

Effort Estimation across Mobile App Platforms using Agile
Processes: A Systematic Literature Review

Abdullah R Altaleb1, 2*, Andrew M Gravell1

1 Department of Electronics and Computer Science, University of Southampton, Southampton, UK
2 College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud University, Riyadh, KSA

* Corresponding author. Tel.: +447533287832; email: a.altaleb@soton.ac.uk
Manuscript submitted March 15, 2018; accepted April 30, 2018.
doi: 10.17706/jsw.13.4.242-259

Abstract: It is predicted that smartphone numbers will increase to 2.8B in 2018, up from around 2B in

2016. Moreover, revenue from application stores is predicted to reach $189B by 2020, up from $88.3B in

20161. Software effort and size estimation are essential when it comes to project managers being able to

manage and plan a project so as to prevent it from failing. The planning and development of mobile

applications differs from other traditional software applications due to the characteristics of the mobile

environment, high autonomy requirements, market competition, and many other constraints. Therefore,

this paper presents the results of a Systematic Literature Review (SLR) concerning effort and size

estimation models in mobile application development; this is followed by a summary of estimation

techniques used across mobile apps. In particular, we focus on the software estimation models that are

applicable to the Agile Software Development (ASD) process. The aim of this SLR is to provide researchers

and practitioners with an overview of the current state-of-the-art software estimation techniques used in

mobile applications. At the end of this review, some suggestions, research gaps and possible future work

will be presented.

Key words: Agile, effort estimation, software development, mobile application.

1. Introduction

Effort estimation plays an important and critical role in any software project. Both project managers and

clients use the effort estimation model to measure the effort, size, cost, and duration related to the design

and implementation of the software project to generate a contract. Good estimation is one of the success

factors for companies, as offering a good price could mean that they win a contract. Incorrect estimation can

negatively affect companies’ marketing and sales, while also leading to monetary losses.

Years ago, mobile devices were used only for receiving and sending messages and calls; today, however,

they are becoming essential to human life. Among the many examples of smartphone usage are making

flight bookings, GPS navigation, banking transactions, gaming, and communicating with others on social

media. Mobile applications represent a new trend in the software industry, and the demand for such apps is

set to increase expeditiously with mobile technology development. Planning and developing a mobile

application is different from the development of other traditional software systems in many aspects. Mobile

devices are becoming increasingly complex, and designing their application development presents some

1
 https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/ statistics and

studies from more than 22,500 sources.

Journal of Software

242 Volume 13, Number 4, April 2018

https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/

special requirements and constraints that are less commonly found in other traditional software

applications.

The main goal of this paper is to examine the state-of-the-art techniques used in the field of effort

estimation across mobile applications in Agile Software Development (ASD) by means of a Systematic

Literature Review (SLR). We follow the guidelines proposed by Kitchenham and Charters [1] to construct

this SLR. We found no previous literature or studies concerning all software estimation models in mobile

applications. This paper identifies, critically evaluates and integrates the findings of all studies which are

relevant to the subjects addressed by the research questions. This paper also details our SLR and points out

some research gaps and future directions in the field of effort estimation with mobile app developments in

ASD.

The present paper is organised as follows: Section 2 puts forth a brief background of mobile application

and its characteristics, as well as effort estimation models; the steps undertaken in this SLR are detailed in

Section 3; following this, the results of the SLR and discussion regarding said results will be presented in

Section 4. Research gaps and possible directions for future works are provided in Section 5.

2. Background

2.1. Mobile Application Development

Traditional software development methodologies are not well suited to mobile application development

[2]. Mobile software development faces exceptional constraints and requirements. It is necessary to apply

suitable methods that are able to tackle the challenges faced during mobile app development. One of the

notable challenges is the multiple platform issue [3], [4]. Developers always plan for, and are concerned

about, the compatibility of their app with all mobile operating systems, such as IOS, Android, Microsoft

Windows Mobile, and Blackberry. Additional challenges include time-to-market, UI limitation, power

consumption, processor efficiency, memory performance and intermittent network connection [5].

2.2. Effort, Size, and Cost Estimation

Software Estimation in General:

For each software project, an accurate software estimation is desirable and interesting for any aspect of

the project. Predicting the project’s timescale, scheduling the budget, and estimating the resources will help

the software project to succeed and avoid overrun [6]. There are four different types of software estimation:

1) Effort estimation: amount of effort needed to complete a project. It is usually measured by

person/hour or person/month.

2) Size estimation: usually measured by number of code line (LOC) or Function Point (FP) to implement

the software.

3) Cost estimation: amount of money that is required to develop the project.

4) Schedule estimation: amount of time (period) required to complete the project.

There are several types of estimation models and techniques that can be used for software estimation.

Among these estimation methodologies, there is no best approach; indeed, each technique has its pros and

cons. The estimation techniques can be classified into two major types, namely algorithmic and

non-algorithmic techniques [7]. The former is based on equations and mathematics, which are used to

process the software estimation; in contrast, the latter is based on analogy and deduction.

Britto, Freitas, Mendes and Usman [8] presented a systematic literature review of effort estimation in the

context of Global Software Development (GSD). Five studies out of 24 were selected in this SLR [9]–[13],

and the expert judgment based approach, included planning poker, Delphi and expert review, were the most

used technique in effort estimation for GSD. Furthermore, this SLR identified a wide range of cost drivers;

Journal of Software

243 Volume 13, Number 4, April 2018

however, cultural, language and time zone were the most popular cost driver factors that used to estimate

the effort in GSD projects.

Software Estimation in Agile SD:

A systematic literature review (Usman, Mendes, Weidt, and Britto) [14] makes it possible for us to

present a detailed overview of the effort and size estimation techniques used in the ASD process. A total of

20 primary studies were selected, all of which satisfied the inclusion criteria and passed the quality

assessments which were used during this literature review. Planning poker and expert judgment were the

most frequently-used techniques in the ASD process [15]–[22], while story point, use-case point and

function point were the most commonly-employed size metrics in these techniques. In total, 12% of the

estimation techniques studied the estimation effort during the implementation phase, while this figure was

around 30% in the testing phase, and 12% in the I & T phase; however, none of the primary studies had

estimated the effort in the design or analysis phase of the development process.

Another SLR was presented by Bilgaiyan, Sagnika, Mishra and Das that focused on software cost

estimation in ASD [23]. Varieties of estimation mechanisms were founded in this SLR such as Neural

Network, Expert Judgment, Planning Poker and Use Case Point; however, Expert Judgment was one of the

most common estimation techniques among conventional methods in ASD [24]–[28].

3. Literature Review Method

The design of the literature review in this study was inspired by the Evidence-based Software

Engineering (EBSE) model; indeed, the guidelines from this model were followed Kitchenham [29] in order

to synthesise the best quality scientific studies. In addition, a mixture of assessment criteria was used in this

SLR, including the AMSAR (A Measurement Tool to Assess Systematic Review) standard [30] and some

assessment guidelines from Kitchenham and Charters [1]. These were employed to assess and measure the

reliability, validity and feasibility of measurement tools in this literature. In the first part of the present

section, the scope of the research and the research questions will be laid out. Following this, the second

section will detail the search strategies as well as the inclusion and exclusion criteria. This literature review

will end with a presentation of the studies assessment criteria.

3.1. Scope and Research Questions

Research Scope:

Before starting the research review, it was necessary to ask a very important question: is the systematic

review really needed? We had to be aware of asking general questions, otherwise it would have been

difficult to determine the usefulness of the answers to the questions.

Moreover, before stating the questions, it was helpful to break down said questions into sub-questions to

make them more precise and detailed. For the following questions, we used the PICOC model [31]. This

model is very effective when it comes to framing and considering the components of questions.

Population: ASD process and Mobile Application platforms projects.

Intervention: Effort/Size Estimation Methodologies/Model for mobile apps.

Comparison: Different effort estimation techniques in mobile apps.

Outcome: The precision and accuracy of studies that have focused on effort estimation in mobile

applications.

Context: All studies (Empirical, Hypotheses) related to Agile SD in effort estimation range.

Research Questions:

RQ1. What methods or techniques have been used to estimate effort in mobile application development

Journal of Software

244 Volume 13, Number 4, April 2018

using Agile methods?

RQ2. What are the effort predictors that have been used in the software estimation technique in Agile

SD?

RQ3. What are the characteristics of the dataset/knowledge that have been used in studies to estimate

effort in mobile applications?

 What is the type of project (educational/economical etc.)?

 What type of framework has been used on the mobile app (mobile web/native/hybrid application)?

 What type of operating system has been used on the mobile app (Android/IOS/Windows)?

RQ4. How accurate and efficient are the estimation methods?

3.2. Primary and Secondary Search Strategy

Search Criteria:

After stating the research questions, we broke said questions down into certain terms which we could use

to find any relevant articles. We had to be wary of related terms that addressed the same question in a

wide-ranging way. Within the search terms, it was important to include all synonymous words,

singular/plural words, and words with different spellings. Identifying the major terms from the questions

and obtaining their synonyms and alternatives is one advantage of using the PICOC model. AND/OR

operators were used to link the terms.

It is very important to understand how to design the query and state the search criteria. Before starting

to design the query, we had to consider which format we wanted to follow. Each library’s database has a

specific format when it comes to building their query in order to fetch and reiterate data from its DB engine.

In this literature review, we were also concerned about the titles, abstracts and the papers’ keywords while

constructing our search query.

We designed this query based on the Google Database Search Engine and other DB sources which

addressed how to use the search engine for advanced searching. We chose to focus our research on the

following database libraries: IEEE Explore, ACM Digital Library, Scopus, Web of Science, Compendex and

Inspec. This was due to the fact that they are specialist libraries in the computer science and engineering

field. Since the Compendex and Scopus libraries have an overlap of around 100% [32], we chose to combine

their results.

Search Scope:

For this literature review, we covered both published and unpublished studies relevant to our study.

Based on the research topic and field [29]; [33], this study covered all databases containing high-quality and

reputable primary studies related to our topic questions. These databases are listed in Table 1: Search scope

database. With regard to unpublished studies, we found some different databases that specialise in

technical reports. The most common of these is the Directory of Open-Access Repository; this is a database

which gathers literature and studies from thousands of universities across the world. In addition, Google

Scholar is also considered one of the most popular search engines with which to find all unpublished

studies.

Search Query:

(effort OR efforts OR cost OR size OR performance) AND (estimation OR estimating OR estimate OR

prediction OR predicting OR predict OR assess OR assessment OR calculate Or calculation OR measure OR

measuring) AND (mobile OR smartphone OR screen touch OR phone OR apple OR android OR IOS) AND (app

OR apps OR application OR applications OR software OR program OR programs) AND (agile OR “software

Journal of Software

245 Volume 13, Number 4, April 2018

development” OR scrum OR XP OR “extreme programming” OR Crystal OR DSDM OR “dynamic system

development method” OR lean)

For each of the database libraries, we followed the criteria and tips regarding how to use their database

engines to obtain highly-accurate results for the articles. We produced a schema of database queries and

their results. Each of the queries generated different results. We categorised the value and importance of

each query into three parts:

 Very Important Query (Query-ID 2-4,8,11,13,16): this query contained all or most of the terms/ideas of

our research topic. These kinds of research results were usually very close to our topic and were very

relevant; as such, we must read all of these papers/articles in more detail. It is usually rare to have a

large number of results for this query.

 Normal Query (Query-ID 1,5,6,9,10,14,15): this query contained some of the terms/ideas of our research

topic. This query was not too close to the topic at hand, but was still relevant. We usually read the

abstracts and summaries of these articles and assessed whether or not they were related to our topic.

Indeed, we designed this query in order to collect some background knowledge on related topics.

 Not Important Query (Query-ID 7,12): We designed this query to pinpoint all topics that were being

discussed in our research field/area. This kind of query helped us to expand our search scope and

acquire more knowledge regarding what kinds of research had been published in this field (mobile apps

software development).

Table 1. Search Scope Database

Database Name/Search Engine Search Results

IEEE Explore 126

ACM Digital 308

Inspec and Web Science Core Collection 134

Scopus and Compendex 124

OpenDOAR and Google Scholar (for unpublished works) 9

Inclusion and Exclusion Criteria:

Defining inclusion and exclusion criteria helped to clarify the boundaries of the study.
The inclusion criteria:
 We included all studies related to the effort or size estimation models for mobile applications.

 All studies that applied the ASD process.

 All empirical studies (evidence-based studies).

 All peer-reviewed studies that had been reported or presented in workshops, conferences or journals.

 All works that had been presented in one of the highly-reputable databases listed in the above table

(Table 1), and most of the trending unpublished databases which were sourced.

 In 2002, the Blackberry company released its first smartphone. The smartphone was very limited and

could only handle very small applications, such as calendar and so on [34]. In 2008, touchscreen phones

(e.g. iPhone, Android) became the revolution of the century; indeed, these phones are based on the

application concept [34]. The Apple App Store launched in July 2008, while the Android market

launched a couple of months later in October. As such, we included all studies published since 2008 and

ignored all the studies which came before.

 We included all studies that had been presented and published in the English language.

The exclusion criteria:
 We excluded all studies that did not discuss the effort estimation for mobile applications.

Journal of Software

246 Volume 13, Number 4, April 2018

 All studies that did not employ ASD methods to make the estimation.

 All the reported works that were not published in one of the listed databases.

 All studies not published in the English language.

3.3. Study Selection Process

Collected data from systematic searches should be documented and organised in an appropriate format.

Since we had a large number of results, we exported all the data results (701 papers) to Microsoft Excel so

that they were easy to manage. The Excel sheet contained the most valuable information from the papers,

such as: 1- Paper name, 2- Publishing year, 3- Author’s name, 4- Abstract, 5- Paper link URL, and 6-

Query-ID (1-16). After managing and grouping the information into one source, we retrieved the duplicated

papers.

To start screening and filtering the papers, it was necessary to split the screening process into three

phases:

Screen the Less Important Search Queries:

We first needed to filter out the less important queries, namely Query-ID 7 and 12. These queries were

classified as not important, as previously mentioned in the search query section. We had 369 papers that

needed to be filtered. Most of the papers were far removed from our research area due to the quick

skimming of the abstracts of those papers. The subjects of said papers included: mobile network, GPS,

mobile signals and radio, mobile security, mobile energy of phones and consumption, telescope, health field

“heart pulses”, etc. We excluded all the non-related studies (354 papers) based on the inclusion and

exclusion criteria used in this research; we also moved the relevant studies to the second phase of the

search category.

Screen the Normal and Highly-important Queries:

Fig. 1. Studies summary.

Full Text Screening:

Journal of Software

247 Volume 13, Number 4, April 2018

This phase included all studies from Query-ID 1-6,8-11,13-16, as well as all studies which had been

passed and moved from the previous phase to the second phase. We had 111 unique papers, and 53

duplicated papers (from 236 recorded), as shown in Figure 1. The titles, abstracts and summaries of the

papers were read carefully, and the inclusion and exclusion criteria were applied to those papers. As a result,
we obtained 35 papers that satisfied the inclusion criteria.

During this phase, we applied the inclusion and exclusion criteria to all of the text from the 35 papers. As

a result, we obtained 21 selected papers related to the literature review study. Table 2 presents a list of the

selected papers. Moreover, the quality assessment criteria were applied to the selected papers to evaluate

and establish the quality of the study.

Table 2. Information for Selected Papers

Study
ID

Reference
Year Study

ID
Reference

Year Study
ID

Reference
Year

S1 [42] 2018 S2 [43] 2017 S3 [40] 2017

S4 [54] 2017 S5 [55] 2016 S6 [46] 2015

S7 [49] 2015 S8 [45] 2015 S9 [58] 2015

S10 [51] 2015 S11 [44] 2014 S12 [47] 2014

S13 [53] 2014 S14 [50] 2014 S15 [57] 2013

S16 [56] 2013 S17 [48] 2013 S18 [60] 2010

S19 [61] 2008 S20 [63] 2008 S21 [59] 2004

3.4. Study Quality Assessment

With regard to evaluating the quality of the selected studies, the guideline criteria put forth by [29] and [1]

made it possible to assess the studies based on certain questionnaires. It was very important to assess the

studies, as this helped to establish which of said studies should be focused on, and which were of less

importance and in some cases could be ignored. The quality assessment criteria supported and provided

more details regarding the inclusion and exclusion criteria. The quality assessment checklist was

customised based on the suggestions provided by Kitchenham and Charters [1] , as well as by Usman [14].

Below are some of the questions which were used to evaluate the selected studies:

1. Are the research aims and objectives clearly specified?

2. Is the study designed to achieve these aims?

3. Are the estimation methods used for mobile applications clearly described and their selection justified?

4. Are the variables used in the study adequately measured?

5. Are the data collection methods adequately described?

6. Are the statistical approaches used to analyse data adequately described?

7. Does the researcher discuss any problems or issues with the validity or reliability of their results?

8. Are the measures in the study fully defined?

9. Are the study participants or observational units appropriately defined?

10. Are all of the research’s questions answered adequately?

In terms of the answers to these questions, there were three possible options alongside said questions:

 Y: Yes, the answer is explicitly defined in the study = 1 point.

 P: Partially answered in the study = 0.5 points.

 N: No, the answer is not defined = 0 points.

Table 3. Assessment for Selected Studies

Study ID Score Study ID Score Study ID Score

S1 8 S2 8.5 S3 7

S4 8 S5 5.5 S6 8

Journal of Software

248 Volume 13, Number 4, April 2018

S7 8 S8 8.5 S9 5

S10 4.5 S11 6 S12 5

S13 5 S14 5.5 S15 5

S16 5 S17 4.5 S18 4.5

S19 5 S20 5 S21 5

Each study could obtain a score ranging from 0 to 10 points. Any study that scored below 3 was

eliminated from the review. The final scores of the quality assessment for the selected papers can be seen in

Table 3 上方. Some papers were excluded due to the fact that they did not satisfy the inclusion criteria (e.g.

[35] and [36]), reported a study already included in another published paper (e.g. [37] and [38]), and had a

low of quality assessment score (e.g. [39]).

4. Discussion and Interpretation

At this point we can return to the research questions. For example, RQ1 asked: What methods or

techniques have been used to estimate effort in mobile application development using Agile methods? The

results revealed various software estimation techniques and models that have been used to estimate the

effort and size of mobile app projects; however, none of these techniques employed or used any of the Agile

methodology processes with the estimation techniques.

We will answer all of the SLR questions in Section 4.1 below, which is entitled “Effort Estimation VS

Mobile Application”, regardless of which software development process has been used. Following this, all

studies which have investigated the ASD with mobile app development will be discussed below in Section

4.2, entitled “ASD Process VS Mobile Applications”.

In light of the previous two sections, Table 4 illustrates the distribution of the selected studies and their

categories. 13 of 21 studies discussed the estimation techniques in mobile apps, whereas 8 studies

pertained to ASD in mobile apps.

Table 4. Selected Study Categories

Related Topic Study ID

Effort Estimation with Mobile Application
S1, S2, S3, S4, S6, S7, S8, S10, S11, S12, S13,

S14, S17

Agile SD with Mobile Application S5, S9, S15, S16, S18, S19, S20, S21

4.1. Effort Estimation VS Mobile Application

After extracting data from 13 studies concerning software estimation techniques in mobile apps, the

extracted data was consolidated into 8 tables to make it readable; this also meant that it was easy to

understand the relationship between the data and the research questions. The details of the 13 studies will

be explained more rigorously below in parts 1 and 2.

Table 5 answers RQ1 by listing the different estimation techniques that have been used in mobile apps.

The Function Size Measurement and Expert Judgment techniques were the most commonly-used across

mobile apps. To answer RQ2, Table 6 presents the size metrics and cost drivers which were used by the

studies. Number of screens and type of supported platform for the smartphones were the most common

factors used to measure the estimation prediction.

Table 7, Table 8 and Table 9 answer RQ3 by providing a list of the Operating Systems (OS) that have

supported the smartphones and the types of platforms which have been used to develop mobile

Journal of Software

249 Volume 13, Number 4, April 2018

applications and the domain of the studies. Table 10 investigates the development activity to which the

effort estimate applies. None of the studies estimated the effort involved in the analysis, design and testing

activity. For RQ4, Table 11 presents a list of various prediction accuracy metrics which were used in the

studies.

Table 5. Estimation Techniques (RQ1)

Estimation Techniques Study ID

COSMIC FSM S6, S7, S11, S12, S14, S17

Function Point Analysis S4a

FiSMA FSM S13

Expert Judgment S1, S3, S11

Analogy-based S3, S11

Regression-based S2, S6, S8

Table 6. Cost Drivers (RQ2)

Estimation Predictor/Metrics Study ID

Function Point Size S4a, S6, S7, S11, S12, S13, S14, S17

UML Diagram S8a, S8c, S14

Supported Platform Type (IOS/Andr./Win./etc.) S2, S3, S11

Supported Device (tablet, smartphone) S2, S3, S11

User Interface Quality and Complexity S2, S3, S4a, S11, S13

Back-end System Availability and Server Config. Flexibility S2, S3, S11

Dev. Team Skills S2, S11

App Development Flexibility and Complexity S2, S4a, S11

Team Communication Process Complexity and Experience S2, S11

Push Notification S1, S2, S3

Landscape and Portrait Mode S2, S11

Data Storage and Memory Opt. Complexity S2, S3

Number of Screens S2, S3, S4a, S4b, S13

Number of API Parties S2, S3

Support Code Reusability S2, S4a

Technology Maturity S2, S11

Battery & Power Optimisation S2, S13

Connection (Wireless, Bluetooth, 3G, etc.) S2, S4, S13

Booking and Reservation, Calendar and Time, Map and
Localisation, Social Sharing, Searching Contents and Messaging

S1, S3

Deadline Date S3, S4a

Number of Functionalities/Function Size S3, S4a, S8a, S8c

Number of Files, Classes, Method, Statement and LOC S8b, S8d

Registration & Login, Chronological List, Hardware Access, File
Upload, Comment Feature, Navigation

S1

Interrupt Handling S2

Security Analysis Support, Budget for the Project, Compatibility
with Previous Version, Multi Languages Support, Media

Support, and Paying Process User Feedback
S3

Table 7. Type of Mobile OS (RQ3)

Type of Mobile App Study ID

Android-based S6, S7, S8

Apple-based ---

Not Described (General Smartphone) S1, S2, S3, S4, S11, S12, S13, S14, S17

Journal of Software

250 Volume 13, Number 4, April 2018

Table 8. Type of Mobile App Development (RQ3)

Development Type Study ID

Native S8

Web App --

Hybrid --

Across Platform S14

Not Described (General) S1, S2, S3, S4, S6, S7, S11, S12, S13, S17

Table 9. Domain of Dataset Used in the Studies (RQ3)

Domain and Type of Dataset Used Study ID

Industrial S1, S2, S3, S4, S6, S7, S11

Academic S8

Not Defined S14, S17

No Dataset Used S12, S13

Table 10. Development Activity

Development Activities Study ID

Analysis ---

Design ---

Implementation S6, S7, S8

Testing ---

All S11

Not Defined S1, S2, S3, S4, S12, S13, S14, S17

Table 11. Accuracy of Metrics (RQ4)

Estimation Accuracy Technique Study ID

Mean Magnitude of Relative Error (MMRE)
S2(20%), S4a (67.15%), S4b (61.99%), S6

(11.2%), S7 (33%-46%)

Median Magnitude of Relative Error
(MdMRE)

S2 (12%), S6 (7.1%), S7 (21%-46%)

Magnitude of Relative Error (MRE) S4a (19.4%-239.2%), S4b (0%-309.09%)

Pred
S2 (84%), S4a (11.77%), S4b (17.64%), S6

(87.5%), S7 (31%-77%)

Linear Regression (R2)
S2 (95%), S6 (97.5%), S7 (77%-80%),

S8a (23.3%), S8b (20.2%), S8c (42.4%), S8d
(70.6%)

Mean Absolute Residuals (MAR)
S8a (15.63), S8b (14.34), S8c (12.15), S8d

(9.81)

Median Absolute Residuals (MdAR)
S8a (9.37), S8b (11.55), S8c (8.41), S8d

(8.76)

Not Use S3, S11, S13, S14, S17

Other S1 (Mean)

Technique using metrics/cost drivers:

This first part contains a review of studies which have used metrics/factors/cost drivers to estimate the

effort. The most recent study was conducted by Catolino, Salza, Gravino, and Ferrucci [40]. Their

investigation identified a set of metrics (e.g. number of static/dynamic pages, develop new/existing app, etc.)

to estimate the development effort of mobile applications in the early stage of the development process.

Indeed, it would be beneficial to use these metrics in the model concerning effort estimation on mobile

applications. Catolino’s methodology was inspired by the work of Mendes [41] in the context of web app

Journal of Software

251 Volume 13, Number 4, April 2018

development. The study obtained 41 metrics from 377 discovered quotes from different companies that are

available online; the metrics were then validated and analysed by four expert project managers. Since this

study is new, it has not yet been evaluated; however, with regard to the present study, we plan to evaluate

the validity of these metrics as a dependent variable in a predication model. Moreover, Lusky, Powilat, and

Böhm [42] proposed an experience-driven approach to estimate the effort by identifying and validating 16

standard features of mobile apps and a degree of customisation level for those features. This approach was

based on the Delphi method.

Moreover, Shahwaiz, Malik, and Sabahat [43] proposed a parametric model to estimate the effort needed

to create mobile application software. Shahwaiz identified 20 effort predictors (e.g. number of screens,

application complexity, memory opt. complexity, etc.), and used an online questionnaire format that

resulted in 169 data points; these points were used in the regression-based model. Moreover, Nitze,

Schmietendorf, and Dumke [44] proposed a conceptual approach using analogy-based and function

point-based techniques to estimate the effort needed for mobile app development. The method proposed

certain influential factors that may affect the estimation of cost for a project.

Francese, Gravino, Risi, Scanniello, and Tortora [45] built a formal, regression-based estimation model

which addressed 23 Android mobile apps; the purpose of this was to estimate the effort needed for mobile

app development as well as the graphical component numbers based on certain information from the

mobile project’s requirements; this information included number of use cases, number of classes, and

number of actors etc. The present study investigated and compared the accuracy of the prediction level –

which was obtained from the requirements – between the effort needed for mobile app development and

the number of graphical components in a mobile app. As such, we obtained four different types of Stepwise

Linear Regression (SWLR) Model that must be studied in this paper:

S8a: SWLR Model built around the Requirement Analysis Document (RAD) variables to predict the effort.

S8b: SWLR Model built around the Source Code (SC) variables to predict the effort.

S8c: SWLR Model built around RAD to predict the number of XMI files and graphical components.

S8d: SWLR Model built around SC to predict the number of XMI files and graphical components.

Techniques using Functional Size Measurement:

This second part focuses on the functional size measurement used to estimate the effort needed for

mobile apps. D’Avanzo, Ferrucci, Gravino, and Salza [46] applied the COSMIC functional size measurement

method to mobile applications, with a particular focus on Android OS. The present study examined how

COSMIC FP can be applied successfully in mobile apps and verifies the utilisation of the functional size to

predict the code size (memory size kb) of mobile applications. Our study was empirically validated by

extracting the functional user requirement (FUR) from eight mobile applications from the Google Play Store;

following this, the data movement (Entry-E, Exit-E, Write-W and Read-R) was obtained from the FUR. As a

result, the study revealed that the prediction model is highly accurate. Other studies, such as that conducted

by Heeringen and Gorp [47], described guidelines regarding the application of an approximate method

using COSMIC to measure the functional size of mobile apps in a rapid manner. In a similar vein, Nitze [48]

examined an adapted version of the COSMIC FP approach and assessed its suitability to measure the size of

mobile apps from the function user requirements.

In addition, Ferrucci, Gravino, Salza, and Sarro [49] investigated the use of the COSMIC functional size

measure to estimate the size (line of code and memory size-byte) of mobile applications. This study

included 13 mobile apps from the Google Play Store and applied the same guidance as that applied by

D’Avanzo [46] . In relation to the previous invitation, it is fitting to refer to a study by Abdullah, Rusli, and

Ibrahim [50], which addressed the complexity of game parameters (requirements and characteristics) in

terms of accurately estimating the degree of size and effort needed for mobile game applications. This study

Journal of Software

252 Volume 13, Number 4, April 2018

adapted COSMIC FSM to estimate the cost and effort incurred when using the Unity3D game engine; the

latter is a multi-platform development tool that allows developers to create and design 3D games and

applications for mobiles. Moreover, the same authors [51] conducted a review of the functional size

measurement (FSM) on a mobile application development using UML modelling methods in terms of the

measuring process and rules. The same authors also had a case study that simulated the game Angry Bird

mobile app to demonstrate the advantages of uses UML representations in COSMIC FSM calculations [52].

Along similar lines, Souza and Aquino [53] proposed a new method that is adopted in the FiSMA method;

however, their study suffered from a lack of empirical evidence and no experts were included when

conducting said method. This approach has not been evaluated, nor has the accuracy of the predication

method been measured. Souza constructed a systematic review that covered all characteristics of mobile

applications and presented the differences between mobile applications and other traditional software.

Moreover, an empirical validation study proposed by Arnuphaptrairong and Suksawasd [54] validated

and compared the effort estimation accuracy between a traditional effort estimation model, function point

method, (S4a) and a proposed method based on the number of screens of the mobile app (S4b).

4.2. ASD Process VS Mobile Applications

This section includes all studies which have explored the use of the ASD process in mobile applications.

Santos, Kroll, Sales, Fernandes, and Wildt [55] investigated the adoption of Agile methods during the

mobile application development process. This study determined certain challenges and reported the

experiences of 20 undergraduate students when adopting mobile practice in order to develop mobile

applications. The study noted five major challenges faced by the participants; in contrast, the authors

identified eight advantages which the participants benefitted from when using the Agile method to develop

mobile apps.

Corral, Sillitti, and Succi [56] examined the suitability of the Agile method to meet the needs of the mobile

business environment; the authors also discussed the real use of the proposed frameworks that adopted the

Agile method during the mobile app development process. The study revealed that there is a need for

evidence-based research to link the proposed frameworks with the real project in the industrial field. In

other words, their study revealed that there is a need for actual evidence-based research that declares

which software development process is suitable for use during mobile app development. Similar to the

above-mentioned paper, Corral, Sillitti, and Succi [57] presented a more detailed review of the current

Agile-based framework used in mobile app development, and put forth some discussions on, and limitations

of, the current methodologies.

Mahmud and Abdullah [58] published a review study that examined and discussed all existing studies

which have adopted ASD methods during the mobile application development process. Below, we allude to

most of the important studies that have discussed the adoption of Agile methods during the mobile app

process.

Mobile-D Approach and an improved Mobile-D approach:

Abrahamsson et al. (2004) [59] applied a new development process approach that is suitable for mobile

application development. There are certain challenges and constraints which arise when applying the Agile

SD process during mobile app development due to the physical and technical characteristics of the mobile

environment [59], [60]. The Mobile-D approach is suitable for a small team of developers (10 developers or

less) and for the short-term development cycle (10 weeks or less). The new approach has adopted the XP

methodology, and is based on the Crystal methodology and Rational Unified Process (RUP). Spataru [60]

provided an evaluation of using the Agile methods during the mobile app development process and then

proposed a set of improvements for the Mobile-D approach.

Journal of Software

253 Volume 13, Number 4, April 2018

Hybrid Method Approach:

Rahimian and Ramsin [61] stated that, while Agile methods are the most appropriate means of mobile SD

through the existing methods of software development processes, some particular attributes of mobile

devices require specific adjustments so that they match the existing software development methodologies.

This study [61] revealed some differences regarding the development of mobile apps when compared with

traditional software development in various aspects. Mobile apps should satisfy special requirements and

constraints. Their study constructed a new methodology known as the Hybrid Methodology design

approach. This framework has been structured as a top-down iterative and incremental process. The

framework consists of two major tasks: Prioritisation of the Requirements and Iterative Design Engine. The

framework combines ideas from the Adaptive Software Development (ASD) to ensure more quality

insurance processes, and New Product Development (NPD).

Other Studies:

There also exist other proposed software development methods for mobile applications, such as the

Spiral process put forth by Nosseir, Flood, Harrison, and Ibrahim (Nosseir et al., 2012) [62], which is based

on a usability-driven model. This methodology focuses on risk reduction and support iterations to ensure

that the requirements have been addressed and validated. Mobile Application Software development based

on the Agile Methodology (MASAM) was adopted in another study conducted by Jeong, Lee, and Shin [63],

and is closely tied to the Mobile-D approach. MASAM comprises four phases, namely development

preparation, embodiment (representing the customer’s intention), product development, and

commercialisation; SLeSS, MASEF and DSDM are other methodologies that have adapted the Scrum, XP and

Iteration concepts respectively. Indeed, all of these used the Mobile-D approach as a reference [58].

The research questions RQ1-RQ4 have been answered in this section, and the details of all studies related

to SLR have been described adequately.

5. Research Gap and Future Work

From the previous discussion and results, we have seen various software estimation techniques that have

been applied in mobile applications; however, there exist many research gaps and possible further avenues

for future works. As can be seen in Fig. 2, there are three intersections, in the middle plot, between Agile SD,

effort estimation, and mobile application. These intersections contain many gaps and ideas for possible

future works, which will be discussed in the following:

5.1. The Relationship between “Effort Estimation Techniques in Agile SD” AND “Effort
Estimation in Mobile App”

 A possible future study could examine the need to employ and validate the existing effort estimation

methods using Agile processes in mobile app development.

 Another possible future study could employ the prediction factors and cost drivers that have been used

to estimate the effort involved in Agile methods; information on this can be found in Section 2 under

background, Software Estimation in Agile SD, during mobile application development.

 One particular research gap calls for the need to study the relationship between the cost drivers and

effort predictors from effort estimation in Agile SD models, and the effort estimation in mobile app

models.

5.2. Special Attention Must also is Paid to the Relationship Between the “Agile
Software Process in Mobile Apps” and “Effort Estimation in Mobile App
Development”. This could be Achieved by Conducting:

 A study that investigates the newly-adapted Agile development process in mobile software

Journal of Software

254 Volume 13, Number 4, April 2018

development, such as Mobile-D, alongside existing estimation models for mobile apps.

Moreover, there exists only one study which has applied a cross-platform (Unity3D) approach to estimate

the size of the software application [50]; however, this tool is primarily designed for game development and

is not suitable for industrial applications [64]. There is a need to conduct more studies that examine and

investigate the effort estimation for other cross-platform mobile applications.

For the native application development, a regression-based technique has been applied to estimate the

effort needed to develop a mobile application; however, we must put in place other estimation models to

measure the effort estimation using additional estimation techniques, such as COSMIC FSM, or based on

expert judgment.

As we can observe from previous studies, there are no estimation techniques for analysing, designing and

testing mobile application development.

6. Threat to Validity

In terms of the threat to the SLR validity, the major issue is that we failed to cover and find all the relevant

studies. However, we implemented a very deep search strategy to mitigate the threat. We built a good query

that contained most of the keywords of relevant works concerning Agile processes, effort estimation and

mobile application. Some aspects of the SLR are subjective. To mitigate this effect, the two authors have

discussed and agreed on the findings presented here.

7. Conclusion

The study presents a Systematic Literature Review (SLR) regarding effort estimation in mobile

applications that use an Agile software development method. The initial search phase returned 701 papers,

of which only 21 were selected for the primary study. Various forms of information have been extracted

from these selected studies, such as estimation techniques, cost drivers, domain and type of dataset, and

estimation accuracy techniques. A couple of possible future directions and works have been proposed at the

end of this SLR.

Fig. 2. Research gap.

Journal of Software

255 Volume 13, Number 4, April 2018

8. Reference

[1] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in

software engineering version 2.3. Softw. Eng. Group, Sch. Comput. Sci. Math. Keele Univ., 45(4), p. 1051.

[2] Kumar, N. A., Krishna, K. T. H., & Manjula, R. (2016). Challenges and best practices in mobile application

development. Imp. J. Interdiscip. Res., 2(12), 1607–1611.

[3] Xanthopoulos,S., & Xinogalos, S. (2013). A comparative analysis of cross-platform development

approaches for mobile applications. Proceedings of the 6th Balk. Conf. Informatics - BCI ’13.

[4] Hammershoj, A., A. Sapuppo, & Tadayoni, R. (2010). Challenges for mobile application development.

Proceedings of the 14th Int. Conf. Intell. Next Gener. Networks (ICIN 2010) Second Int. Work. Bus. Model.

Mob. Platforms (BMMP 2010), 1–8, 2010.

[5] Wasserman, A. I. (2010). Software engineering issues for mobile application development. Proceedings

of the FSE/SDP Work. Futur. Softw. Eng. Res. ACM, 2010., 397–400.

[6] Nasir, M. (2006). A survey of software estimation techniques and project planning practices.

Proceedings of the Seventh ACIS Int. Conf. Softw. Eng., Artific. Intell. Netw., Parallel/Distributed Comput. S,

305–310.

[7] Shekhar, S., & Kumar, U. (2016). Review of various software cost estimation techniques. Int. J. Comput.

Appl., 141(11).

[8] Britto, R., Freitas, V., Mendes, E., & Usman, M. (2014). Effort estimation in global software development:

a systematic literature review. Proceedings of the 2014 IEEE 9th Int. Conf. Glob. Softw. Eng.

[9] Björndal, P., Smiley, K., & Mohapatra, P. (2010). Global software project management: A case study. Lect.

Notes Bus. Inf. Process., 54.

[10] Muhairat, M., Al-Daajeh, S., & Al-Qutaish, R. (2010). The impact of global software development factors

on effort estimation methods. Eur. J. Sci. Res., 46(2), 221–232, 2010.

[11] Narendra, N. C., Ponnalagu, K., Zhou, N., & Gifford, W. M. (2012). Towards a formal model for optimal

task-site allocation and effort estimation in global software development. Proceedings of the 2012 Annu.

SRII Glob. Conf. IEEE, 470–477.

[12] Peixoto,C. E. L., Audy, J. L. N., & Prikladnicki, R. (2010). Effort estimation in global software development

Projects: Preliminary results from a survey. Proceedings of the 2010 5th IEEE Int. Conf. Glob. Softw. Eng.,

123–127.

[13] Ramasubbu, N., & Balan, R. K. (2012). Overcoming the challenges in cost estimation for distributed

software projects. Proceedings of the Int. Conf. Softw. Eng., 91–101.

[14] Usman, M., Mendes, E., Weidt, F., & Britto, R. (2014). Effort estimation in agile software development: A

systematic literature review. ACM Int. Conf. Proceeding, 82–91.

[15] Logue, K., McDaid, K., & Greer, D. (2007). Allowing for task uncertainties and dependencies in agile

release planning. Proceedings of the 4th Softw. Meas. Eur. Forum.

[16] Santana, C., Celio, L. F., Vasconcelos, & Alexandre, G. (2011). Using function points in agile projects. Lect.

Notes Bus. Inf. Process., 176–191, 2011.

[17] Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. J. Syst. Softw.,

85(9), 2086–2095.

[18] Haugen, N. C. (2006). An empirical study of using planning poker for user story estimation. Proceedings

of the Agil. 2006 Conf. IEEE, 23–34.

[19] Parvez, A. W. M. M. (2013). Efficiency factor and risk factor based user case point test effort estimation

model compatible with agile software development. Proceedings of the 2013 Int. Conf. Inf. Technol.

Electr. Eng, Intelligent Green Technol. Sustain. Dev.

[20] Abrahamsson, P., Fronza, I., Moser, R., Vlasenko, J., & Pedrycz, W. (2011). Predicting development effort

Journal of Software

256 Volume 13, Number 4, April 2018

from user stories. Proceedings of the 2011 Int. Symp. Empir. Softw. Eng. Meas., 400–403.

[21] Tamrakar, R., & Jørgensen, M. (2012). Does the use of fibonacci numbers in planning poker affect effort

estimates? Proceedings of the 16th Int. Conf. Eval. Assess. Softw. Eng.

[22] Power, K. (2011). Using silent grouping to size user stories. Proceedings of the Int. Conf. Agil. Softw. Dev.

[23] Bilgaiyan, S., Sagnika, S., Mishra, S., & Das, M. (2017). A systematic review on software cost estimation

in agile software development. J. Eng. Sci. Technol. Rev., 10(4), 51–64.

[24] Jørgensen, M., & Grimstad, S. (2009). Software development effort estimation — Demystifying and

improving expert estimation. Simula Res. Lab., 381-403.

[25] Jørgensen, M. (2004). Top-down and bottom-up expert estimation of software development effort. Inf.

Softw. Technol., 46(1), 3–16.

[26] Grimstad , S., & Jørgensen, M. (2007). Inconsistency of expert judgment-based estimates of software

development effort. J. Syst. Softw., 80(11), 1770–1777.

[27] Gandomani, T. J., Wei, K. T., & Binhamid, A. K. (2014). A case study research on software cost estimation

using experts’ estimates, wideband delphi, and planning poker technique. Int. J. Softw. Eng. its Appl.,

8(11), 173–182.

[28] Jørgensen, M. (2004). A review of studies on expert estimation of software development effort. J. Syst.

Softw., 70(1–2), 37–60.

[29] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic

literature reviews in software engineering - A systematic literature review. Inf. Softw. Technol., 51(1), 7–

15.

[30] Shea, B. J. et al. (2009). AMSTAR is a reliable and valid measurement tool to assess the methodological

quality of systematic reviews,” J. Clin. Epidemiol., vol. 62, no. 10, pp. 1013–1020, 2009.

[31] Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences, Blackwell publishing.

[32] Elsevier.com. How do Scopus and Compendex differ?

[33] A. (University of S. Siddaway. What is a systematic literature review and how do I do one?, What is a

Syst. Lit. Rev. How do I do one?, 1–13.

[34] Tracy, K. (2012). Mobile application development experiences on apple’s iOS and android OS. IEEE

Potentials, 31, 30–34.

[35] Ponnalagu, K., & Narendra, N. (2012). Automated trendline generation for accurate software effort

estimation.

[36] Preuss, T. (2013). Mobile applications, function points and cost estimating. Int. Cost Estim. Anal. Assoc.

Conf.

[37] Francese, R., Gravino, C., Risi, M., Tortora, G., & Scanniello, G. (2016). Estimate method calls in Android

apps. Proceedings of the Int. Work. Mob. Softw. Eng. Syst.

[38] Souza, L. S. D., & Jr, G. S. D. A. (2014). “Estimating the Effort of Mobile Application Development,” CS

IT-CSCP.

[39] Balasupramanian, N., Lakshminarayanan, R., & Balaji, R. D. (2013). Software engineering framework

using agile dynamic system development method for efficient mobile application development. Int. J.

Comput. Sci. Inf. Secur.

[40] Catolino, G., P. Salza, Gravino, C., & Ferrucci, F. (2017). A set of metrics for the effort estimation of

Mobile apps. Proceedings of the 2017 IEEE/ACM 4th Int. Conf. Mob. Softw. Eng. Syst. MOBILESoft.

[41] Mendes, E., & Counsell, S. (2004). Investigating early web size measures for web cost estimation. J. Syst.

Softw. 77, 1–28.

[42] Lusky, M., Powilat, C., & Böhm, S. (2018). Software cost estimation for user-centered mobile app

development in large enterprises,.

Journal of Software

257 Volume 13, Number 4, April 2018

[43] Shahwaiz, S. A., Malik, A. A., & Sabahat, N. (2016). A parametric effort estimation model for mobile apps.

Proceedings of the 2016 19th Int. Conf. (INMIC).

[44] Nitze, A., Schmietendorf, A., & Dumke, R. (2014). An analogy-based effort estimation approach for

mobile application development projects. Proceedings of the 2014 Jt. Conf. Int. Work. Softw. Meas..

[45] Francese, R., Gravino, C., Risi, M., Scanniello, G., & Tortora, G. (2015). On the use of requirements

measures to predict software project and product measures in the context of Android mobile apps: A

preliminary study. Proceedings of the 41st Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2015.

[46] D’Avanzo, L., Ferrucci, F., Gravino, C., & Salza, P. (2015). COSMIC functional measurement of mobile

applications and code size estimation. Proceedings of the 30th Annu. ACM Symp. Appl. Comput.

[47] Heeringen, H. V., & Gorp, E. V. (2014). Measure the functional size of a mobile app: Using the cosmic

functional size measurement method. Proceedings of the 2014 Jt. Conf. Int. Work. Softw. Meas.

[48] André, N. (2013). Measuring mobile application size using COSMIC FP. Softw. Metr. Kongress.

[49] Ferrucci, F., Gravino, C., Salza, P., & Sarro, F. (2015). Investigating functional and code size measures for

mobile applications. Proceedings of the 41st Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2015.

[50]Abdullah, N. A. S., Rusli, N. I. A., & Ibrahim, M. F. (2014). Mobile game size estimation: COSMIC FSM rules,

UML mapping model and unity3d game engine. Proceedings of the 2014 IEEE Conf. Open Syst.

[51] Abdullah, N. A. S., & Rusli, N. I. A. (2015). Reviews on functional size measurement in mobile

application and uml model. Proceedings of the 5th Int. Conf. Comput. Informatics.

[52] Abdullah, N. A. S., Rusli, N. I. A., & Ibrahim, M. F. (2013). A case study in COSMIC functional size

measurement: Angry bird mobile application. Proceedings of the 2013 IEEE Conf. Open Syst. ICOS 2013.

[53] Souza, L. S. D., & Aquino, G. S. D. (2014). Mobile application development : How to estimate the effort?

Springer Int. Publ. Switz., 63–72.

[54] Arnuphaptrairong, T., & Suksawasd, W. (2017). An Empirical Validation of Mobile Application Effort

Estimation Models,” Proceedings of the Int. MultiConference Eng. Comput. Sci. IMECS 2017, vol. II, 2017.

[55] Santos, A., Kroll, J., Sales, A., Fernandes, P., & Wildt, D. (2016). Investigating the adoption of agile

practices in mobile application development. Proceedings of the 18th Int. Conf. Enterp. Inf. Syst..

[56] Corral, L., Sillitti, A., & Succi, G. (2013). Software development processes for mobile systems: Is agile

really taking over the business? Proceedings of the 1st Int. Work. Eng. Mobile-Enabled Syst.

[57] Corral, L., Sillitti, A., & Succi, G. (2013). Agile software development processes for mobile systems:

Accomplishment, evidence and evolution. Proceedings of the Mob. Web Inf. Syst.

[58] Mahmud, D. M., & Abdullah, N. A. S. (2015). Reviews on agile methods in mobile application

development process. Proceedings of the 9th Malaysian Softw. Eng. Conf. Dec.

[59] Abrahamsson, P. et al. (2004). Mobile-D: An agile approach for mobile application development.

Proceedings of the Conf. Object-Oriented Program. Syst. Lang. Appl. OOPSLA.

[60] Spataru, A. C. (2010). Agile development methods for mobile applications. Univ. Edinburgh, Edinburgh,

1–68.

[61] Rahimian, V., & Ramsin, R. (2008). Designing an agile methodology for mobile software development: A

hybrid method engineering approach. Second Int. Conf. Res. Challenges Inf. Sci., 337–342.

[62] Nosseir, A., Flood, D., Harrison, R., & Ibrahim, O. (2012). Mobile development process spiral. 281–286.

[63] Jeong, Y. J., Lee, J. H., & Shin, G. S. (2008). Development process of mobile application SW based on agile

methodology. Int. Conf. Adv. Commun. Technol.

[64] Ottka, S. (2015). Comparison of mobile application de- velopment tools for multi-platform in- dustrial

applications. Aalto Univ. Sch. Sci.

Journal of Software

258 Volume 13, Number 4, April 2018

Abdullah Altaleb is a PhD student specialising in Software Engineering at the

University of Southampton, UK. The author accomplished his master’s degree in

software engineering at Southern Methodist University in Dallas, Texas in the United

States. The Author worked at the GOSI and NIC organisation as a software and

application developer for four years, with a focus on the Java EE platform. He also

completed an internship at MRN Inc. as a software architect in San Jose, California.

Abdullah is certified in CABA, which is associated with the business analysis profession.

Andrew Gravell was born 1956 in Exeter, UK. He studied mathematics and computer

science at Cambridge, and was awarded a PhD by the University of Southampton in

1995. He held the position of software developer for 7 years, most of which was spent at

IBM's Hursley laboratory working on a range of projects and writing software for

microprocessor-based systems. In 1987 he joined ECS, Southampton, as a lecturer in

computer science. He was promoted to senior lecturer/associate professor in

2002. Andrew also held the position of Associate Dean for Education and the Student

Experience, Faculty of Physical and Applied Sciences from 2010 to 2015. He has supervised a number of

PhD students and published on a range of approaches to software development, empirical approaches to

software development, agile methods, and lean information technology.

Journal of Software

259 Volume 13, Number 4, April 2018

