
A Theoretical Validation of Component Point

Thareendhra Wijayasiriwardhane1, Richard Lai2*

1 Faculty of Science, University of Kelaniya, Sri Lanka.
2 Department of Computer Science and Information Technology, La Trobe University, Australia.

* Corresponding author. Email: r.lai@latrobe.edu.au
Manuscript submitted Number 24, 2018; accepted January 12, 2019.
doi: 10.17706/jsw.14.1.1-12

Abstract: The system-level size measures are important in software project management as tasks such as

planning and estimating the cost and schedule of software development can be performed more accurately

when a size estimate of the entire system is available. However, due to the black-box nature of software

components, traditional software measures are not adequate for Component-Based Systems (CBS). We have

developed a Function Point (FP) like measure, named Component Point (CP), for measuring the

system-level size of a CBS specified in Unified Modeling Language. In this paper, we present a theoretical

validation of the CP measure using mathematics and show that not only the CP measure holds all the

mathematical conditions necessary for a size measure, but it can also be used in Component-Based

Software Development (CBSD) in a similar way that FP and its extensions are used in other software

development paradigms.

Key words: Component-based systems, component point, software sizing, mathematical validation.

1. Introduction

Developing large and complex software systems remains a costly and a somewhat unpredictable business,

even today. It is reported that 52% of software projects failed to deliver on schedule, within budget and

thereby with the required functionality, while 19% of projects were totally abandoned [1]. This clearly

emphasizes the importance of quantifying software products, processes and resources in order to manage

software development successfully. In recent years, many software measures have been introduced in order

to gather information about these aspects of software development. Among them, software size captures

one of the most significant internal attribute of a software product. Over the years, it has been used for

software assessment, estimation and improvement [2]-[5]. Although other factors such as software type,

operational domain [6]-[8], developers’ skills [9], [10] and tools and methods used [11], [12] have a

considerable influence, software size remains the dominant factor with respect to the effort of software

development [13]-[16].

Among the software size measures, Function Point (FP) [17] has achieved a wide acceptance in sizing

software products [18]-[20]. Although its applicability is limited to procedural business systems, many

researchers agree that the main idea of FP can be extended in order to be successfully used it for other

types of systems [18], [21]-[24]. As a result, a number of extensions to FP specialized for specific types of

systems, ranging from real-time and embedded systems [25], [26] to Object-Oriented (OO) [24], [27]-[29]

and web-based [30]-[32] systems have been proposed.

In [33], we proposed an FP like measure, named Component Point (CP), for measuring the system-level

1 Volume 14, Number 1, January 2019

size of a Component-Based System (CBS) specified in Unified Modeling Language (UML) [34]. The CP

measure is a promising approach to sizing a CBS. However, any proposed software measure becomes

acceptable only if its validity has been proven via a thorough validation process. In fact, such a rigorous

validation process requires two kinds of validations, namely a theoretical and an empirical validation. A

theoretical validation confirms that the proposed measure satisfies all the necessary conditions that

characterize the concept that it is supposed to measure, whereas an empirical validation verifies its

usefulness against some external attributes [24]. In this paper, we provide a theoretical validation for the CP

measure using mathematics in order to prove that not only the CP measure holds all the mathematical

conditions necessary for a size measure but it is also useful in predicting the effort of Component-Based

Software Development (CBSD). Our aim is to show that the CP measure can be used in CBSD in a similar

way that FP and its extensions are used in other software development paradigms. We refer any interested

readers to [33] for: (i) a review of the related work; (ii) the rationale behind the proposal of the CP measure;

and (iii) a detailed explanation of the CP counting process.

2. Component Point Measure

The CP measure [33] integrates three existing software measures, namely the Class Point [24] size

measure, which is an extension to FP for OO systems and two complexity measures [35] for CBS. It then

quantifies components in a CBS in analogy to the class point counting performed for the Class Point

estimate. The rationale behind this is to extend an existing measure from the more matured OO paradigm to

the related and relatively young CBS discipline.

The CP counting process consists of four main steps [33]. In the first step, the UML specification is

analyzed in order to identify the types of the components in a CBS. The identified components are then

classified into three types, namely User Components (UC), Service Components (SC) and Domain

Components (DC) as suggested in [36].

In the second step, the Interface Complexity (IFC) and Interaction Complexity (ITC) of each component

are evaluated. For this purpose, we use the two complexity measures for CBS described in [35].

2 3

1 1

jk jk

j k

IFC I W
= =

= (1)

where Ijk is the number of interfaces of type j (Internal Logical File or External Interface File) with

complexity level k (Low, Average or High) and Wjk is the weight given for the interface type j with

complexity level k. The complexity level of each interface is evaluated based on the Number of Operations

(NO) and Number of Parameters (NP) derived from the operation signatures for each interface [35].

1 1 1

()
l m n

ij ijk

i j k

ITC IF CM
= = =

= (2)

where l is the number of interfaces that the component has, m is number of operations that the i interface

provides, IFij is the interaction frequency of the j operation of the i interface, n is the number of data types

involved in the information content of the interaction performed by the j operation of the i interface and

finally, CMijk is the complexity measure of the k data type of the information content involved for the

interaction performed by the j operation of the i interface. The Interaction Frequency (IF) for an operation

of a given interface is defined as the ratio of the number of interactions (NO) performed by the operation

and the number of interactions (NI) performed by all operations of the interface; whereas the Complexity

2 Volume 14, Number 1, January 2019

Measure (CM) of a data type of the information content involved for an interaction is defined as the sum of

complexities of all its member data types derived from the signature of the corresponding operation [35].

Based on both count and complexity of the interfaces and interactions, the complexity of each component is

then evaluated.

In the third step, the components are weighted based on their type and complexity and the Unadjusted

Component Point (UCP) count is computed as a weighted sum.

3 3

1 1

ij ij

i j

UCP C W
= =

= (3)

where Cij is the number of components of type i (UC, SC or DC) with complexity level j (Low, Average or High)

and Wij is the weight given for the component type i with complexity level j.

In the fourth step, the UCP count is adjusted with an optional Value Adjustment Factor (VAF) obtained by

considering the degree of influence of 14 General System Characteristics (GSC) of the CBS. The summation

of the influence degrees of the 14 GSC gives the Total Degree of Influence (TDI), which is then used to

compute the VAF.

0.65 (0.01)VAF TDI= + (4)

The UCP count is then adjusted with the VAF and the final CP count is computed.

CP UCP VAF= (5)

Further information on the review of the related work, the rationale behind the proposal of the CP

measure, a detailed explanation of the CP counting process and an application of the CP measure to a

real-world CBS can be found in [33].

3. Validation of CP Measure

The CP measure is a promising approach for sizing a CBS. However, any proposed software measure

becomes acceptable only if its validity has been proven via a thorough validation process. In fact, such a

rigorous validation process requires two kinds of validations, namely a theoretical and an empirical

validation. A theoretical validation confirms that the proposed measure satisfies all the necessary

conditions that characterize the concept that it is supposed to measure, whereas an empirical validation

verifies its usefulness against some external attributes [24]. However, due to two reasons, we see that the

theoretical validation is an essential prerequisite before an empirical validation takes place. First, any

exploratory process of looking for correlations is not an acceptable scientific method of validation in itself if

it is not accompanied by a sound theoretical foundation to support it [37]. Second, once the theoretical

soundness of any proposed measure has been proven, it is more likely that it can be used to build models

that correlate the internal software attributes to external ones, since the hypotheses behind these models

are often expressed as the correlations between the internal and external attributes. Thus, in this section,

we provide a theoretical validation for the CP measure.

There have been several theoretical underpinnings [38]-[41] proposed for the formal validation of

software metrics. Among them, we use the mathematical framework proposed by Briand et al. [41] for the

theoretical validation of software metrics. There are three reasons for the selection of this framework for

the purpose. First, it is a generic framework because it is not specific to any particular software artifact;

3 Volume 14, Number 1, January 2019

second, it is more rigorous as it is based on precise mathematical concepts; and third, it has been

successfully used for the theoretical validation of the Class Point size measure [24].

The CP measure has been composed of three existing software measures, namely the Class Point size

measure for OO systems [24] and two complexity measures for a CBS [35]. Therefore, when theoretically

validating the CP measure, it is not enough to prove that the CP measure is valid against the necessary

mathematical conditions that it should hold but also to confirm that both Class Point size measure and the

two component complexity measures on which the CP measure was formulated satisfy their corresponding

necessary mathematical conditions with respect to the same theoretical framework. In [24], the Class Point

measure has been validated against Briand et al.’s mathematical framework. However, such a formal

validation is not available for the component interface and interaction complexity measures proposed in

[35]. Therefore, we first validate the component interface and interaction complexity measures against

Briand et al.’s mathematical framework. Then we validate the CP measure against the same mathematical

framework and prove that the CP size measure holds all the necessary mathematical conditions specific for

a size measure.

4. Theoretical Validation

In [41], Briand et al. have proposed a mathematical framework for the theoretical validation of software

metrics. According to this framework, any software system (S) can be characterized by its elements (E) and

the relations (R) among them. Thus, if S stands for a CBS, it can also be represented as a pair of ,E R

where E represents the components of S and R is a relation on ()E R E E representing the interactions

among its components. Given a system ,S E R= , a module ,m mm E R= becomes a sub-system of S if

and only if mE E , m m mR E E and mR R .

The framework defines complexity as a system-level property which depends on its relationships.

However, the authors themselves have noted that the same mathematical framework can be used to define

the complexity of individual elements of a system if the relations among their sub-elements are considered

[41]. A component of a CBS can be characterized by its interface and interactions. Thus, according to the

above mathematical framework, if S stands for a component of a CBS, it can also be represented as a pair of

,E R where E and R represent its interface and interactions, respectively. Given a component

,S E R= , a set of its interfaces ,m mm E R= becomes a sub-component of S if and only if mE E ,

m m mR E E and mR R .

4.1. Interface and Interaction Complexity Measures

The CP approach uses an Interface Complexity (IFC) measure and an Interaction Complexity (ITC)

measure [35] to evaluate the complexity of components in a CBS. The mathematical framework requires a

complexity measure to satisfy five necessary conditions for its formal validation [41]. In particular, a

software complexity measure should,

1) Hold non-negativity. That is if ,S E R= , then () 0Complexity S .

2) Be null when there is no relationship among the elements of the system. That is if ,S E R= and

ØR = , then () 0Complexity S = .

3) Satisfy symmetry. This means that if ,S E R= and 1 1,S E R− −= , then

1() ()Complexity S Complexity S−= .

4) Hold module monotonicity. That is if ,S E R= , ,m mm E R= , ,n nn E R= , m n S and

Øm nR R = , then () () ()Complexity S Complexity m Complexity n + .

4 Volume 14, Number 1, January 2019

5) Hold disjoint module additivity. This means that if ,S E R= , ,m mm E R= , ,n nn E R= ,

S m n= and Øm n = , then () () ()Complexity S Complexity m Complexity n= + .

The validation of IFC and ITC measures of a component against Briand et al.’s mathematical framework is

given below.

Condition 1: The IFC and ITC of component ,S E R= should be non-negative. That is () 0IFC S

and () 0ITC S .

Proof: From (1),
2 3

1 1

() jk jk

j k

IFC S I W
= =

= where 0jkI and 0jkW for all j and k.

Thus, () 0IFC S

The Interface Complexity (IFC) measure of component holds non-negativity.

From (2),

1 1 1

() ()
l m n

ij ijk

i j k

ITC S IF CM
= = =

= where 0ijIF and 0ijkCM for all i, j and k.

Thus, () 0ITC S

The Interaction Complexity (ITC) measure of component holds non-negativity.

Condition 2: The IFC and ITC of component ,S E R= should be null if R is empty. That is

?R IFC(S)= = and ?R ITC(S)= = .

Proof: If ØR = , it implies that there is no interaction performed by the interfaces of component S.

From (1),
2 3

1 1

() jk jk

j k

IFC S I W
= =

= where Ijk is the number of interfaces of type j with the complexity level k in

component S.

When 1j = and 2j = , jkI stands for number of interfaces classified into Internal Logical File (ILF) and

External Interface File (EIF) types, respectively. The interfaces that consist of operations and exchange data

become candidates for this classification [35].

Thus, ? jkR I= =

?R IFC(S)= =

The Interface Complexity (IFC) measure of component satisfies the null value condition.

From (2),

1 1 1

() ()
l m n

ij ijk

i j k

ITC S IF CM
= = =

= where IFij is the interaction frequency of the j operation of the i interface

in component S.

? ijR IF= =

Thus, ?R ITC(S)= =

The Interaction Complexity (ITC) measure of component satisfies the null value condition.

Condition 3: The IFC and ITC of component ,S E R= should hold symmetry. That is, if ,S E R=

and 1 1,S E R− −= , then 1() ()IFC S IFC S−= and 1() ()ITC S ITC S−= .

Proof: Since the directions of the interactions performed are not considered when evaluating the

interface and interaction complexities of a component, both the Interface Complexity (IFC) and the

Interaction Complexity (ITC) measures of a component hold this condition.

5 Volume 14, Number 1, January 2019

Condition 4: The IFC and ITC of component ,S E R= should hold module monotonicity. That is if

,S E R= , ,m mm E R= , ,n nn E R= , m n S and Øm nR R = , then () () ()IFC S IFC m IFC n +

and () () ()ITC S ITC m ITC n + .

Proof: Let m and n be two sub-components of component S such that m n S and Øm nR R = .

From (1), the sum of interface complexities of two sub-components m and n can be expressed as,
2 3

1 1

() () () ()m jk n jk jk

j k

IFC m IFC n I I W
= =

 + = + where ()m jkI and ()n jkI are the number of interfaces

of type j with complexity level k in sub-components m and n, respectively.

Since m n S and Øm nR R = , () ()m jk n jk jkI I I+ for all j and k where jkI is the number of

interfaces of type j with complexity level k in component S.

Thus,
2 3

1 1

() () jk jk

j k

IFC m IFC n I W
= =

+

() () ()IFC S IFC m IFC n +

The Interface Complexity (IFC) measure of component satisfies the condition of module monotonicity.

From (2), the sum of interaction complexities of two sub-components m and n can be expressed as,

1 1 1

() () ()
a b m n

ij ijk

i j k

ITC m ITC n IF CM
+

= = =

+ = where a and b are the number of interfaces in sub-components

m and n, respectively.

Since m n S and Øm nR R = , a b l+ where l is the number of interfaces in component S.

Thus,
1 1 1

() () ()
l m n

ij ijk

i j k

ITC m ITC n IF CM
= = =

+

() () ()ITC S ITC m ITC n +

The Interaction Complexity (ITC) measure of component satisfies the condition of module monotonicity.

Condition 5: The IFC and ITC of component ,S E R= should hold disjoint module additivity. That is if

,S E R= , S m n= and Øm n = , then () () ()IFC S IFC m IFC n= + and () () ()ITC S ITC m ITC n= + .

Proof: Let m and n be two sub-components of component S such that S m n= and Øm n = .

From (1), the sum of interface complexities of two sub-components m and n can be expressed as,
2 3

1 1

() () () ()m jk n jk jk

j k

IFC m IFC n I I W
= =

 + = + where ()m jkI and ()n jkI are the number of interfaces

of type j with complexity level k in sub-components m and n, respectively.

Since S m n= and Øm n = , () ()m jk n jk jkI I I+ = for all j and k where jkI is the number of

interfaces of type j with complexity level k in component S.

Thus,
2 3

1 1

() () jk jk

j k

IFC m IFC n I W
= =

+ =

() () ()IFC S IFC m IFC n= +

The Interface Complexity (IFC) measure of component satisfies the condition of disjoint module

additivity.

From (2), the sum of interaction complexities of two sub-components m and n can be expressed as,

1 1 1

() () ()
a b m n

ij ijk

i j k

ITC m ITC n IF CM
+

= = =

+ = where a and b are the number of interfaces in sub-components

m and n, respectively.

6 Volume 14, Number 1, January 2019

Since S m n= and Øm n = , a b l+ = where l is the number of interfaces in component S.

Thus,
1 1 1

() () ()
l m n

ij ijk

i j k

ITC m ITC n IF CM
= = =

+ =

() () ()ITC S ITC m ITC n= +

The Interaction Complexity (ITC) measure of component satisfies the condition of disjoint module

additivity.

The above proofs show that the IFC and ITC measures are valid against Briand et al.’s mathematical

framework [41] for the theoretical validation of software metrics. In particular, we have proven that both

the IFC and ITC measures hold non-negativity, are null if there are no interactions among the interfaces of

the components, satisfy symmetry, hold the condition of module monotonicity and satisfy the condition of

disjoint module additivity. Therefore, both Class Point size measure [24] and two component complexity

measures [35] on which the CP measure was formulated satisfy their corresponding necessary

mathematical conditions with respect to the same theoretical framework.

4.2. CP Size Measure

The mathematical framework requires a software size measure to satisfy six necessary conditions for its

formal validation [41]. In particular, a software size measure should,

1. hold non-negativity. That is if ,S E R= , then () 0Size S .

2. be null when there is no element in the system. This means that if ,S E R= and ØE = , then

() 0Size S = .

3. hold module additivity. That is if ,S E R= , ,m mm E R= , ,n nn E R= , m S , n S ,

m nE E E= and Øm nE E = , then () () ()Size S Size m Size n= + .

4. be given by the knowledge of the sizes of all disjoint elements of the system. That is if ,S E R= ,

then () ()e

e E

Size S Size m

= .

5. hold monotonicity. This means that if ,S E R= , ,m mm E R= and mE E , then

() ()Size m Size S .

6. be never greater than the sum of the sizes of any pair of sub-systems of the system. This means that,

if ,S E R= , ,m mm E R= , ,n nn E R= , m S , n S and m nE E E= , then

() () ()Size S Size m Size n + .

The validation of CP measure against Briand et al.’s mathematical framework is given below.

Condition 1: The CP measure of system ,S E R= should be non-negative. That is () 0CP S .

Proof: From (3),
3 3

1 1

() ij ij

i j

UCP S C W
= =

= where 0ijC and 0ijW for all i and j.

Thus, () 0UCP S

From (4) and (5),

0.65 (0.01)VAF TDI= + and () ()CP S UCP S VAF= where 0VAF for all TDI.

Thus, () 0CP S

The CP measure holds non-negativity.

Condition 2: The CP measure of system ,S E R= should be null if E is empty. That is

7 Volume 14, Number 1, January 2019

?E CP(S)= = .

Proof: If ØE = , it implies that there is no component present in system S.

From (3),
3 3

1 1

() ij ij

i j

UCP S C W
= =

= where ijC is number of components of type i with complexity level j in

system S.

Thus, ? ijE C= =

?) 0E UCP S= =

From (5),

() ()CP S UCP S VAF=

Thus, ?) 0E CP S= =

The CP measure satisfies null value condition.

Condition 3: The CP measure of system ,S E R= should hold module additivity. That is if m S ,

n S , m nE E E= and Øm nE E = , then () () ()CP S CP m CP n= + .

Proof: Let m and n be two sub-systems of S such that m S , n S , m nE E E= and Øm nE E = .

From (3), the sum of the UCP counts of two sub-systems m and n can be expressed as,
3 3

1 1

() () () ()m ij n ij ij

i j

UCP m UCP n C C W
= =

 + = + where ()m ijC and ()n ijC are the number of

components of type i with complexity level j in sub-systems m and n, respectively.

m nE E E= and Øm nE E = imply that no modification is made to the components of CBS when the

system is partitioned into sub-systems m and n. This means that for each component of m and n

sub-systems, the values of IFC and ITC will be unchanged after the partitioning. Thus, () ()m ij n ij ijC C C+ =

is for all i and j where ijC is the number of components of type i with complexity level j in system S.

Thus,
3 3

1 1

() () ij ij

i j

UCP m UCP n C W
= =

+ =

() () ()UCP m UCP n UCP S+ =

From (5),

() ()CP S UCP S VAF=

Thus, () () ()CP S UCP m VAF UCP n VAF= +

() () ()CP S CP m CP n= +

The CP measure satisfies module additivity.

Condition 4: The CP measure of system ,S E R= should be given by the knowledge of the sizes of all

disjoint sub-systems of S. That is if ,S E R= , then () ()e

e E

CP S CP m

= .

Proof: Let m and n be two sub-systems of S such that ,S E R= , ,m mm E R= , ,n nn E R= ,

m S , n S , m nE E E= and Øm nE E = .

Since the CP measure satisfies Condition 3 above, () () ()CP S CP m CP n= + for a system composed of

two disjoint sub-systems.

If the system S is composed of k number of disjoint sub-systems,

8 Volume 14, Number 1, January 2019

Then,
1

() ()
k

i

i

CP S CP m
=

=

If the sub-system m can be partitioned into disjoint components ,e em e R= ,

Then, () ()eCP m CP m=

Since ØmE = and
mE E= for all m,

() ()e

e E

CP S CP m

=

The CP measure is given by the knowledge of the CP counts of all disjoint components of S.

Condition 5: The CP measure of system ,S E R= should hold monotonicity. That is if ,S E R= ,

,m mm E R= and mE E , then () ()CP m CP S .

Proof: Let m and n be two sub-systems of S such that ,m mm E R= , ,n nn E R= , mE E and

nE E .

Since the CP measure satisfies Condition 3 above, () () ()CP S CP m CP n= +

Since the CP measure also holds Condition 1 above, () 0CP S , () 0CP m and () 0CP n .

Thus, () ()CP m CP S

The CP measure satisfies monotonicity condition.

Condition 6: The CP measure of system ,S E R= should not greater than the sum of the CP counts

of any pair of its sub-systems. That is if ,S E R= , ,m mm E R= , ,n nn E R= , m S , n S and

m nE E E= , then () () ()CP S CP m CP n + .

Proof: Let m and n be two sub-systems of S such that ,S E R= , ,m mm E R= , ,n nn E R= ,

m S , n S and m nE E E= .

From (3), the sum of the UCP counts of two sub-systems m and n can be expressed as,
3 3

1 1

() () () ()m ij n ij ij

i j

UCP m UCP n C C W
= =

 + = + where ()m ijC and ()n ijC are the number of

components of type i with complexity level j of sub-systems m and n, respectively.

Since there can be presence of common components between the sub-systems m and n, () ()m ij n ij ijC C C+

for all i and j where ijC is the number of components of type i with complexity level j of system S.

Thus,
3 3

1 1

() () ij ij

i j

UCP m UCP n C W
= =

+

() () ()UCP m UCP n UCP S+

From (5),

() ()CP S UCP S VAF=

Thus, () () ()CP S UCP m VAF UCP n VAF +

() () ()CP S CP m CP n +

The CP measure of S is never greater than the sum of the CP counts of any pair of its sub-systems.

The above proofs show that the CP measure is valid against Briand et al.’s mathematical framework [41]

for the theoretical validation of software metrics, given the fact that the CP measure holds non-negativity,

becomes null if there are no components in a CBS, satisfies the condition of module additivity, is given by

the knowledge of the sizes of all disjoint sub-systems of a CBS, holds monotonicity and never exceeds the

sum of the sizes of any pair of sub-systems of a CBS.

9 Volume 14, Number 1, January 2019

5. Conclusions and Future Work

In this paper, we have provided a theoretical validation for the Component Point (CP) measure [33] which

we have developed for measuring the system-level size of a CBS. This validation has proven that not only the

CP measure is valid against all the necessary mathematical conditions that it should hold as a size measure,

but also the three existing software measures on which the CP measure was formulated are valid against

their corresponding necessary mathematical conditions with respect to the same theoretical framework. In

our validation, we have proven the fact that the CP measure holds non-negativity, becomes null when there

are no components in a CBS, satisfies the condition of module additivity, is given by the knowledge of the

sizes of all disjoint sub-systems of a CBS, holds the condition of monotonicity, and never exceeds the sum of

the sizes of any pair of sub-systems of a CBS.

Thus, we have shown that the CP measure not only holds all the mathematical conditions that are

necessary for a size measure but also can be used in CBSD in a similar way that FP and its extensions are

used in other software development paradigms. For future work, we intend to formulate an effort model

that will use the CP count as well as other effort drivers of CBSD in order to obtain more realistic effort

estimates for CBS.

References

[1] Standish Group. (2015). Chaos Report 2015. The Standish Group. Boston, Massachusetts, United States.

[2] Humphrey, W. S. (1989). Managing the Software Process. Boston, Massachusetts, United States:

Addison-Wesley.

[3] Fenton, N. E. (1991). Software Metrics: A Rigorous and Practical Approach. London, United Kingdom:

Chapman & Hall.

[4] Humphrey, W. S. (1995). A Discipline for Software Engineering. Boston, Massachusetts, United States:

Addison-Wesley.

[5] Fenton, N. E., & Bieman, J. (2014). Software Metrics: A Rigorous and Practical Approach (3rd ed.). Boca

Raton, Florida, United States: CRC Press.

[6] Boehm, B. W. (1981). Software Engineering Economics. Upper Saddle River, New Jersey, United States:

Prentice Hall.

[7] DeMarco, T. (1984). An algorithm for sizing software products. ACM SIGMETRICS Performance

Evaluation Review, 12(2), 13 – 22.

[8] Murali, C. S., & Sankar, C. S. (1997). Issues in estimating real-time data communications software

projects. Information and Software Technology, 39(6), 399 – 402.

[9] Boehm, B. W., & Papaccio, P. N. (1988). Understanding and controlling software costs. IEEE Transactions

on Software Engineering, 14(10), 1462 – 1477.

[10] Blackburn, J. D., Scudder, G. D., & Van Wassenhove, L. N. (1996). Improving speed and productivity of

software development: a global survey of software developers. IEEE Transactions on Software

Engineering, 22(12), 875 – 885.

[11] Banker, R. D., Kauffman, R. J., & Kumar, R. (1992). An empirical test of object-based output

measurement metrics in a computer aided software engineering (CASE) environment. Journal of

Management Information Systems, 8(3), 127 – 150.

[12] Chan, T., Chung, S. L., & Ho, T. H. (1996). An economic model to estimate software rewriting and

replacement times. IEEE Transactions on Software Engineering, 22(8), 580 – 598.

[13] Verner, J. & Tate, G. (1992). A software size model. IEEE Transactions on Software Engineering, 18(4),

265 – 278.

[14] Cockcroft, S. K. S. (1996). Estimating CASE development size from outline specifications. Information

10 Volume 14, Number 1, January 2019

and Software Technology, 38(6), 391 – 399.

[15] Hakuta, M., Tone, F. & Ohminami, M. (1997). A software size estimation model and its evaluation.

Journal of Systems and Software, 37(3), 253 – 263.

[16] MacDonell, S. G. (2003). Software source code sizing using fuzzy logic modelling. Information and

Software Technology, 45(7), 389 – 404.

[17] IFPUG. (2010). Function Point Counting Practices Manual, Release 4.3.1. International Function Point

Users Group, Princeton, New Jersey, United States.

[18] Dreger, J. B. (1989). Function Point Analysis. Upper Saddle River, New Jersey, United States:

Prentice-Hall.

[19] Kemerer, C. F., & Porter, B. S. (1992). Improving the reliability of function point measurement: An

empirical study. IEEE Transactions on Software Engineering, 18(11), 1011 – 1024.

[20] Longstreet, D. H. (1995). How Are Function Points Useful?. American Programmer, 8(12), 25 – 32.

[21] Boehm, B. W., Clark, B., Horowitz, E., Westland, C., Madachy, R., & Selby, R. (1995). Cost models for

future software life cycle processes: COCOMO 2.0. Annals of Software Engineering, 1(1), 57 – 94.

[22] Symons, C. R. (1988). Function Point analysis: Difficulties and improvements. IEEE Transactions on

Software Engineering, 14(1), 2 – 11.

[23] Banker, R. D., Kauffman, R. J., Wright, C., & Zweig, D. (1994). Automating output size and reuse metrics

in a repository-based computer-aided software engineering (CASE) environment. IEEE Transactions on

Software Engineering, 20(3), 169 – 187.

[24] Costagliola, G., Ferrucci, F., Tortora, G., & Vitiello, G. (2005). Class point: An approach for the size

estimation of object-oriented systems. IEEE Transactions on Software Engineering, 31(1), 52 – 74.

[25] Jones, C. (1986). Programming productivity, New York, United States: McGraw-Hill.

[26] Abran, A., Maya, M., Desharnais, J. M., & St-Pierre, D. (1997). Adapting function points to real-time

software. American Programmer, 10(11), 32 – 43.

[27] Whitmire, S. A. (1996). 3D function points: Applications for object-oriented software. Proceedings of the

Applications in Software Measurements Conference. San Diego, California, United States.

[28] Minkiewicz, A. F. (1997). Measuring Object Oriented Software with Predictive Object Points.

Proceedings of the Applications in Software Measurements Conference. Atlanta, Georgia, United States.

[29] Antoniol, G., Lokan, C., Caldiera, G., & Fiutem, R. (1999). Function point-like measure for object-oriented

software. Empirical Software Engineering, 4(3), 263 – 287.

[30] Reifer, D. (2000). Web-development: Estimating quick-time-to-market software. IEEE Software, 17(6),

57 – 64.

[31] Cleary, D. (2000). Web-Based Development and Functional Size Measurement. Proceedings of the IFPUG

Annual Conference. San Diego, California, United States.

[32] Cost Xpert. (2002). Estimating Internet Development. Cost Xpert Group, Inc. San Diego, California,

United States.

[33] Wijayasiriwardhane, T., & Lai, R. (2010). Component point: A system-level size measure for

component-based software systems. Journal of Systems and Software, 83(12), 2456-2470.

[34] Cheesman, J., & Daniels, J. (2001). UML Components: A Simple Process for Specifying Component Based

Software. Boston, Massachusetts, United States: Addison-Wesley.

[35] Mahmood, S. & Lai, R. (2008). A complexity measure for UML component-based system specification.

Software - Practice & Experience, 38(2), 117-134.

[36] Williams, J. (2001). The business case for components. In G. T. Heineman, & W. T. Councill (Eds.),

Component-Based Software Engineering: Putting the Pieces Together. Boston, Massachusetts, United

States: Addison-Wesley.

11 Volume 14, Number 1, January 2019

[37] Courtney, R. E., & Gustafson, D. A. (1992). Shotgun correlations in software measures. Software

Engineering Journal, 8(1), 5 – 13.

[38] Weyuker, E. J. (1988). Evaluating software complexity measures. IEEE Transactions on Software

Engineering, 14(9), 1357 – 1365.

[39] Schneidewind, N. F. (1992). Methodology for validating software metrics. IEEE Transactions on

Software Engineering, 18(5), 410 – 422.

[40] Kitchenham, B., Pfleeger, S. L., & Fenton, N. (1995). Towards a framework for software measurement

validation. IEEE Transactions on Software Engineering, 21(12), 929 – 944.

[41] Briand, L. C., Morasca, S., & Basili, V. R. (1996). Property-based software engineering measurement.

IEEE Transactions on Software Engineering, 22(1), 68 – 86.

Thareendhra Wijayasiriwardhane obtained his Ph.D. in software engineering from

La Trobe University, Melbourne, Australia in 2010. He also received a M.Sc. in computer

science from University of Colombo School of Computing, Sri Lanka in 2005 and a B.Sc.

with a first class honours from University of Kelaniya, Sri Lanka in 2000.

Presently, he is a senior lecturer attached to the Faculty of Science, University of

Kelaniya, Sri Lanka. Thareendhra counts over 18 years of experience as an academic in

the field of computing in Sri Lanka and Australia. His research interests include

component-based systems, software measurement and estimation and software

testing.

Dr. Wijayasiriwardhane has won number of awards for his academic and research excellence including

the Endeavour Postgraduate Award from Australian Government, and Vice-Chancellor's Award for the Most

Outstanding Young Researcher from University of Kelaniya, Sri Lanka.

Richard Lai obtained his Ph.D. from La Trobe University, Melbourne, Australia in 1990.

He also received an M.Eng. and a B.Eng. with honours from University New South

Wales, Australia in 1982 and 1979, respectively.

Presently, he is an associate professor attached to the Department of Computer

Science and Information Technology, La Trobe University, Australia. Prior to joining La

Trobe University in 1989, Richard spent over 10 years in the computer and

communications industry. He has authored one book and more than 55 journal papers.

His research interests include software economics, measurement, reliability and

testing, requirements engineering, component-based systems and global software development.

Prof. Lai was ranked as the world’s number one scholar in systems and software engineering

consecutively for four years (1999–2002), according to an annual survey published in the Journal of

Systems and Software.

12 Volume 14, Number 1, January 2019

