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Abstract: We introduce a three-dimensional chaotic system and reveal the relation between signal 

amplitude and the system parameters which can enrich the key for a cryptosystem. To study application of 

the relation to multi-media security, we propose an image encryption scheme based on the 

permutation-diffusion architecture. Security of immunity to known-plaintext attack and chosen-plaintext 

attack is ensured by adopting plaintext sequence and amplitude parameter to generate key stream with the 

ideology of one-time pad. Numerical experiments are implemented and prominent advantage of the 

theoretical scheme is confirmed.  
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1. Introduction 

With the rapid development of information technology and multimedia industry, digital image has been 

increasingly acquired, stored and transmitted. Consequently, the secure communication of confidential 

digital images over open channels has become vital and urgent requirement [1], [2]. Several traditional 

encryption schemes, such as DES (data encryption standard), AES (advanced encryption standard) and RSA 

(Rivest-Shamir-Adleman), are introduced for textual information based on confusion and diffusion 

principles [2]. In view of the theory by Shannon, practical cryptographic characteristics for image 

encryption include not only the bit confusion and diffusion, but also the computational unpredictability, and 

the sensitivity to keys and plain text [3], which can be commendably catered by the fundamental features of 

a chaotic system. Therefore, chaos can be thought of as a suitable candidate for image encryption [4-9].  

In 1998, Fridrich introduced chaos-based image encryption with permutation-diffusion procedure at the 

first time [10]. Under this scheme, the position of image pixels is firstly changed to erase the high 

correlation between adjacent pixels; then the pixel values are modified sequentially using pseudorandom 

sequences, so that a tiny change in a pixel can spread out to as many pixels in the whole image as possible, 

and the correlations of adjacent pixels are broken simultaneously. Subsequently, the permutation-diffusion 

schemes and their extension, such as bit-level permutation approach [11], [12], plain-image confusion [13], 

enhanced key stream generator [1], [5], transform domain scheme are proposed [4], [14], [15]. Recently, 

mailto:hnistlichl@163.com.


  

 

 

 

 

 

 

 

 

  

  

  

  

 

  

  

Journal of Software

422 Volume 13, Number 8, August 2018

  

some chaos-based image encryption algorithms with permutation-diffusion architecture are found to be 

insecure against different attacks, and have been subsequently broken [16]-[21]. The common weaknesses 

of these insecure schemes are summarized as below: (a) The algorithms for encryption/decryption are 

insensitive to the variations of the plain-image, and the key streams are independent of the plain-image, 

which favor known-plaintext attack and chosen-plaintext attack. (b) The chaotic sequences for permutation 

and diffusion are generated from different systems, and the procedures of permutation and diffusion are 

independent. Accordingly, the change of one of secret keys will only affect the permutation module or the 

diffusion procedure. (c) The schemes do not conform to the idea of one-time pad (OTP) since the key is 

unchanged in the procedure of encryption, which can't ensure perfect security.  

In cryptography, OTP is the only known unbreakable cipher, and was proven mathematically to be 

perfectly secure by Shannon [22]. For OTP scheme, the private key is required to not only be perfectly 

random, but also be used only once, thus it must be as long as the message with an executed difficulty. In 

spite of the practical shortcomings, OTP continues to be used in DNA cryptography [23], quantum 

cryptography [24] and even in classical cryptography [25], when high security is desired. The amplitude 

parameter of a chaotic system is defined as that enabling modulating signal amplitude. If the amplitude 

parameter of a chaotic system is regarded as encryption key and changes with encryption process for every 

pixel, it can provide the private key as long as the message and result in possible realization of OTP.  

In this paper, we present a practicable image encryption scheme for both combining permutation and 

diffusion and addressing the existed problems (weaknesses) mentioned above. Firstly, we propose a 

three-dimensional chaotic system with five linear terms and two quadratic product terms. Basic dynamical 

properties including the amplitude modulation are analyzed carefully. And the chaotic sequences are 

modified to obtain a chaotic key stream suiting for diffusion. Then the idea of OTP realized by correlating 

the parameter secret key and plain-image, is employed to shuffle the pixels. Security analyses and 

experiment results show the proposed scheme has high key sensitivity, high plaintext sensitivity and 

resistance to different attacks. 

2. The Chaotic System 

2.1. System Description  

The introduced three-dimensional chaotic system holds five linear terms and two quadratic terms, as 

below  
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Here, 
1 2 3, ,x x x  are state variables and , , , , , ,a b c d e f g  are positive parameters. Similar to the 

ordinary chaotic systems, system (1) exhibits complex dynamical behaviors but different properties of 

amplitude modulation by varying some parameter.  

By considering the condition 
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The corresponding characteristic equation can be deduced as 
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Throughout this manuscript, we consider the parameter set    

}5,1.0,1,1,28,6,10{},,,,,,{  gfedcbaS  

Unless explicitly stated otherwise. Thus the nonzero equilibrium points read 

1(37.9199, 63.1999, 28.7584)E , 2( 36.9199, 61.5332, 27.2616)E   . The characteristic roots 

corresponding to the equilibrium points are 

    0 1 2 3: 28, 20, 3.E         

    1 1 2 3: 17.4608, 1.2304 + 9.7982 , 1.2304 9.7982 .E i i        

    2 1 2 3: 17.7118, 1.3559 + 9.5793 , 1.3559 9.5793 .E i i         

For the equilibrium points E0, 1 and 3 are negative real number, 2 is positive real number. As a 

consequence, E0 is a saddle-node of index 1. But for the equilibrium points E1 and E2, 1 is a negative 

real number, 2 and 3 become a pair of complex conjugate roots with positive real parts, meaning 

saddle-focus points of index 2. The Lyapunov exponents of system (1) are calculated as 

0.869, 0.0, 22.51012  for the parameter set S, and the corresponding Kaplan-Yorke dimension is 

2.0386, denoting a fractional feature. Therefore, system (1) is chaotic, as depicted in Fig.1.   

It deserves to be mentioned that system (1) holds two asymmetrical nonzero equilibrium points 

which is different from those of the similar systems [26-30], therefore, they are not topological 

equivalent, though all have similar attractors.  

 

       
Fig. 1. x1-x3 phase portrait (a) and poincaré map (b) with x2=0 and  

the parameter set }5,1.0,1,1,28,6,10{},,,,,,{  gfedcbaS .  

 

2.2. Phase Modulation of Chaotic Signals  

In system (1), coefficient d can control the phase of signals x1 and x2 simultaneously, which can be 

seen from the invariance with the transformation 

 1 2 3( , , , , , , , , , )x x x a b c d e f g  1 2 3( , , , , , , , , , )x x x a b c d e f g   . 

 The bifurcation diagrams for variables x1 and x2 are reverse symmetrical about d =0, which further 

confirms that the sign variation of d can change the polarity of x1 and x2, regardless of the dynamics 

behavior, as described in Fig. 2.  

2.3. Amplitude Modulation of Chaotic Signals  
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It is known from Refs. [31]-[33] that, for the quadratic chaotic systems, the coefficients of quadratic 

terms can control the signal amplitude partially or totally. Here we define such coefficients of a chaotic 

system as amplitude parameters. We will use the amplitude parameters to study the amplitude 

modulation of Eq. (1) for both the cases ef   and ef   as follows.  

 

      
Fig. 2. Bifurcation diagram versus d with the parameter set S except for d. 

  

Case ef  .  The bifurcation diagram of system (1) with [0, 10]e  is depicted in Fig.3 (a). 

Superficially, the coefficient e can control the amplitude of signal x1 nonlinearly. But one can see that 

there emerges visible period doubling bifurcation or periodic window from the enlarged view, as 

shown in Fig.3 (b). The bifurcation diagram versus coefficient f further demonstrates that not all 

coefficients of quadratic terms can modulate the signal amplitude, seen in Fig.3 (c).  

 

     
Fig. 3. (a), (b) Bifurcation diagram versus e with the parameter set S except for e; 

 (c) Bifurcation diagram versus f with the parameter set S except for f.  

 

Spontaneously, when considering the property of amplitude modulation for chaotic system, we 

raise a puzzled yet worth to be explored question “what’s the necessary condition for possibly 

modulating signal amplitude of chaotic system?” It’s known that the equilibrium point of dynamical 

system denotes the equilibrium position of unstable motion with zero velocity, and the nonzero 

equilibrium points will accordingly deviate from the original position when rescaling the trajectory of 

chaotic attractor. Therefore, for the chaotic system with multiple equilibrium points, the possible 

prerequisite for amplitude modulation of chaotic signals can be summarized as: (a) in the 

mathematical expression of nonzero equilibrium point, the amplitude parameter is symmetrical about 

some axis; (b) and the amplitude parameter can modulate the location of the nonzero equilibrium 

point in coordinate plane.   
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Case ef  . Considering the expression of nonzero equilibrium point of system (1) for the case 

ef  , any one of parameters e and f of nonlinear term can’t modulate the location of equilibrium 

point E1 or E2. Consequently, parameter e or f can’t execute amplitude modulation. Now we introduce a 

unified parameter e for nonlinear term x1x3 and x1
2, resulting in the new case ef   of Eq. (1) and the 

nonzero equilibrium points 
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The set of symmetrical axis for points E1 and E2 is 
2

, , +
2 2 2

d ad d c

e be eg e

 
 
 

. In addition, the unified 

parameter e can modulate the location of the nonzero equilibrium points according to 
1

e
 respectively. 

As a result, the parameter e can execute amplitude modulation for signal x1, x2, x3 according to 
1

e
. The 

corresponding signal amplitude and Lyapunov exponent spectrum versus e are depicted in Fig.4.  

 

     
Fig. 4. Signal amplitude (a) and Lyapunov exponent spectrum (b) 

versus e with the parameter set S except for e and f.  

 

3. Image Encryption Scheme Based on Amplitude Modulation of Chaotic Signals  

3.1. Improved Chaotic Sequences  

The Logistic map is a simple chaotic system with one-dimensional dynamical equation yet complex 

behavior, expressed as  

  ( 1) ( ) 1 ( )x n x n x n                                (4) 

When the parameter is selected as (3.9,4] , the system (4) is chaotic and the sequence x(n) is 

between 0 and 1 [5, 7].   
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Based on Golomb’s theory [1], three properties should hold for an ideal pseudo-random sequence: 

(a) the AC (autocorrelation) is the delta function; (b) the CC (cross correlation) is zero; (c) uniform 

distribution. Experimental results show that the sequences x1, x2, x3 generated by new system (1) with 

ef   and the sequence x generated by system (4) are not the ideal pseudo-random sequences, which 

need to be modified, see Figs.5 (a), (c) and Figs.6 (a). In the encryption scheme, we make the 

pretreatment for these sequences, as below:  

2 2

1 1 1

2 2

2 2 2

2 2

3 3 3

2 2

4

10 ( 10 )

10 ( 10 )

10 ( 10 )

10 ( 10 )

h x round x

h x round x

h x round x

h x round x

   

   

   

   

                                (5) 

In (5), round (*) stands for rounding * to the nearest integer. As shown in Fig.5 (b), (c), the 

autocorrelations of sequences h1 to h4 verge on the ideal delta function. And the cross correlation 

between sequences h1 and h2 is close to zero, depicted as Fig.6 (b). Further, we know that the modified 

sequences hold uniform distribution between –0.5 and 0.5. Therefore, the modified sequences in (5) 

have better performance for image encryption.  

 

       
Fig. 5. Autocorrelation series for the pseudo-random sequences and the modified forms. 

 

      
Fig. 6. Cross correlation series for x1, x2 and h1, h2.  

 

3.2. Image Encryption Scheme  

The block diagram of the suggested image encryption scheme is shown in Fig.7. This scheme can 

ensure high security for holding the following features: (a) The chaotic sequences for permutation and 

diffusion are simultaneously generated from Logistic map and new chaotic system, thus the change of 

one of secret keys will affect both the permutation module and the diffusion procedure. (b) The 
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plaintext sequence and amplitude parameter are adopted to generate key stream based on the idea of 

OTP, which can effectively fend off known-plaintext attack and chosen-plaintext attack. (c) The chaotic 

key stream is modified for diffusion process based on the properties of ideal pseudo-random sequence. 

(d) There exists a big key space to ensure a high security level. The encryption procedure is described 

as follows.  

 

Logistic map

Modified sequence

Cipher image

Sorting index sequence

Permutation DiffusionPlain image

Chaotic system

Modified sequence

Parameters

Confused image

Initial values

Parameter

Initial value

  
Fig. 7. Block diagram of the suggested image encryption scheme.  

 

Step 1. Input the original image I with size L=MN. The L pixels are arranged as a one-dimensional 

array from the upper left to the lower right, which is represented by P=(P0, P1, … , PL–1).  

Step 2. Generate chaotic sequence x=(x1, x2, … , xL) by Logistic map (4) with parameter (3.9,4]  

and initial value x0.  

Step 3. Generate chaotic sequences x1=(x11, x12, … , x1L), x2=(x21, x22, … , x2L) and x3=(x31, x32, … , x3L) by 

the modified chaotic system (6) with parameter set (a, b, c, d, e, g) and initial condition (x10, x20, x30).  

1 1 2
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                              (6) 

with 
1 2( , , , )Lk k k k , 8mod 10 , 256 256

256
i

i

P
k



 
  

 
.  

Step 4. Generate chaotic sequences y1=( y11, y12, … , y1L), y2=(y21, y22, … , y2L) by  

 
1 1

15

2 1 1

tanh( )

mod ( ( )) 10 , 256

xy e x x

y y abs y

  

  
                              (7) 

Step 5. Sort sequence y2 by ascending order to get the corresponding index sequence. According to 

the index sequence, number the one-dimensional pixels P and adjust pixel positions sequentially. 

Rearrange the scrambled pixels from left to right and top to bottom to get the confused image Ic.  

Step 6. The chaotic sequences of system (6) are modified according to Golomb’s theory, and obtain 

h1, h2, h3.  

Step 7. Generate one-dimensional chaotic key stream S with size L for diffusion process by the 

formulas  

 14 15 16

1 2 1 2 3 3 4 4mod ( ( )) 10 ( ( )) 10 ( ( )) 10 , 256H h h abs h h h abs h h abs h                    (8) 
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 16mod ( ) 2 , 256S floor H                               (9) 

 

Step 8. Modify the pixel values of the confused image by performing forward diffusion and reverse 

diffusion, as below  

  

( ) ( 1) ( ) ( )d d cI i I i S i I i                                 (10) 

( ) ( 1) ( ) ( )d d cI i I i S i I i                                 (11) 

 

The pixel values of image Ic are completely diffused by two round diffusions with the key stream S, 

thus we get the ciphered image Id via the exclusive OR operation.  

The decryption procedure is an inverse process of encryption procedure. 

4. Experimental Results and Security Analysis 

In this section, by adopting different standard images with 8-bit grayscale and size of 512×512, a 

series of numerical experiments have been conducted to check the security of the introduced 

cryptosystem. The initial value and parameter of Logistic map are chosen as =4, x0=0.02. The initial 

conditions and parameters of system (6) are fixed as x10=0.02, x20=0.1, x30=0.03, a=10, b=6, c=28, d=1, 

e=1, g=5.  

The experimental results for Lena image are shown in Fig.8. And several tests will be discussed to 

analyze the security level of the proposed encryption algorithm in the following subsections. 

4.1. Key Space Analysis  

Kerckhoff pointed out that the information system should be of security even if the system is publicly 

available except the key [34]. Therefore, a good encryption scheme should provide a large enough key 

space against any brute force attacks. In this encryption technique, the four initial values x0, x10, x20, x30 

and seven parameter values , a, b, c, d, e, g for systems’ setup can be viewed as secret keys. 

Accordingly, if the computational precision is 10–15, the total key space size is bigger than 1015×11=10165, 

which is large enough to ensure a high security against brute-force attacks.  

4.2. Sensitivity Analysis  

A good encryption algorithm should be sensitive to the mismatches with respect to the original 

images or any secret keys on the whole cipher-image, for this reason, two common types of sensitivity 

analysis are executed in the following experiments.  

4.2.1. Key sensitivity  

The key sensitivity (KS) can be measured by calculating the Number of Pixel Change Rate (NPCR) 

and Unified Average Changing Intensity (UACI), as the following formulas  

 0
0

1 1

1
( , ) 100

M N

i j
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L  

                          (12) 
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where L=MN is the size of the cipher-image; Q is the number of bits, for images holding allocations of 

8 bits/pixel of gray-scale, 2 1 255Q   ; Id1 and Id2 are two cipher-images corresponding to the right 

and mismatched keys; Dif(i, j) denotes the difference between Id1 and Id2.  

 

 

 

  

Fig. 8. (a) original Lena image; (b) Encrypted image; (c) Decrypted image; (d) Histogram of Lena image; 

(e) Histogram of the encrypted image; (f) Histogram of the decrypted image; (g) Amplitude spectrum 

of Lena image; (h) Amplitude spectrum of encrypted image; (k) Amplitude spectrum of decrypted 

image. 

 

We first encrypt the standard images Lena, Scenery and Girla, using the right keys 04, 0.02x   , 

10 20 300.02, 0.1, 0.03x x x   , 10, 6, 28, 1, 1, 5a b c d e g      . Then we encrypt the same 

images with tiny change of keys. For all cryptographic systems, the idea results of NPCR and UACI are 

100% and 33.33%, respectively. Therefore, experimental results of the proposed encryption are close 

to the expected estimate, as listed in Table 1. Thus, a high sensitivity of key is provided by the proposed 

scheme.   
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Table 1. Key Sensitivity for Different Standard Images 
Slight changes of keys Measures 

Logistic 

Map 

The introduced chaotic system NPCR/% UACI/% 

 x0 a b c g e x10 x20 x30 Lena Scenery Girla Lena Scenery Girla 

10–

15 

0 0 0 0 0 0 0 0 0 99.6029 99.6071 99.6136 33.2705 33.5786 33.5705 

0 10–

15 

0 0 0 0 0 0 0 0 99.6235 99.5941 99.5964 33.4416 33.4426 33.5246 

0 0 0.01 0 0 0 0 0 0 0 99.6254 99.6014 99.6178 33.2859 33.4857 33.5330 

0 0 0 10–

12 
0 0 0 0 0 0 99.6067 99.6048 99.5941 33.4125 33.5360 33.5056 

0 0 0 0 0.01 0 0 0 0 0 99.6117 99.5880 99.5945 33.4434 33.3556 33.4177 

0 0 0 0 0 10–

12 
0 0 0 0 99.6109 99.6082 99.5861 33.4224 33.6465 33.4880 

0 0 0 0 0 0 10–

10 
0 0 0 99.6143 99.6456 99.5945 33.2362 33.4934 33.4980 

0 0 0 0 0 0 0 10–

15 
0 0 99.6315 99.6185 99.6067 33.5187 33.4595 33.6973 

0 0 0 0 0 0 0 0 10–

15 
 99.5811 99.6075 99.6010 33.3366 33.3245 33.5061 

0 0 0 0 0 0 0 0 0 10–

15 
99.6277 99.5998 99.6155 33.2998 33.5342 33.6493 

 

4.2.2. Plaintext sensitivity  

The encryption technique can effectively resist differential attack if that a slight change in the 

plain-image makes the cipher-image vary greatly, which can also be tested by calculating the values of 

NPCR and UACI. For the plaintext sensitivity (PS), Id1 and Id2 are respectively the cipher-image before 

and after the change of one pixel of the plain image. The experimental results for the standard images 

Lena, Scenery and Girla are depicted in Table 2. It is clear that the values of NPCR and UACI remain in 

the vicinity of the expected values, thus the proposed scheme is extreme sensitive with respect to the 

little change of plain-image and can effectively resist differential attack.  

 

Table 2. Plaintext Sensitivity for Different Standard Images 
NPCR/% UACI/% 

Lena Scenery Girla Lena Scenery Girla 

99.6174 99.6044 99.6361 33.4027 33.5370 33.5818 

 

4.3. Statistical Analysis  

According to Shannon’s theory, the encryption process should prevent the cipher-image from 

suffering any statistical attack [3], [22]. There is strong correlation among adjacent pixels for plain 

images. Statistical analysis is mainly to observe the confusion and diffusion properties of the encrypted 

image and the difference with the original image. In order to prove the security of the proposed 

cryptographic scheme, several statistical tests such as histogram, spectrum, information entropy, 

correlation are performed in this subsection.  

4.3.1. Histograms of image   
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The histogram reveals the statistical characteristics of image and the distribution information of 

pixel values. Histograms of the original Lena image and its encrypted and decrypted images are shown 

in Fig. 8 (d-f). It’s known that the histogram of encrypted image distributes nearly uniform and 

completely differ from the histograms of the original and decrypted images. Hence, the histogram of 

encrypted image does not reveal any statistical information of the original image. Thus, it is difficult for 

attackers to recover the plain image from statistical feature of ciphered image. 

4.3.2. Spectrums of image  

Similar to the histogram of image, the spectrum also reflects the distribution of the corresponding 

image in frequency domain. The distributions of the amplitude spectrum for the original Lena image 

and the corresponding encrypted and decrypted images are shown in Fig. 8 (g-k). It can be seen that 

there exists ridges and valleys in Fig. 8 (g) and Fig. 8 (k), but the amplitude spectrum of the encrypted 

image in Fig. 8 (h) is fairly uniform in the whole frequency distribution. What’s more, the amplitude 

spectrum of the decrypted image is almost equivalent to the original one. Therefore, the proposed 

technique is strong enough to resist any statistical attack.  

4.3.3. Information entropy  

Information entropy is an important measure of the uncertainty of randomness. Let p(si) be the 

probability of information source si, and N is the number of bits for each information symbol si. The 

information entropy can be calculated as   

2 1

2

1

( ) ( ) log ( )

N

i i

i

H s p s p s




                               (12) 

The entropy of experimental result for the standard images Lena, Scenery and Girla are 7.9972, 

7.9973, 7.9973, respectively. Compared with the algorithms from Refs. [1, 4], the obtained result for 

the cipher-image Lena is more close to the ideal value 8. Therefore, the probability of information 

leakage of the proposed scheme is very little and the ciphered image is secure against any kind of 

entropy attack.  

4.3.4. Correlations of two adjacent pixels  

       
Fig. 9. (a) Correlations in the plain-image Lena; (b) Correlations in the cipher-image Lena.  

 

A secure encryption scheme should reduce the correlation between adjacent image pixels to 

withstand statistical attack. Thus, we randomly select 10,000 pairs of two adjacent pixels in horizontal, 
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vertical and diagonal directions from the original image and the cipher-image to test the correlation. 

The correlation coefficient Rxy will be calculated by using the following equation  

)()(/),cov( yDxDyxRxy                            (13) 
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and y are gray-scale values of the adjacent pixels in the image.  

Fig. 9 shows the correlation distribution of two diagonally adjacent pixels in the original Lena 

image and that in the ciphered image, with the corresponding correlation coefficients 0.9739 and 

0.0014. The test results for different standard images are concluded in Table 3. From Table 3, it can be 

seen that the proposed scheme approximates zero correlation, revealing high-level security.  

 

Table 3. Correlation Coefficients for the Standard Images Girla, Scenery and Lena 

Direction 
Plain-image Cipher-image 

Lena Scenery Girla Lena Scenery Girla 
Horizontal 0.9858 0.9690 0.9686 –0.0090 0.0011 –0.0035 

Vertical 0.9904 0.9832 0.9889 –0.0019 –0.0012 0.0036 
Diagonal 0.9739 0.9759 0.9544 0.0014 0.0012 0.00004 

 

4.4. Noise Attack Analysis  

 

       

       

Fig. 10. Decrypted images disturbed by salt-and-pepper noise with (a) R=0.1 and (b) R=0.4; decrypted 

images disturbed by Gaussian noise with (c) R=0.1 and (d) R=0.4.  

 

The image is often corrupted by different noises in processing and transmission. To analyze the 

immunity to different noise of this scheme, we add the salt-and-pepper noise and Gaussian noise to the 

ciphered image of Lena in the way: I'd(x, y) = Id(x, y)(1+RN(x, y)), in which Id(x, y) and I'd(x, y) denote 

the ciphertext and the noise-disturbed ciphertext respectively, N(x, y) is the salt-and-pepper noise or 
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Gaussian noise, R denotes the noise strength. The decryption process is performed with correct keys 

except that the ciphertext is disturbed by different noises. Fig. 10 (a) and (b) show the results of 

decrypting ciphertext disturbed by salt-and-pepper noise when R is set to 0.1 and 0.4. Fig. 10 (c) and 

(d) show the results of decrypting ciphertext disturbed by Gaussian noise when R is set to 0.1 and 0.4. 

As we know that the decrypted plain images become more fuzzy with a larger strength R, but the main 

information of the plain images can be recognized. Therefore, the proposed encryption scheme can 

resist noise attack to some extent. 

4.5. Occlusion Attack Analysis  

The image is mostly also damaged by occlusion in processing and transmission. We perform the 

decryption process with all correct keys except that the encrypted image is occluded partly. Fig. 11 (a) 

displays the occluded ciphertext which is cut by 25% at the central and Fig. 11(b) depicts the 

recovered plain image. Fig. 11(c) displays the occluded ciphertext cut by 50% at the lower-left corner 

and top-right corner, and Fig. 11 (d) shows the decrypted image. From the recovered images, it’s found 

that the content of the original image can be identified visually. Therefore, the introduced encryption 

scheme is proved to be immune to occlusion attack.  

 

 

 

Fig. 11. (a) Ciphertext with 25% occlusion and (b) the corresponding decrypted image; (c) ciphertext 

with 50% occlusion and (d) the corresponding decrypted image.  

 

5. Discussion and Conclusion  
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A practical scheme for image encryption includes not only bit confusion and diffusion, but also 

computational unpredictability and sensitivity to keys and plain text, which can be commendably 

catered by chaotic systems. And the chaotic system with amplitude parameter can execute a possible 

realization for one-time pad since it can provide enough key than the message. In this paper, we 

introduce a three-dimensional chaotic system by analyzing basic dynamical properties, particularly 

including amplitude modulation. And to study its application in multi-media security, an image 

encryption scheme is presented based on the permutation-diffusion architecture. The proposed 

cryptosystem can ensure high security by mainly employing the following two innovations: (a) The 

chaotic sequences for permutation and diffusion are simultaneously generated from Logistic map and 

new chaotic system, thus the change of one of secret keys will affect both the permutation module and 

the diffusion procedure. Moreover, the chaotic key stream for diffusion process is modified based on 

the properties of ideal pseudo-random sequence. (b) The plaintext sequence and amplitude parameter 

are employed to generate key stream based on the idea of OTP, which will cause a significant variation 

in the key stream if we choose different pixel of plain-image, different parameter or different initial 

condition of chaotic systems. Therefore, this procedure can effectively resist known-plaintext attack 

and chosen-plaintext attack. And, consequently, it can also withstand other conventional attacks. 

Finally, we have carried out key space analysis, key sensitivity analysis and statistical analysis to 

demonstrate the security of the introduced image encryption scheme.   
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