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Abstract: The system-level size measures are important in software project management as tasks such as 

planning and estimating the cost and schedule of software development can be performed more accurately 

when a size estimate of the entire system is available. However, due to the black-box nature of software 

components, traditional software measures are not adequate for Component-Based Systems (CBS). We have 

developed a Function Point (FP) like measure, named Component Point (CP), for measuring the 

system-level size of a CBS specified in Unified Modeling Language. In this paper, we present a theoretical 

validation of the CP measure using mathematics and show that not only the CP measure holds all the 

mathematical conditions necessary for a size measure, but it can also be used in Component-Based 

Software Development (CBSD) in a similar way that FP and its extensions are used in other software 

development paradigms.  
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1. Introduction 

Developing large and complex software systems remains a costly and a somewhat unpredictable business, 

even today. It is reported that 52% of software projects failed to deliver on schedule, within budget and 

thereby with the required functionality, while 19% of projects were totally abandoned [1]. This clearly 

emphasizes the importance of quantifying software products, processes and resources in order to manage 

software development successfully. In recent years, many software measures have been introduced in order 

to gather information about these aspects of software development. Among them, software size captures 

one of the most significant internal attribute of a software product. Over the years, it has been used for 

software assessment, estimation and improvement [2]-[5]. Although other factors such as software type, 

operational domain [6]-[8], developers’ skills [9], [10] and tools and methods used [11], [12] have a 

considerable influence, software size remains the dominant factor with respect to the effort of software 

development [13]-[16]. 

Among the software size measures, Function Point (FP) [17] has achieved a wide acceptance in sizing 

software products [18]-[20]. Although its applicability is limited to procedural business systems, many 

researchers agree that the main idea of FP can be extended in order to be successfully used it for other 

types of systems [18], [21]-[24]. As a result, a number of extensions to FP specialized for specific types of 

systems, ranging from real-time and embedded systems [25], [26] to Object-Oriented (OO) [24], [27]-[29] 

and web-based [30]-[32] systems have been proposed. 

In [33], we proposed an FP like measure, named Component Point (CP), for measuring the system-level 
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size of a Component-Based System (CBS) specified in Unified Modeling Language (UML) [34]. The CP 

measure is a promising approach to sizing a CBS. However, any proposed software measure becomes 

acceptable only if its validity has been proven via a thorough validation process. In fact, such a rigorous 

validation process requires two kinds of validations, namely a theoretical and an empirical validation. A 

theoretical validation confirms that the proposed measure satisfies all the necessary conditions that 

characterize the concept that it is supposed to measure, whereas an empirical validation verifies its 

usefulness against some external attributes [24]. In this paper, we provide a theoretical validation for the CP 

measure using mathematics in order to prove that not only the CP measure holds all the mathematical 

conditions necessary for a size measure but it is also useful in predicting the effort of Component-Based 

Software Development (CBSD). Our aim is to show that the CP measure can be used in CBSD in a similar 

way that FP and its extensions are used in other software development paradigms. We refer any interested 

readers to [33] for: (i) a review of the related work; (ii) the rationale behind the proposal of the CP measure; 

and (iii) a detailed explanation of the CP counting process. 

2. Component Point Measure 

The CP measure [33] integrates three existing software measures, namely the Class Point [24] size 

measure, which is an extension to FP for OO systems and two complexity measures [35] for CBS. It then 

quantifies components in a CBS in analogy to the class point counting performed for the Class Point 

estimate. The rationale behind this is to extend an existing measure from the more matured OO paradigm to 

the related and relatively young CBS discipline.  

The CP counting process consists of four main steps [33]. In the first step, the UML specification is 

analyzed in order to identify the types of the components in a CBS. The identified components are then 

classified into three types, namely User Components (UC), Service Components (SC) and Domain 

Components (DC) as suggested in [36]. 

In the second step, the Interface Complexity (IFC) and Interaction Complexity (ITC) of each component 

are evaluated. For this purpose, we use the two complexity measures for CBS described in [35]. 

 
2 3

1 1

jk jk

j k

IFC I   W
= =

=     (1) 

 

where Ijk is the number of interfaces of type j (Internal Logical File or External Interface File) with 

complexity level k (Low, Average or High) and Wjk is the weight given for the interface type j with 

complexity level k. The complexity level of each interface is evaluated based on the Number of Operations 

(NO) and Number of Parameters (NP) derived from the operation signatures for each interface [35]. 
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where l is the number of interfaces that the component has, m is number of operations that the i interface 

provides, IFij is the interaction frequency of the j operation of the i interface, n is the number of data types 

involved in the information content of the interaction performed by the j operation of the i interface and 

finally, CMijk is the complexity measure of the k data type of the information content involved for the 

interaction performed by the j operation of the i interface. The Interaction Frequency (IF) for an operation 

of a given interface is defined as the ratio of the number of interactions (NO) performed by the operation 

and the number of interactions (NI) performed by all operations of the interface; whereas the Complexity 
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Measure (CM) of a data type of the information content involved for an interaction is defined as the sum of 

complexities of all its member data types derived from the signature of the corresponding operation [35]. 

Based on both count and complexity of the interfaces and interactions, the complexity of each component is 

then evaluated. 

In the third step, the components are weighted based on their type and complexity and the Unadjusted 

Component Point (UCP) count is computed as a weighted sum. 

 
3 3

1 1

ij ij

i j
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= =

=          (3) 

 

where Cij is the number of components of type i (UC, SC or DC) with complexity level j (Low, Average or High) 

and Wij is the weight given for the component type i with complexity level j. 

In the fourth step, the UCP count is adjusted with an optional Value Adjustment Factor (VAF) obtained by 

considering the degree of influence of 14 General System Characteristics (GSC) of the CBS. The summation 

of the influence degrees of the 14 GSC gives the Total Degree of Influence (TDI), which is then used to 

compute the VAF. 

 

0.65 (0.01 )VAF TDI= +          (4) 

 

The UCP count is then adjusted with the VAF and the final CP count is computed. 

 

CP  UCP VAF=           (5) 

 

Further information on the review of the related work, the rationale behind the proposal of the CP 

measure, a detailed explanation of the CP counting process and an application of the CP measure to a 

real-world CBS can be found in [33]. 

3. Validation of CP Measure 

The CP measure is a promising approach for sizing a CBS. However, any proposed software measure 

becomes acceptable only if its validity has been proven via a thorough validation process. In fact, such a 

rigorous validation process requires two kinds of validations, namely a theoretical and an empirical 

validation. A theoretical validation confirms that the proposed measure satisfies all the necessary 

conditions that characterize the concept that it is supposed to measure, whereas an empirical validation 

verifies its usefulness against some external attributes [24]. However, due to two reasons, we see that the 

theoretical validation is an essential prerequisite before an empirical validation takes place. First, any 

exploratory process of looking for correlations is not an acceptable scientific method of validation in itself if 

it is not accompanied by a sound theoretical foundation to support it [37]. Second, once the theoretical 

soundness of any proposed measure has been proven, it is more likely that it can be used to build models 

that correlate the internal software attributes to external ones, since the hypotheses behind these models 

are often expressed as the correlations between the internal and external attributes. Thus, in this section, 

we provide a theoretical validation for the CP measure. 

There have been several theoretical underpinnings [38]-[41] proposed for the formal validation of 

software metrics. Among them, we use the mathematical framework proposed by Briand et al. [41] for the 

theoretical validation of software metrics. There are three reasons for the selection of this framework for 

the purpose. First, it is a generic framework because it is not specific to any particular software artifact; 
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second, it is more rigorous as it is based on precise mathematical concepts; and third, it has been 

successfully used for the theoretical validation of the Class Point size measure [24]. 

The CP measure has been composed of three existing software measures, namely the Class Point size 

measure for OO systems [24] and two complexity measures for a CBS [35]. Therefore, when theoretically 

validating the CP measure, it is not enough to prove that the CP measure is valid against the necessary 

mathematical conditions that it should hold but also to confirm that both Class Point size measure and the 

two component complexity measures on which the CP measure was formulated satisfy their corresponding 

necessary mathematical conditions with respect to the same theoretical framework. In [24], the Class Point 

measure has been validated against Briand et al.’s mathematical framework. However, such a formal 

validation is not available for the component interface and interaction complexity measures proposed in 

[35]. Therefore, we first validate the component interface and interaction complexity measures against 

Briand et al.’s mathematical framework. Then we validate the CP measure against the same mathematical 

framework and prove that the CP size measure holds all the necessary mathematical conditions specific for 

a size measure. 

4. Theoretical Validation 

In [41], Briand et al. have proposed a mathematical framework for the theoretical validation of software 

metrics. According to this framework, any software system (S) can be characterized by its elements (E) and 

the relations (R) among them. Thus, if S stands for a CBS, it can also be represented as a pair of ,E R   

where E represents the components of S and R is a relation on ( )E R E E   representing the interactions 

among its components. Given a system ,S E R=  , a module ,m mm E R=   becomes a sub-system of S if 

and only if mE E , m m mR E E  and mR R . 

The framework defines complexity as a system-level property which depends on its relationships. 

However, the authors themselves have noted that the same mathematical framework can be used to define 

the complexity of individual elements of a system if the relations among their sub-elements are considered 

[41]. A component of a CBS can be characterized by its interface and interactions. Thus, according to the 

above mathematical framework, if S stands for a component of a CBS, it can also be represented as a pair of 

,E R   where E and R represent its interface and interactions, respectively. Given a component

,S E R=  , a set of its interfaces ,m mm E R=   becomes a sub-component of S if and only if mE E , 

m m mR E E  and mR R . 

4.1. Interface and Interaction Complexity Measures 

The CP approach uses an Interface Complexity (IFC) measure and an Interaction Complexity (ITC) 

measure [35] to evaluate the complexity of components in a CBS. The mathematical framework requires a 

complexity measure to satisfy five necessary conditions for its formal validation [41]. In particular, a 

software complexity measure should, 

1) Hold non-negativity. That is if ,S E R=  , then ( ) 0Complexity S  . 

2) Be null when there is no relationship among the elements of the system. That is if ,S E R=   and

ØR = , then ( ) 0Complexity S = . 

3) Satisfy symmetry. This means that if ,S E R=  and 1 1,S E R− −=  , then

1( ) ( )Complexity S Complexity S−= . 

4) Hold module monotonicity. That is if ,S E R=  , ,m mm E R=  , ,n nn E R=  , m n S   and 

Øm nR R = , then ( ) ( ) ( )Complexity S Complexity m Complexity n + . 
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5) Hold disjoint module additivity. This means that if ,S E R=  , ,m mm E R=  , ,n nn E R=  ,

S m n=   and Øm n = , then ( ) ( ) ( )Complexity S Complexity m Complexity n= + . 

The validation of IFC and ITC measures of a component against Briand et al.’s mathematical framework is 

given below. 

Condition 1: The IFC and ITC of component ,S E R=   should be non-negative. That is ( ) 0IFC S   

and ( ) 0ITC S  . 

Proof: From (1), 
2 3

1 1

( ) jk jk

j k

IFC S I   W
= =

=   where 0jkI   and 0jkW   for all j and k. 

Thus, ( ) 0IFC S   

The Interface Complexity (IFC) measure of component holds non-negativity. 

From (2), 

1 1 1

( ) ( )
l m n

ij ijk

i j k

ITC S IF CM
= = =

=    where 0ijIF   and 0ijkCM   for all i, j and k. 

Thus, ( ) 0ITC S   

The Interaction Complexity (ITC) measure of component holds non-negativity. 

Condition 2: The IFC and ITC of component ,S E R=   should be null if R is empty. That is 

?R IFC(S)=  =  and ?R ITC(S)=  = . 

Proof: If ØR = , it implies that there is no interaction performed by the interfaces of component S. 

From (1), 
2 3

1 1

( ) jk jk

j k

IFC S I   W
= =

=  where Ijk is the number of interfaces of type j with the complexity level k in 

component S. 

When 1j = and 2j = , jkI  stands for number of interfaces classified into Internal Logical File (ILF) and 

External Interface File (EIF) types, respectively. The interfaces that consist of operations and exchange data 

become candidates for this classification [35]. 

Thus, ? jkR I=  =  

?R IFC(S)=  =  

The Interface Complexity (IFC) measure of component satisfies the null value condition. 

From (2), 

1 1 1

( ) ( )
l m n

ij ijk

i j k

ITC S IF CM
= = =

=    where IFij is the interaction frequency of the j operation of the i interface 

in component S. 

? ijR IF=  =  

Thus, ?R ITC(S)=  =  

The Interaction Complexity (ITC) measure of component satisfies the null value condition. 

Condition 3: The IFC and ITC of component ,S E R=   should hold symmetry. That is, if ,S E R=   

and 1 1,S E R− −=  , then 1( ) ( )IFC S IFC S−=  and 1( ) ( )ITC S ITC S−= . 

Proof: Since the directions of the interactions performed are not considered when evaluating the 

interface and interaction complexities of a component, both the Interface Complexity (IFC) and the 

Interaction Complexity (ITC) measures of a component hold this condition. 
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Condition 4: The IFC and ITC of component ,S E R=   should hold module monotonicity. That is if 

,S E R=  , ,m mm E R=  , ,n nn E R=  , m n S   and Øm nR R = , then ( ) ( ) ( )IFC S IFC m IFC n +  

and ( ) ( ) ( )ITC S ITC m ITC n + . 

Proof: Let m and n be two sub-components of component S such that m n S  and Øm nR R = . 

From (1), the sum of interface complexities of two sub-components m and n can be expressed as, 
2 3

1 1

( ) ( ) ( ) ( )m jk n jk jk

j k

IFC m IFC n I I   W
= =

 + = +    where ( )m jkI  and ( )n jkI  are the number of interfaces 

of type j with complexity level k in sub-components m and n, respectively. 

Since m n S   and Øm nR R = , ( ) ( )m jk n jk jkI I I+   for all j and k where jkI  is the number of 

interfaces of type j with complexity level k in component S. 

Thus, 
2 3

1 1

( ) ( ) jk jk

j k

IFC m IFC n I   W
= =

+    

( ) ( ) ( )IFC S IFC m IFC n +  

The Interface Complexity (IFC) measure of component satisfies the condition of module monotonicity. 

From (2), the sum of interaction complexities of two sub-components m and n can be expressed as, 

1 1 1

( ) ( ) ( )
a b m n

ij ijk

i j k

ITC m ITC n IF CM
+

= = =

+ =    where a and b are the number of interfaces in sub-components 

m and n, respectively.  

Since m n S   and Øm nR R = , a b l+   where l is the number of interfaces in component S. 

Thus, 
1 1 1

( ) ( ) ( )
l m n

ij ijk

i j k

ITC m ITC n IF CM
= = =

+     

( ) ( ) ( )ITC S ITC m ITC n +  

The Interaction Complexity (ITC) measure of component satisfies the condition of module monotonicity. 

Condition 5: The IFC and ITC of component ,S E R=  should hold disjoint module additivity. That is if 

,S E R=  , S m n=   and Øm n = , then ( ) ( ) ( )IFC S IFC m IFC n= +  and ( ) ( ) ( )ITC S ITC m ITC n= + . 

Proof: Let m and n be two sub-components of component S such that S m n=   and Øm n = . 

From (1), the sum of interface complexities of two sub-components m and n can be expressed as, 
2 3

1 1

( ) ( ) ( ) ( )m jk n jk jk

j k

IFC m IFC n I I   W
= =

 + = +    where ( )m jkI  and ( )n jkI  are the number of interfaces 

of type j with complexity level k in sub-components m and n, respectively. 

Since S m n=   and Øm n = , ( ) ( )m jk n jk jkI I I+ =  for all j and k where jkI  is the number of 

interfaces of type j with complexity level k in component S. 

Thus, 
2 3

1 1

( ) ( ) jk jk

j k

IFC m IFC n I   W
= =

+ =   

( ) ( ) ( )IFC S IFC m IFC n= +  

The Interface Complexity (IFC) measure of component satisfies the condition of disjoint module 

additivity. 

From (2), the sum of interaction complexities of two sub-components m and n can be expressed as, 

1 1 1

( ) ( ) ( )
a b m n

ij ijk

i j k

ITC m ITC n IF CM
+

= = =

+ =    where a and b are the number of interfaces in sub-components 

m and n, respectively.  
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Since S m n=   and Øm n = , a b l+ =  where l is the number of interfaces in component S. 

Thus, 
1 1 1

( ) ( ) ( )
l m n

ij ijk

i j k

ITC m ITC n IF CM
= = =

+ =    

( ) ( ) ( )ITC S ITC m ITC n= +  

The Interaction Complexity (ITC) measure of component satisfies the condition of disjoint module 

additivity. 

The above proofs show that the IFC and ITC measures are valid against Briand et al.’s mathematical 

framework [41] for the theoretical validation of software metrics. In particular, we have proven that both 

the IFC and ITC measures hold non-negativity, are null if there are no interactions among the interfaces of 

the components, satisfy symmetry, hold the condition of module monotonicity and satisfy the condition of 

disjoint module additivity. Therefore, both Class Point size measure [24] and two component complexity 

measures [35] on which the CP measure was formulated satisfy their corresponding necessary 

mathematical conditions with respect to the same theoretical framework. 

4.2. CP Size Measure 

The mathematical framework requires a software size measure to satisfy six necessary conditions for its 

formal validation [41]. In particular, a software size measure should, 

1. hold non-negativity. That is if ,S E R=  , then ( ) 0Size S  . 

2. be null when there is no element in the system. This means that if ,S E R=   and ØE = , then 

( ) 0Size S = . 

3. hold module additivity. That is if ,S E R=  , ,m mm E R=  , ,n nn E R=  , m S , n S , 

m nE E E=   and Øm nE E = , then ( ) ( ) ( )Size S Size m Size n= + . 

4. be given by the knowledge of the sizes of all disjoint elements of the system. That is if ,S E R=  , 

then ( ) ( )e

e E

Size S Size m


= . 

5. hold monotonicity. This means that if ,S E R=  , ,m mm E R=   and mE E , then 

( ) ( )Size m Size S . 

6. be never greater than the sum of the sizes of any pair of sub-systems of the system. This means that, 

if ,S E R=  , ,m mm E R=  , ,n nn E R=  , m S , n S  and m nE E E=  , then 

( ) ( ) ( )Size S Size m Size n + . 

The validation of CP measure against Briand et al.’s mathematical framework is given below. 

Condition 1: The CP measure of system ,S E R=   should be non-negative. That is ( ) 0CP S  . 

Proof: From (3), 
3 3

1 1

( ) ij ij

i j

UCP S C   W
= =

=   where 0ijC   and 0ijW   for all i and j. 

Thus, ( ) 0UCP S   

From (4) and (5), 

0.65 (0.01 )VAF TDI= +  and ( ) ( )CP S UCP S VAF=   where 0VAF   for all TDI. 

Thus, ( ) 0CP S   

The CP measure holds non-negativity. 

Condition 2: The CP measure of system ,S E R=   should be null if E is empty. That is 
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?E CP(S)=  = . 

Proof: If ØE = , it implies that there is no component present in system S. 

From (3), 
3 3

1 1

( ) ij ij

i j

UCP S C   W
= =

=   where ijC  is number of components of type i with complexity level j in 

system S. 

Thus, ? ijE C= =   

? ) 0E UCP S= =  

From (5), 

( ) ( )CP S UCP S VAF=   

Thus, ? ) 0E CP S= =  

The CP measure satisfies null value condition. 

Condition 3: The CP measure of system ,S E R=   should hold module additivity. That is if m S , 

n S , m nE E E=   and Øm nE E = , then ( ) ( ) ( )CP S CP m CP n= + . 

Proof: Let m and n be two sub-systems of S such that m S , n S , m nE E E=   and Øm nE E = . 

From (3), the sum of the UCP counts of two sub-systems m and n can be expressed as, 
3 3

1 1

( ) ( ) ( ) ( )m ij n ij ij

i j

UCP m UCP n C C   W
= =

 + = +    where ( )m ijC  and ( )n ijC  are the number of 

components of type i with complexity level j in sub-systems m and n, respectively. 

m nE E E=   and Øm nE E =  imply that no modification is made to the components of CBS when the 

system is partitioned into sub-systems m and n. This means that for each component of m and n 

sub-systems, the values of IFC and ITC will be unchanged after the partitioning. Thus, ( ) ( )m ij n ij ijC C C+ =  

is for all i and j where ijC  is the number of components of type i with complexity level j in system S. 

Thus, 
3 3

1 1

( ) ( ) ij ij

i j

UCP m UCP n C   W
= =

+ =   

( ) ( ) ( )UCP m UCP n UCP S+ =  

From (5),  

( ) ( )CP S UCP S VAF=   

Thus, ( ) ( ) ( )CP S UCP m VAF UCP n VAF=  +   

( ) ( ) ( )CP S CP m CP n= +  

The CP measure satisfies module additivity. 

Condition 4: The CP measure of system ,S E R=   should be given by the knowledge of the sizes of all 

disjoint sub-systems of S. That is if ,S E R=  , then ( ) ( )e

e E

CP S CP m


= . 

Proof: Let m and n be two sub-systems of S such that ,S E R=  , ,m mm E R=  , ,n nn E R=  , 

m S , n S , m nE E E=   and Øm nE E = . 

Since the CP measure satisfies Condition 3 above, ( ) ( ) ( )CP S CP m CP n= +  for a system composed of 

two disjoint sub-systems. 

If the system S is composed of k number of disjoint sub-systems, 
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Then, 
1

( ) ( )
k

i

i

CP S CP m
=

=  

If the sub-system m can be partitioned into disjoint components  ,e em e R=  , 

Then, ( ) ( )eCP m CP m=  

Since ØmE =  and 
mE E=  for all m, 

( ) ( )e

e E

CP S CP m


=  

The CP measure is given by the knowledge of the CP counts of all disjoint components of S. 

Condition 5: The CP measure of system ,S E R=   should hold monotonicity. That is if ,S E R=  , 

,m mm E R=   and mE E , then ( ) ( )CP m CP S . 

Proof: Let m and n be two sub-systems of S such that ,m mm E R=  , ,n nn E R=  , mE E  and 

nE E . 

Since the CP measure satisfies Condition 3 above, ( ) ( ) ( )CP S CP m CP n= +  

Since the CP measure also holds Condition 1 above, ( ) 0CP S  , ( ) 0CP m   and ( ) 0CP n  . 

Thus, ( ) ( )CP m CP S  

The CP measure satisfies monotonicity condition. 

Condition 6: The CP measure of system ,S E R=   should not greater than the sum of the CP counts 

of any pair of its sub-systems. That is if ,S E R=  , ,m mm E R=  , ,n nn E R=  , m S , n S  and 

m nE E E=  , then ( ) ( ) ( )CP S CP m CP n + . 

Proof: Let m and n be two sub-systems of S such that ,S E R=  , ,m mm E R=  , ,n nn E R=  ,  

m S , n S and m nE E E=  . 

From (3), the sum of the UCP counts of two sub-systems m and n can be expressed as, 
3 3

1 1

( ) ( ) ( ) ( )m ij n ij ij

i j

UCP m UCP n C C   W
= =

 + = +    where ( )m ijC  and ( )n ijC  are the number of 

components of type i with complexity level j of sub-systems m and n, respectively. 

Since there can be presence of common components between the sub-systems m and n, ( ) ( )m ij n ij ijC C C+   

for all i and j where ijC  is the number of components of type i with complexity level j of system S. 

Thus, 
3 3

1 1

( ) ( ) ij ij

i j

UCP m UCP n C   W
= =

+    

( ) ( ) ( )UCP m UCP n UCP S+   

From (5), 

( ) ( )CP S UCP S VAF=   

Thus, ( ) ( ) ( )CP S UCP m VAF UCP n VAF  +   

( ) ( ) ( )CP S CP m CP n +  

The CP measure of S is never greater than the sum of the CP counts of any pair of its sub-systems. 

The above proofs show that the CP measure is valid against Briand et al.’s mathematical framework [41] 

for the theoretical validation of software metrics, given the fact that the CP measure holds non-negativity, 

becomes null if there are no components in a CBS, satisfies the condition of module additivity, is given by 

the knowledge of the sizes of all disjoint sub-systems of a CBS, holds monotonicity and never exceeds the 

sum of the sizes of any pair of sub-systems of a CBS. 
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5. Conclusions and Future Work 

In this paper, we have provided a theoretical validation for the Component Point (CP) measure [33] which 

we have developed for measuring the system-level size of a CBS. This validation has proven that not only the 

CP measure is valid against all the necessary mathematical conditions that it should hold as a size measure, 

but also the three existing software measures on which the CP measure was formulated are valid against 

their corresponding necessary mathematical conditions with respect to the same theoretical framework. In 

our validation, we have proven the fact that the CP measure holds non-negativity, becomes null when there 

are no components in a CBS, satisfies the condition of module additivity, is given by the knowledge of the 

sizes of all disjoint sub-systems of a CBS, holds the condition of monotonicity, and never exceeds the sum of 

the sizes of any pair of sub-systems of a CBS.  

Thus, we have shown that the CP measure not only holds all the mathematical conditions that are 

necessary for a size measure but also can be used in CBSD in a similar way that FP and its extensions are 

used in other software development paradigms. For future work, we intend to formulate an effort model 

that will use the CP count as well as other effort drivers of CBSD in order to obtain more realistic effort 

estimates for CBS.  
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