package variable (RP), the model uses package

cohesion (CH) and package size (Classes) to predict the status of the package as being revised as many

times as or more than the average number of revisions of all packages versus the package has been revised

less than the average of number of revisions for all packages. Regression results indicate that the ov erall

model was statistically reliable in distinguishing between the two categories of FRP, equal or more than the

average number of revisions versus less than the average number of reversions for all packages, (-2log

Likelihood = 309.635, 2 (2) = 180.228, p <.000). The model correctly classifies (Hit rate) 85.7 per cent of

the cases. Table 7 presents the regression coefficients with their statistical significance, the odd ratios

associated with the coefficient, and 95% confidence intervals for the odd rat io.

Table 7. Regression Coefficients for predicting FRP by CH and #Classes
 B Wald df Sig. Exp(B) 95% C.I. for EXP(B)

 Lower Upper

CH -3.63 21.623 1 .000 .027 .006 .122

#Classes .052 31.911 1 .000 .105 1.035 1.073

Constant -1.325 20.801 1 .000 .266

Wald test statistics for the package cohesion (CH) variables, 21.623 is statistically significant at p=.000.

Yet the change it created in the odd ratio of the package frequent revisions (FRP) is minimal (.027). That is,

for one unit increase in the package cohesion (CH) variable and controlling for its size (#Classes), the odds

of being in the category of the package as being revised as many times as or more than the average number

of revisions of all packages decreases by .027.

CP logistic regression model

Table 8 presents the results of the logistic regression analysis for the costly package (CP) outcome

variable. Similar to the previous two models, the newly proposed package cohesion (CH) and package size

(Classes) are the predictors of the status of the package on the two categories of the costly package (CP)

variable. That is either as being a package with a number of revised lines of code equal or more than the

average number of revised lines of code from all packages versus the package has a number of revised lines

of code that is less than the average number of revised lines of code from all packages. Regression results

indicate that the overall model was statistically reliable in distinguishing between the two categories of the

costly package (CP) variable, (-2log Likelihood = 333.515, 2 (2) = 145.528, p <.000). The model correctly

classifies (Hit rate) 85.1 percent of the cases. Table 8 presents the regression coefficients with their

statistical significance, the odd ratios associated with the coefficient, and 95% confidence intervals for the

odd ratio.

Table 8. Regression Coefficients for Predicting CP by CH and #Classes
 B Wald df Sig. Exp(B) 95% C.I. for EXP(B)

 Lower Upper

CH -2.116 13.786 1 .000 .121 .039 .368

#Classes .051 35.066 1 .000 1.052 1.035 1.070

Constant -1.685 36.661 1 .000 .185

Journal of Software

555 Volume 13, Number 10, October 2018

Wald test statistics for the newly proposed package cohesion (CH) variables, 13.786 is statistically

significant at p=.000. Package cohesion (CH) predicted change in the odd ratio of costly package variable

(CP) is .121. That is, for one unit increase in package cohesion (CH) variable we expect that the odds of

being in the category of a package with the number of revised lines of code equal or more than the average

number of revised lines of code from all packages decreases by .121.

5. Conclusion and Future Work

This paper continued our previous works [11]-[16] and presented package maintainability prediction

models using package cohesion. Prediction models can be potentially beneficial when software developers

in the industrial field can utilize them. We believe the models presented in this paper can help a software

development team as early as the design phase of the software development lifecycle. Developers can utilize

these models to evaluate the package maintainability, and they can decide the most maintainable package

design based on the predictions of the model.

One advantage of this study is the number of the studied systems and the relatively large sample used in

the regression analyses, as well as using actual maintenance data. In previous work [12], [13], the cohesion

metric (CH) was found to be a significant early predictor for software maintenance efforts; which

encouraged us to conduct further investigation of software maintainability using the CH metric. The

stability of the impact of CH across different statistic analyses performed either with relation to software

maintainability [13] or software testability [14] allows us to draw optimistic conclusions about its use as an

indicator. Furthermore, based on the obtained results, we can believe that following the package cohesion

principles by Martin [6], which the (CH) cohesion metric was developed based on, can improve the software

maintainability.

The results of the study support the capability of such an indicator, based on objective empirical studies,

to predict software maintainability, although it may behave differently based on a system’s domain. Thus,

the results of this study should be viewed as indicative rather than conclusive.

Given that maintainability is affected by different factors, it would be very interesting to consider other

metrics in future studies. Such metrics include but are not limited to coupling between packages and

complexity, along with the metrics already used in this study, package cohesion, and package size, to predict

the maintenance effort and testing effort. It would also be valuable to involve more different metrics for

cohesion, coupling, and size; and compare them in regards to the prediction proficiency. In this study, we

only included systems developed in the Java programming language, while the results could be different

with systems developed in other object-oriented languages, which would be very interesting to investigate.

References

[1] Jay, F., & Mayer, R. (1990). IEEE standard glossary of software engineering terminology. IEEE Std.

[2] Mamone, S. (1994). The IEEE standard for software maintenance. SIGSOFT SE Notes. 19(1), 75–76.  

[3] Lientz, B. P., & Swanson, E. B. (1980). Software maintenance management: A study of the maintenance

of computer application software in 487 data processing organizations.

[4] Ahn, Y., Suh, J., Kim, S., & Kim, H. (2003). The software maintenance project effort estimation model

based on function points. Journal of Software Maintenance Evolution: Research and Practice, 15, 71–85.

[5] Basili, V. R. (1997). Evolving and packaging reading technologies. Journal of Systems and Software.

[6] Martin, R. C. (2003). Agile software development: principles, patterns, and practices. Prentice Hall PTR.

[7] Biggerstaff, T. J., & Alan, J. P. (1989). Software Reusability: Vol. 1, Concepts and Models.

[8] Ponisio, L., & Oscar, N. (2006). Using contextual information to assess package cohesion. Institute of

Applied Mathematics and Computer Sciences.

Journal of Software

556 Volume 13, Number 10, October 2018

[9] IEEE Std 1219-1993: Standard for Software Maintenance, IEEE Computer Society, 1992.

[10] Dagpinar, M., & Jahnke, J. (2003). Predicting maintainability with OO metrics – An empirical

comparison. Proceedings of the 10th Working Conference on Reverse Engineering Proc.

[11] Albattah, W., & Austin, M. (2014). Package cohesion classification. Proceedings of the 2014 5th IEEE

International Conference on Software Engineering and Service Science.

[12] Albattah, W. (2014). Software maintainability and testability predictions using package cohesion. Diss.

[13] Albattah, W. (2017). An empirical investigation of the correlation between Package-level cohesion and

maintenance effort. International Journal of Advanced Computer Science and Applications, 8(3).

[14] Albattah, W., & Austin, M. (2017). An empirical analysis of the relationship between cohesion and

testing effort. Journal of Software, 671-682.

[15] Albattah, W., & Alsuhibany, S. (2015). Revisiting package-level cohesion approaches. Proceedings of the

Tenth International Conference on Software Engineering Advances.

[16] Almugrin, S., Waleed, A., & Austin, M. (2016). Using indirect coupling metrics to predict package

maintainability and testability. Journal of Systems and Software, 121, 298-310.

[17] Hosmer, J., David, W., & Stanley, L. (2016). Applied Logistic Regression. John Wiley & Sons.

[18] Fenton, N. E., & Shari, L. (1998). Pfleeger. Software metrics: A rigorous and practical approach.

[19] Fenton, N. (1994). Software measurement: A necessary scientific basis. IEEE Transactions on Software

Engineering.

[20] Al, D. J. (2013). Object-oriented class maintainability prediction using internal quality attributes.

Information and Software Technology.

[21] Morasca, S. (2009). A probability-based approach for measuring external attributes of software

artifacts. Proceedings of the 3rd International Symposium on Empirical Software Engineering and

Measurement.

[22] Wei, L., & Sallie, H. (1993). Object-oriented metrics that predict maintainability. Journal of Systems and

Software, 111-122.

[23] Atole, C. S., & Kale, K. V. (2006). Assessment of package cohesion and coupling principles for predicting

the quality of object oriented design. Proceedings of the Ist International Conference on Digital

Information Management.

[24] Dagpinar, M., & Jahnke, J. (2003). Predicting maintainability with OO metrics – An empirical

comparison. Proceedings of the 10th Working Conference on Reverse Engineering Proc (WCRE’03).

[25] Bieman, J. M., & Byung-Kyoo, K. (1995). Cohesion and reuse in an object-oriented system. ACM SIGSOFT

Software Engineering Notes.

[26] Madhwaraj, K. G., & Chitra, B. (2011). An empirical investigation of the influence of object oriented

design quality metrics on the package maintainability of open source software.

[27] Basili, V. R., Lionel, C. B., & Walcelio, L. M. (1996). A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software Engineering.

[28] Badri, M., & Toure, F. (2012). Empirical analysis of object-oriented design metrics for predicting unit

testing effort of classes. Journal of Software Engineering and Applications, 5(7), 513-526.

[29] Al, D. J., & Sandro, M. (2014). Predicting object-oriented class reuse-proneness using internal quality

attributes. Empirical Software Engineering, 775-821.

[30] Briand, L. C., Sandro, M., & Victor, R. B. (1993). Measuring and assessing maintainability at the end of

high level design. Proceedings of the Conference on Software Maintenance Proceedings.

[31] Briand, L., Sandro, M., & Victor, R. B. (1994). Defining and validating high-level design metrics.

[32] Granja-Alvarez, J. C., & Manuel, J. B. (1997). A method for estimating maintenance cost in a software

project: a case study. Journal of Software Maintenance.

Journal of Software

557 Volume 13, Number 10, October 2018

[33] Hayes, J. H., Sandip, C. P., & Liming, Z. (2004). A metrics-based software maintenance effort model.

Proceedings of the 15th European Conference on Software Maintenance and Reengineering.

[34] Briand, L. C., John, D., Victor, P., & Wust, J. (1998). Predicting fault-prone classes with design measures

in object-oriented systems. Proceedings. The Ninth International Symposium on Software Reliability

Engineering.

[35] Dallal, A. J., & Lionel, C. B. (2010). An object-oriented high-level design-based class cohesion metric.

Information and Software Technology, 1346-1361.

[36] Lee, Y., & Kai, H. C. (2000). Reusability and maintainability metrics for object-oriented software.

Proceedings of the 38th Annual on Southeast Regional Conference.

[37] Marcus, A., Denys, P., & Rudolf, F. (2008). Using the conceptual cohesion of classes for fault prediction in

object-oriented systems. IEEE Transactions on Software Engineering.

[38] Muthanna, S., Kontogiannis, K., Ponnambalam, K., & Stacey, B. (2000). A maintainability model for

industrial software systems using design level metrics. Proceedings of the 7th Working Conference on

Reverse Engineering.

[39] Badri, L., Mourad, B., & Fadel, T. (2011). An empirical analysis of lack of cohesion metrics for predicting

testability of classes. International Journal of Software Engineering and Its Applications.

[40] Badri, M., & Touré, F. (2012). Evaluating the effect of control flow on the unit testing effort of classes: An

empirical analysis. Advances in Software Engineering.

[41] Tortoise SVN. Retrieved August 30, from http://tortoisesvn.net

[42] JHawk - The Java metrics tool - Product Overview. Retrieved August 30, from

http://www.virtualmachinery.com/jhawkprod.htm

Waleed Albattah received his Ph.D. from Kent State University, Ohio, USA. Dr. Albattah is a

faculty member at the Information Technology Department, Qassim University, Saudi

Arabia. His research interests are software engineering, software measurements, software

design and agile software development, and software quality. Recently, he has been

working in Big data and cloud computing security projects. He is the dean of College of

Computers at Qassim University, and he is a member in the ACM Society SIGSOFT.

Journal of Software

558 Volume 13, Number 10, October 2018

http://tortoisesvn.net/
http://www.virtualmachinery.com/jhawkprod.htm

