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Abstract: Cooperative spectrum sensing improves sensing 

performance of secondary users by exploiting spatial diversity in 

cognitive radio networks. However, cooperation of secondary users 

introduces some overhead also that may degrade the overall 

performance of cooperative spectrum sensing.  The trade-off between 

cooperation gain and overhead plays a vital role in modeling 

cooperative spectrum sensing.  This paper considers overhead in 

terms of reporting energy and reporting time. We propose a 

cooperative spectrum sensing based coalitional formation game 

model where the utility of the game is formulated as a function of 

throughput gain and overhead. To achieve a rational average 

throughput of secondary users, the overhead is to be optimized. This 

work emphasizes in optimization of overhead incurred. In 

cooperative spectrum sensing, participation of large number of 

cooperating users improve detection performance, on the contrary, it 

increases overhead too. So, to limit the maximum coalition size, we 

propose a formulation under the constraint of probability of false 

alarm. To reduce reporting overhead, an efficient fusion center 

selection scheme and an algorithm to select eligible secondary users 

for reporting are proposed.  We also outline a distributed cooperative 

spectrum sensing algorithm using the properties of coalition 

formation game and prove that the utility of the proposed game has 

non-transferable properties.  The simulation results show that the 

proposed schemes reduce the overhead of reporting without 

compromising the overall detection performance of cooperative 

spectrum sensing. 
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1. Introduction 
 

In the last couple of years, there has been an exponential 

growth of wireless users and mobile data traffic worldwide 

[1]. This demands high data rates that need an adequate 

amount of free spectrum. But the available radio spectrum is 

limited and not sufficient to fulfill such requirements. 

Spectrum scarcity is there, on the contrary, most of the 

licensed spectrum remains considerably underutilized. The 

concept of Cognitive Radio (CR) was first introduced by 

Joseph Mitola [2] as a solution to the conflict between 

spectrum scarcity and unutilized spectrum. A Cognitive Radio 

Network (CRN) allows licensed users (also known as primary 

users) and unlicensed users (also known as secondary users) 

to coexist in the same spectrum to share frequency bands 

without any harmful interference to the licensed users [3]. To 

avail unutilized spectrum, the Secondary Users (SU) sense the 

Primary User (PU) spectrum using a suitable spectrum sensing 

technique. But local spectrum sensing faces challenges like 

multipath fading, shadowing and receiver uncertainty 

problems [4], etc. that may degrade their sensing performance. 

To compromise such issues, the concept of Cooperative 

Spectrum Sensing (CSS) was developed. CSS has been 

proved as a significant scheme to improve the detection 

performance of spatially located SUs [4] by forming 

cooperation among them. The concept of CSS can be 

implemented through a parallel fusion model and game 

theoretic model, but in the state-of-the-art papers [5-10], the 

game theoretic model is regarded as a more appropriate 

approach for developing self-organized cooperation among 

SUs. Some of the research works that use game theoretic 

model as an efficient tool to access the spectrum dynamically 

are illustrated in [11]. Though CSS overcomes the issues that 

arise in non-cooperative sensing, however, cooperation of 

SUs incurs some overhead also. The overhead refers to any 

extra cost that arises due to the cooperation of secondary users 

and it limits cooperation gain. Several research papers [5-10] 

have formulated utility of the game as a trade-off between 

detection performance and  probability of false alarm, some 

papers define utility as a function of throughput and total 

energy consumption during CSS.  In literature, CSS-based 

game theoretic models normally concentrate on improvement 

of detection performance without considering the cooperation 

overhead counterpart. In CSS, cooperation of large number of 

SUs improves detection performance; on the contrary, it 

increases overhead too. So, to achieve a rational average 

throughput, the overhead incurred is to be compromised. 

Developing an efficient model for CSS under the constraint of 

cooperation overhead is not an easy task. Motivated by these 

facts, we propose a CSS-based coalition formation game 

model that considers the overhead of reporting energy and 

reporting time. In this work, we assume that the PU and the 

SUs coexist in an interweave CR environment where the SUs 

opportunistically utilize the spectrum hole with the least 

interference to the PU [3, 12]. The main contribution of this 

work is to design schemes to optimize overhead. The utility of 

the proposed game is formulated as a trade-off between 

throughput gain and overhead in terms of reporting energy and 

reporting time. As mentioned earlier, cooperation overhead 

increases along with the increase of coalition size, so we 

propose a formulation to compute the maximum feasible 

coalition size under a given false alarm constraint. To 

optimize the reporting energy overhead, an efficient Fusion 

Center (FC) selection algorithm is proposed. To reduce 

reporting overhead, we outline another framework that allows 

only the eligible SUs to report sensing information to the FC. 

We also design a distributed 
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cooperative spectrum sensing algorithm under the framework 

of coalition formation game and prove that the utility of the 

proposed game has non-transferable properties. The 

performance of the proposed schemes is studied using 

MATLAB R2017a.  

The rest of the paper is organized as follows: In Section 2, 

some of the related research works are mentioned. In section 

3, we introduce the system model and some assumptions that 

are considered in the following sections. In Section 4, we set 

up the proposed model and present some schemes to optimize 

overhead parameters. A distributed cooperative spectrum 

sensing algorithm is also described in Section 4. The 

simulations and observations are discussed in Section 5. 

Finally, we conclude the paper with few plans in Section 6 and 

acknowledgment in Section 7.  
 

2. Related work 
 

In this section, we discuss some of the research works from 

the literature which are related to our current work. In CSS, 

reporting stage consumes considerable amount of energy and 

time which we consider as reporting overhead. The state-of-

the-art research discusses many approaches that aim to 

optimize reporting overhead. We consider mainly two 

approaches: a) optimization of number of participating 𝑆𝑈s 

and b) coalition head selection schemes with an objective to 

minimize reporting overhead. In [13,14], energy consumption 

is optimized by approximating optimal numbers of 

participating 𝑆𝑈𝑠 under the constraints of detection 

probability and false alarm probability. In CSS, censoring is a 

significant approach for minimizing reporting overhead where 

𝑆𝑈s that satisfy some predefined censoring thresholds are 

only permitted to report sensing observations to the 𝐹𝐶. The 

others are refrained from reporting and hence the number of 

reporting 𝑆𝑈s are reduced. In [15], censoring thresholds are 

optimized to minimize reporting energy by satisfying some 

given detection probability constraint. [16] proposes a 

censoring scheme that decreases the number of sensing bits 

reported to the 𝐹𝐶 and thereby minimize the energy 

consumption during reporting. A confidence voting method 

has been suggested by [17] where the 𝑆𝑈s whose confidence 

level is above a given threshold can only report sensing 

information to the 𝐹𝐶. Each 𝑆𝑈 achieves a confidence level 

when it’s sensing decision is identical to the cooperative 

decision taken by the 𝐹𝐶. The 𝑆𝑈s, whose confidence level is 

below the given threshold, keep on sensing the spectrum and 

comparing its decision with the cooperative decision until it 

gains a confidence level. This strategy minimizes reporting 

overhead by reducing number of reporting 𝑆𝑈s in each round. 

Clustering is another approach that reduces reporting 

overhead significantly. In clustering, the 𝑆𝑈s that fulfill some 

norms constitute clusters and one of the cluster 𝑆𝑈 is selected 

as the cluster head based on given criteria. The cluster head 

reports sensing observations to the 𝐹𝐶 on behalf of its cluster 

members. [18] considers a CRN with multiple clusters and 

proposes three different threshold based strategies to improve 

detection performance as well as to reduce reporting overhead 

between the cluster heads and the 𝐹𝐶. In [19], concept of 

parallel reporting based on frequency division is adopted that 

reduces reporting time significantly.  In [20], a multi level 

cluster based CSS scheme is proposed where some cluster 

heads are assumed to be located far away from the 𝐹𝐶 and in 

such scenario, they report their cluster decisions to the nearest 

cluster head instead of the 𝐹𝐶 and hence, the reporting 

overhead decreases.  Coalition head or  𝐹𝐶 selection 

mechanisms play a vital role in minimizing reporting energy 

overhead since reporting energy mainly depends on the 

distance between the 𝑆𝑈s and the 𝐹𝐶. In [7], the coalition head 

selection algorithm formulates a function that considers 

mutual influence of mobility of each node and its energy on 

each other. The node that scores the highest function value is 

selected as the coalition head. In [21], the cluster head 

selection algorithm calculates net distance of each cluster 

member from the 𝐹𝐶 and the cluster member that scores the 

minimum net distance is considered as the cluster head and 

thus the reporting energy is minimized. They compute the net 

distance of each 𝑆𝑈 as the sum of its farness and the distance 

from the 𝐹𝐶. In [22], an iterative cluster head selection scheme 

is proposed.  The 𝐹𝐶 initiates the process and selects the 

cluster node which is closest to the 𝐹𝐶 as the cluster head. In 

the second round, the cluster head recursively executes the 

process and selects a new cluster head which is closest to the 

earlier cluster head and generates its members. This process 

executes recursively until the final cluster head is selected. 

The related research in [23, 24] considers the distance between 

the 𝐹𝐶 and cluster nodes as one of the influencing parameter 

in selecting cluster head.  
 

3.   Assumptions  and  system   model   
 

The current work considers a CR network consisting of 𝑁 

numbers of 𝑆𝑈𝑠 and one 𝑃𝑈 where 𝑃𝑈 and 𝑆𝑈𝑠 are assumed 

to be synchronized in a time frame 𝑇. We presume that the 

𝑆𝑈𝑠 sense the 𝑃𝑈 spectrum using the energy detection method 

due to its low computational complexities [4]. In the energy 

detection problem, let ℋ1  and ℋ0 be the two binary 

hypotheses that represent the presence of 𝑃𝑈 and spectrum 

hole in the frequency band respectively and it can be 

expressed as [4]:  
 

𝑦(𝑡) = {
𝑥(𝑡) + 𝑛(𝑡),    ℋ1: 𝑤ℎ𝑒𝑛 𝑃𝑈 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑛(𝑡),                  ℋ0: 𝑤ℎ𝑒𝑛 𝑃𝑈 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡
 (1) 

 

Where, 𝑦(𝑡), 𝑛(𝑡) and 𝑥(𝑡) represent the received signal by 

𝑆𝑈𝑖, zero-mean additive white Gaussian noise(AWGN) with 

variance 𝜎𝑛
2  and 𝑃𝑈 signal received with variance 𝜎𝑥

2. In any 

spectrum sensing technique, 𝑃𝑑  and 𝑃𝑓  are two parameters that 

are used to evaluate sensing performance. 𝑃𝑑 is the probability 

of correct detection of 𝑃𝑈 under ℋ1 and 𝑃𝑓 is the probability 

of false detection of 𝑃𝑈 under ℋ0   in the channel and they are 

expressed as [4] : 
  

𝑃𝑑 = 𝑃𝑟𝑜𝑏(𝑌 > 𝜆 ℋ1⁄ ) (2) 

𝑃𝑓 = 𝑃𝑟𝑜𝑏(𝑌 > 𝜆 ℋ0⁄ ) (3) 
 

Where 𝑌 and  𝜆  are the energy of the received signal and 

decision threshold. Spectrum sensing schemes target high 𝑃𝑑 

and low 𝑃𝑓. We consider that to perform CSS, the 𝑆𝑈𝑠 in a 

cooperation footprint area [4], cooperate to constitute 

coalitions in such a way that their utility improves. We 

presume, all cooperating 𝑆𝑈𝑠 of a coalition sense a channel at 

the same time and takes a local decision which is reported to 

the 𝐹𝐶 through a common control channel using the Time 

Division Multiple Access (TDMA) approaches. We consider, 

the time frame 𝑇 is fixed and finite [25] and  𝑇 consists of 

sensing time  𝑇𝑆 , reporting time 𝑇𝑅   and transmission time 𝑇𝑇 . 

So, 𝑇 can be expressed as  𝑇 = 𝑇𝑆 + 𝑇𝑅 + 𝑇𝑇 . In literature, 

some papers consider variable sensing, reporting, and 

transmission time [25], others regard transmission time as 
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fixed and variable sensing and reporting time to achieve a 

fixed throughput [26]. To study the tradeoff between 

throughput gain and overhead of reporting energy and time, 

we consider variable reporting and transmission time keeping 

the sensing time fixed. If  𝑇𝑟,𝑖  be the reporting time slot of 𝑆𝑈𝑖 

of coalition 𝑆, then the total reporting time 𝑇𝑅 can be given by:  
 

𝑇𝑅 = |𝑆| ∗ 𝑇𝑟,𝑖  (4) 
 

Where |𝑆| is the size of coalition 𝑆. The transmission time 𝑇𝑇  

can be expressed as: 
  

𝑇𝑇 = 𝑇 − 𝑇𝑆 − 𝑇𝑅  (5) 
 

We consider that during CSS, the 𝑆𝑈𝑠 spend mainly sensing 

energy and reporting energy. Let 𝐸𝑖 = 𝐸𝑠,𝑖 + 𝐸𝑟,𝑖 be the 

energy spend by 𝑆𝑈𝑖 in time slot  𝑇, where 𝐸𝑠,𝑖 and 𝐸𝑟,𝑖 are the 

sensing energy and reporting energy of ith 𝑆𝑈. Inspired by 

[27], we express  𝐸𝑠,𝑖 and  𝐸𝑟,𝑖 as follows: 
  

 

𝐸𝑟,𝑖 = 𝑑𝑠𝑢𝑖−𝐹𝐶
𝛼 ∗ (𝛿𝑟 ∗ 𝑇𝑟,𝑖) (7) 

 

Where  𝛿𝑠, 𝛿𝑟 are the sensing energy and reporting energy 

spend by 𝑆𝑈𝑖 per unit time, 𝑇𝑠,𝑖 , 𝑇𝑟,𝑖 are the sensing and 

reporting time slot of 𝑆𝑈𝑖, 𝑑𝑠𝑢𝑖−𝐹𝐶  is the distance between 𝑆𝑈𝑖  

and the 𝐹𝐶, 𝛼 is the path loss exponent. Generally, 𝛼 ranges 

between 1.6 and 6.5, and in free space propagation 𝛼 equal to 

2 [28]. Accordingly, the total sensing energy and reporting 

energy spend by the coalition are given by: 
 

𝐸𝑆 =  ∑ 𝐸𝑠,𝑖

|𝑆|

𝑖=1

 (8) 

 

𝐸𝑅 = ∑ 𝐸𝑟,𝑖

|𝑆|

𝑖=1

 (9) 

 

The individual probability of detection 𝑃𝑑,𝑖 under ℋ1  and the 

probability of false alarm 𝑃𝑓,𝑖 under ℋ0  of 𝑆𝑈𝑖 within a 

coalition 𝑆 is given by [10]: 
 

𝑃𝑑,𝑖 = 𝑄 ((
𝜖

𝜎𝑛
2

− 𝑠𝑛𝑟 − 1) √
𝑚

2𝑠𝑛𝑟 + 1
) (10) 

 

𝑃𝑓,𝑖 = 𝑄 ((
𝜖

𝜎𝑛
2

− 1) √𝑚) (11) 

Where  𝑄 is the complementary distribution function, 𝜖 

denotes detection threshold for 𝑆𝑈s,  𝜎𝑛
2 is Gaussian noise 

variance, 𝑚 is the time-bandwidth product, and 𝑠𝑛𝑟 stands for 

the signal-to-noise ratio. We consider that the 𝐹𝐶 uses OR 

hard decision fusion rule to result in a cooperative decision 

about the presence or absence of the 𝑃𝑈 in the frequency band 

and then forwards the decision to all the  𝑆𝑈𝑠 of 𝑆. If the 

cooperative decision is in favor of ℋ0  i.e., the channel is not 

occupied by the 𝑃𝑈, then 𝑆𝑈𝑠 are allowed to transmit data 

through the channel. The cooperative probability of detection 

𝑃𝐷 and the probability of false alarm 𝑃𝐹  of coalition 𝑆 is given 

by [10]: 
 

𝑃𝐷 = 1 − ∏(1 − 𝑃𝑑,𝑖)

|𝑆|

𝑖=1

 (12) 

  

𝑃𝐹 = 1 − ∏(1 − 𝑃𝑓,𝑖)

|𝑆|

𝑖=1

 (13) 

 

It can be observed from (12) and (13) that as the coalition size 

increases, the 𝑃𝐷 and 𝑃𝐹  also increases.   
 

Let 𝑃𝐻1
 be the probability that 𝑃𝑈 is present under ℋ1  and 𝑃𝐻0

 

be the probability that 𝑃𝑈 is absent under ℋ0 in the frequency 

band at any time slot 𝑇, then 𝑃𝐻0
+ 𝑃𝐻1

= 1 [29]. The  𝑆𝑈𝑠 try 

to transmit through the 𝑃𝑈 frequency band when 1) it is not 

occupied by the 𝑃𝑈 and no false alarm is generated by the 𝑆𝑈𝑠 

and 2) the 𝑃𝑈 is present but the 𝑆𝑈𝑠 can’t detect it [29]. The 

probability of the first scenario is 𝑃𝐻0
(1 − 𝑃𝐹 ) and the 

probability of the second scenario is 𝑃𝐻1
(1 − 𝑃𝐷).  

4. Proposed   Model 

Let (𝑁𝐶 , 𝒱) be the proposed coalition formation game, where  

𝑁𝐶(𝑁𝐶 ≤ 𝑁) is the number of cooperating 𝑆𝑈𝑠 in coalition 𝑆 

and 𝒱 is the utility function of the game. We define the utility  

𝒱(𝑆) of  𝑆(𝑆 ⊆ 𝑁, 𝑆 ≠  𝜑) as a transaction between 

throughput gain and cost and is devised as follows:  
 

𝒱(𝑆) = 𝑇ℎ_𝐺𝑎𝑖𝑛(𝑆) − 𝐶𝑜𝑠𝑡(𝑆) (14) 
 

Where 𝑇ℎ_𝐺𝑎𝑖𝑛(𝑆) is the cooperation gain in terms of 

throughput and 𝐶𝑜𝑠𝑡(𝑆) is the overhead incur in terms of 

reporting energy and reporting time. We formulate 

𝑇ℎ_𝐺𝑎𝑖𝑛(𝑆) [27] and 𝐶𝑜𝑠𝑡(𝑆)  as follows: 
 

𝑇ℎ_𝐺𝑎𝑖𝑛(𝑆) = 𝑃𝐻0
(1 − 𝑃𝐹) ∗ 𝑇𝑇 ∗ 𝑟𝑡 (15) 

 

       𝐶𝑜𝑠𝑡(𝑆) = 𝑃𝐻1
(1 − 𝑃𝐷) ∗ 𝑇𝑇 ∗ 𝐸𝑅 (16) 

 

Here,  𝑟𝑡 represents data transmission rate in the frequency 

band when the 𝑃𝑈 is absent and we define 𝑟𝑡 using Shannon’s 

formula as  𝑟𝑡 = 𝐵 log2(1 + 𝑠𝑛𝑟), where 𝐵 is the bandwidth 

of the channel. In CSS, throughput can be achieved 

successfully when the sensing channel is not occupied by the 

𝑃𝑈 and is correctly identified as free. We define the 

achievable average throughput of  𝑆𝑈𝑖 as:  
 

𝑇ℎ𝑖 =
𝑃𝐻0

(1 − 𝑃𝐹) ∗ 𝑇𝑇 ∗ 𝑟𝑡

|𝑆|
 (17) 

 

Property 1: The utility of the proposed coalition formation 

game is non-transferable. 
 

Proof:  The utility function as shown in (14) is a trade-off 

between throughput gain and overhead. The cooperative 

decision taken by the 𝐹𝐶 is a probability of the presence or 

absence of the 𝑃𝑈 in the frequency band. So, it can not be 

apportioned among the cooperating 𝑆𝑈𝑠. The 𝐹𝐶 forwards the 

final cooperative decision to all the 𝑆𝑈𝑠 of 𝑆. As a result, the 

𝑃𝑑,𝑖 and 𝑃𝑓,𝑖 of 𝑆𝑈𝑖 becomes identical to the 𝑃𝐷 and 𝑃𝐹  of 

coalition 𝑆 and hence, the utility of 𝑆𝑈𝑖 is identical to the 

utility of coalition 𝑆. Since the utility of coalition 𝑆 is not 

distributed among the cooperating 𝑆𝑈𝑠, it proves that the 

utility of the proposed coalition formation game is non-

transferable. 

4.1  Optimization of overhead parameters 
 

In the proposed model, the improvement of average 

throughput depends on the optimization of overhead 

𝐸𝑠,𝑖 = 𝑇𝑠,𝑖 ∗ 𝛿𝑠 (6) 
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parameters 𝑇𝑅 and 𝐸𝑅. However, the throughput of the game 

is also influenced by 𝑃𝐹  and the coalition size |𝑆|. Conversely, 

as mentioned in (4),(9), and (13), the values of  𝑇𝑅  , 𝐸𝑅 and 𝑃𝐹  

increases along with the increase of |𝑆|. The increase of false 

alarms reduces the spectral efficiency [4]. So, to avail optimal 

performance, we consider a false alarm constraint 𝑃𝐹,𝑚𝑎𝑥  such 

that no coalition exceeds it i.e. 𝑃𝐹 ≤ 𝑃𝐹,𝑚𝑎𝑥 . If |𝑆| keep on 

increasing even after reaching the 𝑃𝐹,𝑚𝑎𝑥 , the values of  𝑇𝑅 

and 𝐸𝑅 increases further causing overhead. So, to optimize the 

values of  𝑇𝑅 and 𝐸𝑅, it is essential to limit the maximum 

coalition size that eventually depends on the false alarm 

constraint. Inspired by [5] and [6], we propose a formulation 

that approximates the maximum feasible size of a coalition 

under a given false alarm constraint through Theorem1. 
 

Theorem1: For a given false alarm constraint 𝑃𝐹,𝑚𝑎𝑥, of any 

coalition 𝑆, the maximum feasible coalition size |𝑆𝑚𝑎𝑥| can be 

approximated as : 
 

|𝑆𝑚𝑎𝑥| ≈
log(1 − 𝑃𝐹,𝑚𝑎𝑥)

log(1 − 𝑃𝑓,𝑎𝑣𝑔)
 (18) 

 

Where 𝑃𝑓,𝑎𝑣𝑔 is the average probability of false alarm of 

cooperating 𝑆𝑈𝑠 in 𝑆. 
 

Proof: Let us assume that in the CRN, the 𝑆𝑈𝑠 are arranged 

very close to each other in such a way that coalition 𝑆 can 

accommodate all 𝑁 numbers of 𝑆𝑈𝑠 in it i.e., |𝑆| = 𝑁. As 𝑆𝑈𝑠 

are closely grouped in 𝑆, we presume that they experience the 

same probability of false alarm i.e.,   𝑃𝑓,𝑖 = 𝑃𝑓,𝑗 ,∀𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠

𝑗. In such an ideal situation, the probability of false alarm as 

defined in (13) can be expressed as:   

𝑃𝐹𝑁
= 1 − (1 − 𝑃𝑓,𝑖)

𝑁
 (19) 

 

And the average probability of false alarm 𝑃𝑓,𝑎𝑣𝑔 is computed 

as: 

𝑃𝑓,𝑎𝑣𝑔 =
𝑁 ∗ 𝑃𝑓,𝑖

𝑁
 𝑜𝑟 𝑃𝑓,𝑎𝑣𝑔 = 𝑃𝑓,𝑖 (20) 

 

Let 𝑃𝑓,𝑚𝑎𝑥  be the false alarm constraint for 𝑆. Replacing 𝑃𝑓,𝑖 by 

𝑃𝑓,𝑎𝑣𝑔 and 𝑃𝐹𝑁
 by 𝑃𝑓,𝑚𝑎𝑥  in (19) we get, 

 

𝑃𝑓,𝑚𝑎𝑥 = 1 − (1 − 𝑃𝑓,𝑎𝑣𝑔)𝑁 
 

    Or  1 − 𝑃𝑓,𝑚𝑎𝑥 = (1 − 𝑃𝑓,𝑎𝑣𝑔)𝑁 (21) 
 

Taking log on both sides of (21) we get, 
 

   𝑁 ≈
log(1 − 𝑃𝑓,𝑚𝑎𝑥)

log(1 − 𝑃𝑓,𝑎𝑣𝑔)
 (22) 

Equation (22) approximates the maximum size of coalition 𝑆 

in the perfect scenario that we have considered.  

Now, let us consider that coalition 𝑆 can accommodate 

maximum  |𝑆𝑚𝑎𝑥| ≤ 𝑁 numbers of 𝑆𝑈𝑠 and all cooperating 

𝑆𝑈𝑠 experience different 𝑃𝑓,𝑖 i.e., 𝑃𝑓,𝑖 ≠ 𝑃𝑓,𝑗∀𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗 

based on their 𝑠𝑛𝑟 values. In this scenario we compute 𝑃𝑎𝑣𝑔 

as: 

𝑃𝑓,𝑎𝑣𝑔 =
∑ 𝑃𝑓,𝑖

|𝑆𝑚𝑎𝑥|
𝑖=1

|𝑆𝑚𝑎𝑥|
   (23) 

 

Now, considering (23) in (22) we get, 

 

|𝑆𝑚𝑎𝑥| ≈
log(1 − 𝑃𝐹,𝑚𝑎𝑥)

log(1 − 𝑃𝑓,𝑎𝑣𝑔)
 (24) 

 

Equation (24) depicts that in any coalition 𝑆, for a given false 

alarm constraint 𝑃𝐹,𝑚𝑎𝑥 , the maximum feasible coalition size 

|𝑆𝑚𝑎𝑥|  can be approximated as a function 𝑃𝐹,𝑚𝑎𝑥  and 𝑃𝑓,𝑎𝑣𝑔 

where all 𝑆𝑈𝑠 practice different 𝑃𝑓,𝑖.  
 

4.1.1 Optimization of energy spent by SUs during 

reporting. 

As defined in (7), the energy spent by 𝑆𝑈𝑖 to report its sensing 

decision to the 𝐹𝐶 is directly proportional to the distance 

between  𝑆𝑈𝑖 and the  𝐹𝐶. Therefore, the longer the 𝑑𝑠𝑢𝑖−𝐹𝐶 , 

the more 𝐸𝑟,𝑖 will be spent. If the 𝐹𝐶 is positioned at an 

optimum distance from all other 𝑆𝑈s of 𝑆 then  𝑑𝑠𝑢𝑖−𝐹𝐶  will 

be reduced and accordingly 𝐸𝑟,𝑖 will be optimized. Using the 

concept of closeness centrality measure, we propose a  𝐹𝐶 

selection algorithm. 

a) Algorithm1:  Fusion  Center  Selection   Algorithm 

[FCSA] 

Let coalition  𝑆 consists of 𝑁𝐶(𝑁𝐶 ≤ 𝑁) numbers of 

cooperating 𝑆𝑈𝑠 represented by {𝑆𝑈1, 𝑆𝑈2, ⋯ , 𝑆𝑈𝑁𝑐
 } . Let 𝑑𝑖 

be the distance between  𝑆𝑈𝑖 and the 𝑃𝑈 and  𝑑𝑖,𝑗 be the 

distance of 𝑆𝑈𝑖 from 𝑆𝑈𝑗  ∀𝑖, 𝑗 ∈ 𝑆 and 𝑖 ≠ 𝑗. We presume that 

𝑑𝑖,𝑗 ≪ 𝑑𝑖 and express  𝑑𝑖,𝑗 as follows: 
 

𝑑𝑖,𝑗 = |𝑑𝑖 − 𝑑𝑗| (25) 
 

It is considered that during coalition formation, the 𝑆𝑈𝑠 

organize themselves in a topological structure based on the 

way they merge or split. The closeness centrality(𝐶) of 𝑆𝑈𝑖 

defines how short the shortest paths are from 𝑆𝑈𝑖 to all other 

𝑆𝑈𝑠. It can be expressed as the normalized inverse of the sum 

of the distances from 𝑆𝑈𝑖 to all other 𝑆𝑈𝑠 of 𝑆. and is given 

by: 

𝐶(𝑆𝑈𝑖) =
|𝑆| − 1

∑ 𝑑𝑖,𝑗𝑗∈𝑆

 (26) 

 

Where |𝑆| = 𝑁𝐶  and  ∑ 𝑑𝑖,𝑗𝑗∈𝑆  is the sum of the distances from 

𝑆𝑈𝑖 to all other 𝑆𝑈𝑠 of  𝑆.  
 

Let 𝐶 = {𝐶(𝑆𝑈1), 𝐶(𝑆𝑈2), ⋯ , 𝐶(𝑆𝑈𝑁𝑐
)} be a vector 

consisting of closeness centrality values of each 𝑆𝑈 of  𝑆. The 

maximum closeness centrality score 𝐶𝐶𝑚𝑎𝑥  is expressed as: 

𝐶𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐶𝐶} (27) 
 

Equation (27) defines that any 𝑆𝑈𝑖 having 𝐶(𝑆𝑈𝑖) = 𝐶𝐶𝑚𝑎𝑥 is 

selected as the 𝐹𝐶 of 𝑆 as it is the most central and connected 

𝑆𝑈 in 𝑆. If more than one 𝑆𝑈 score 𝐶𝐶𝑚𝑎𝑥, then any one of 

them can be declared as the 𝐹𝐶 of 𝑆.  
 

Algorithm1: FC selection for Coalition S 

Input  : |𝑆| = 𝑁𝐶 , 𝑑𝑖. 

Output  : 𝐹𝐶 of 𝑆, vector 𝑑𝑠𝑢−𝐹𝐶
∗ . 

Begin   

Step 1 : Set 𝑑𝑠𝑢𝑚 = 0 and 𝐶𝐶𝑚𝑎𝑥 = −1. 

Step 2 : For 𝑖 = 1 to |𝑆| − 1 

         For 𝑗 = 1 to |𝑆| − 1  

            Compute 𝑑𝑖,𝑗 ∀ 𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗  using(25) 

                Store 𝑑𝑖,𝑗  in vector 𝑑𝑖
∗ 
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               Compute 𝑑𝑠𝑢𝑚 = 𝑑𝑠𝑢𝑚 + 𝑑𝑖,𝑗  

          End for 

        Vector  𝑑𝑖
∗ = [𝑑𝑖,𝑗 , 𝑑𝑖,𝑘 , 𝑑𝑖,𝑙 , ⋯ ]  

        Set 𝑓𝑖 = 𝑑𝑠𝑢𝑚 

        Compute 𝐶(𝑆𝑈𝑖) =
|𝑆|−1

𝑓𝑖
  

        If 𝐶(𝑆𝑈𝑖) >  𝐶𝐶𝑚𝑎𝑥 then 

            Set 𝐶𝐶𝑚𝑎𝑥 = 𝐶(𝑆𝑈𝑖) 

        Else 

            Continue 

        End if 

  End for 

Step 3 : The 𝑆𝑈𝑖, scoring the maximum closeness 

centrality value 𝐶𝐶𝑚𝑎𝑥 is considered as the 𝐹𝐶 of 

coalition 𝑆. 

Step 4 : Select the distance between 𝑆𝑈𝑖 and the 𝐹𝐶 from  

𝑑𝑖
∗ and store it in the vector  𝑑𝑠𝑢−𝐹𝐶

∗ =
[𝑑𝑠𝑢𝑖−𝐹𝐶 , 𝑑𝑠𝑢𝑗−𝐹𝐶,⋯⋯]  where 𝑑𝑠𝑢𝑖−𝐹𝐶  ∀ 𝑖 ∈ 𝑆 is 

the distance between 𝑆𝑈𝑖 and the 𝐹𝐶 

End   
 

Algorithm1 optimizes the reporting energy 𝐸𝑟,𝑖 of 𝑆𝑈𝑖 by 

selecting the most centrally located 𝑆𝑈 as the 𝐹𝐶 of  𝑆. 

Accordingly, the total reporting energy  𝐸𝑅 which is the sum 

of 𝐸𝑟,𝑖 of all 𝑆𝑈𝑠 of 𝑆 also become minimum. Thus, the 

overhead of reporting energy is optimized. 
 

4.1.2   Selection of qualified SUs for reporting. 
 

Equation (17) defines that the improvement of the average 

throughput of each 𝑆𝑈 depends on the maximization of 

transmission time. On the other hand, as mentioned in (5), for 

a time frame 𝑇,  the transmission time 𝑇𝑇  can be increased by 

reducing the reporting time 𝑇𝑅 , since we consider sensing 

time 𝑇𝑆  as fixed. Again, according to (4), in the TDMA 

approach, for a reporting time slot 𝑇𝑟,𝑖, the 𝑇𝑅 can be reduced 

by decreasing the number of reporting 𝑆𝑈𝑠 in 𝑆. Eventually, 

maximization of average throughput depends on the 

optimization of reporting 𝑆𝑈𝑠 in 𝑆. Here, we propose an 

algorithm that allows only the qualified 𝑆𝑈𝑠 to report sensing 

decisions to the 𝐹𝐶 and thus the number of reporting 𝑆𝑈𝑠 can 

be reduced.  
 

a) Algorithm2: Qualified SU Selection Algorithm (QSA)  
 

This algorithm allows only qualified 𝑆𝑈𝑠 to report its sensing 

decision to the 𝐹𝐶 by applying a qualifying criterion. We 

assume that before reporting, every cooperating 𝑆𝑈 has to 

forward it’s 𝑑𝑠𝑢𝑖−𝐹𝐶 ∀𝑖 ∈ 𝑆 to the 𝐹𝐶 and the 𝐹𝐶 calculates 

the average,  𝑓𝑎𝑣𝑔 as:  
 

𝑓𝑎𝑣𝑔 =
∑ 𝑑𝑠𝑢𝑖−𝐹𝐶

𝑁𝐶−1
𝑖=1

(𝑁𝐶 − 1)
 (28) 

The 𝐹𝐶 permits only those 𝑆𝑈𝑠 to report whose 𝑑𝑠𝑢𝑖−𝐹𝐶  ≤

 𝑓𝑎𝑣𝑔 . In other words, the 𝑆𝑈𝑠 whose 𝑑𝑠𝑢𝑖−𝐹𝐶  > 𝑓𝑎𝑣𝑔  are 

refrained from reporting their sensing decision to the 𝐹𝐶. 

Accordingly, the number of reporting 𝑆𝑈𝑠 in 𝑆 reduces. Let 

𝑁𝑅(𝑁𝑅 < 𝑁𝐶) be the numbers of 𝑆𝑈𝑠 in 𝑆 that are qualified 

for reporting. Now, the 𝑇𝑅 and 𝐸𝑅 as defined in (4) and (9) can 

be redefined as 𝑇𝑅 = 𝑁𝑅 ∗ 𝑇𝑟,𝑖 and 𝐸𝑅 = ∑ 𝐸𝑟,𝑖
𝑁𝑅
𝑖=1 . Since  

𝑁𝑅 < 𝑁𝐶 , the  𝑇𝑅 and 𝐸𝑅 reduces further. 
 

Algorithm 2: Qualified reporting 𝑆𝑈 selection algorithm 

of coalition 𝑆 of size  |𝑆| = 𝑁𝐶 . 

Input  : 𝑁𝐶  , 𝑑𝑠𝑢−𝐹𝐶
∗  

Output  : 𝑁𝑅 : number of  𝑆𝑈𝑠 qualified for reporting,  

𝑄𝑠𝑢: list of qualified 𝑆𝑈𝑠.  

Begin   

Step1 : 𝑆𝑈𝑖 of 𝑆 reports it’s 𝑑𝑠𝑢𝑖−𝐹𝐶  to the 𝐹𝐶 

Step2 : 𝐹𝐶 computes 𝑓𝑎𝑣𝑔   using (28) and forwards 

it back to the 𝑆𝑈𝑠 of S 

Step3 : For  𝑖 = 1: 𝑁𝐶  

  If 𝑑𝑠𝑢𝑖−𝐹𝐶  ≤  𝑓𝑎𝑣𝑔 then 

        𝑆𝑈𝑖 reports its sensing decision to the  

𝐹𝐶 

        Send 𝑆𝑈𝑖 to vector 𝑄𝑠𝑢 

   Else  

       Continue 

  End if 

  𝑄𝑠𝑢 = [𝑄𝑠𝑢𝑖
, 𝑄𝑠𝑢𝑗

, ⋯ ⋯ ] 

  End for 

Step4 : Calculate  𝑁𝑅 = 𝑐𝑜𝑢𝑛𝑡(𝑄𝑠𝑢) 

End   
 

4.1.3 Distributed cooperative spectrum sensing. 
 

We propose a distributed CSS algorithm using the properties 

of the coalition formation game. The algorithm consists of five 

phases: a) local spectrum sensing performed by the 𝑆𝑈𝑠 of 

CRN, b) adaptive coalition formation using merge and split 

rule, c) selection of the 𝐹𝐶, d) selection of qualified 𝑆𝑈𝑠 that 

report sensing decision to the 𝐹𝐶 e) the 𝐹𝐶 makes a 

cooperative decision and forwards it to the  𝑆𝑈𝑠 of the 

coalition. 

At the beginning of time frame 𝑇, we consider all 𝑆𝑈𝑠 in the 

CRN as singleton coalitions. To carry out CSS, multiple 

singleton coalitions merge to structure larger coalitions if their 

utility improves and a coalition splits into smaller coalitions if 

splitting results in coalitions with improved utilities[7]. Let us 

assume that in the cooperation footprint area, 𝑘 numbers of 

coalitions, represented by {𝑆1,𝑆2, ⋯ ⋯ ⋯ , 𝑆𝑘}, are formed 

using simple merge and split rules. The merge and split 

operations using Pareto order as defined in [7] are as follows: 
 

Definition 

1: 

Merge any set of mutually disjoint 

coalitions {𝑆1, … , 𝑆𝑘} where  {⋃ 𝑆𝑖
𝑘
𝑖=1 } ⊳

{𝑆1, ⋯ , 𝑆𝑘} , so {𝑆1, … … , 𝑆𝑘} → {⋃ 𝑆𝑖
𝑘
𝑖=1 } 

 

Definition 2: Split any coalition {⋃ 𝑆𝑖
𝑘
𝑖=1 } into  smaller 

coalitions where  {𝑆1, … … , 𝑆𝑘} ⊳

{⋃ 𝑆𝑖
𝑘
𝑖=1 } , so {⋃ 𝑆𝑖

𝑘
𝑖=1 } → {𝑆1, … … , 𝑆𝑘} 

 

a) Algorithm3: Distributed Cooperative Spectrum 

Sensing Algorithm (DCSSA) 
 

Algorithm 3: Distributed Cooperative Spectrum Sensing 

Algorithm  

Input : 𝑃𝐹,𝑚𝑎𝑥  : Given false alarm constraint,  

𝑁: number of 𝑆𝑈𝑠 in the CRN 
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Output  : Cooperative spectrum sensing decision 

Begin    

Step 1 : Each singleton coalition senses the 𝑃𝑈 

channel using the energy detection method 

Step 2 : Begin coalition formation using merge and 

split rule through Pareto order 

  a. Merge coalitions using definition 1 

  b. Split a coalition into multiple 

coalitions using definition 2 

  Repeat a. and b. until the merge-and-split 

process terminates with stable coalitions 

Step 3 : Select the 𝐹𝐶 using algorithm1 

Step 4 : Select qualified  𝑆𝑈𝑠 using algorithm2 and 

report sensing decision to the  𝐹𝐶. 

Step 5 : a) The 𝐹𝐶 fuses reported decisions using 

OR hard decision fusion rule and take a 

cooperative decision about the 

presence or absence of the 𝑃𝑈 in the 

channel. 

  b) The 𝐹𝐶 reports the cooperative 

decision to all  𝑆𝑈𝑠 of 𝑆 and 

accordingly 𝑆𝑈 decides whether to 

transmit through the channel or not. 

End   
 

(b)  Stability of coalition  
 

During the process of coalition formation, the coalitions attain 

a stable state if they maintain the following conditions. 

1. The  probability of false alarm of each coalition should   

not exceed the given false alarm constraint i.e.,  𝑃𝐹  ≤

𝑃𝐹,𝑚𝑎𝑥  . 

2. The maximum numbers of cooperating 𝑆𝑈𝑠 that can be 

accommodated in a coalition 𝑆 under a given false alarm 

constraint 𝑃𝐹,𝑚𝑎𝑥  should not go beyond |𝑆𝑚𝑎𝑥|. 
 

5. Simulation 
 

We study the performance of the proposed model using 

MATLAB R2017a. For simulation, we set up a CRN of 200 x 

200 m2 area where the 𝑃𝑈 is located at the center and  𝑆𝑈𝑠 are 

scattered randomly in the area. Some of the parameters that 

we consider for simulation are listed in table1. Figure1 plots 

the scenario of energy required to report sensing information 

versus the distance between 𝑆𝑈𝑖 and the 𝐹𝐶. It can be 

observed in the figure that as the distance between 𝑆𝑈𝑖 and the 

𝐹𝐶 increases, the reporting energy of each 𝑆𝑈 also increases. 

So, to reduce the reporting energy, it is essential to select the 

𝐹𝐶 in such a way that it is positioned at the optimum distance 

from all other 𝑆𝑈𝑠 of the coalition.   

 

Table 1: Parameters and their values used in simulation 

Parameters  Value 

𝐏𝐇𝟎
 0.20 

𝐏𝐇𝟏
 0.80 

𝐓 100 milliseconds 

𝐓𝐒 10 milliseconds 

𝐓𝐫 0.1 millisecond 

𝐬𝐧𝐫 −20dB to 1dB 

𝐁 1MHz 

𝐫𝐭 80 bits per second 

𝛅𝐫 0.0013mJ per bit per second [30] 
 

 
 

Figure 1: Reporting energy versus distance to the 𝐹𝐶 
 

The fusion center selection scenario using algorithm1 is 

presented in figure 2. Here, we consider 15 numbers of 𝑆𝑈𝑠 

and assume that their distances from the 𝑃𝑈 are generated 

randomly. The closeness centrality value of each 𝑆𝑈 is 

calculated using (26) and are plotted. It is noted in the figure 

that 𝑆𝑈4 scores the maximum closeness centrality value, so it 

is considered as the 𝐹𝐶 of the coalition. Since the 𝐹𝐶 is the 

most central and connected 𝑆𝑈 in the coalition, the distance 

between 𝑆𝑈𝑖 and the 𝐹𝐶 decreases and hence, the reporting 

energy of each 𝑆𝑈 reduces. The total reporting energy, which 

is the sum of individual reporting energies, also decreases, and 

as a result, the overhead of reporting energy optimizes. 
  

 
Figure 2: The 𝑆𝑈s and their closeness centrality values 

Figure 3 presents the scenario of total reporting energy versus 

fusion center. In the figure, it is observed that if 𝑆𝑈4 having 

the maximum closeness centrality value is considered as the 

𝐹𝐶, then the total reporting energy spent by that coalition will 

become minimum and the overhead of reporting energy is 

optimized.   

 

 
Figure 3: The 𝐹𝐶𝑠  and total reporting energy spent by the 

corresponding coalitions. 
 



437 
International Journal of Communication Networks and Information Security (IJCNIS)                                   Vol. 13, No. 3, December 2021 

The trade-off between throughput and transmission time is 

presented in figure 4. It plots the average throughput versus 

transmission time for three different reporting time slots. In 

the figure, it is observed that as transmission time increases, 

the average throughput improves. It is also noted in the figure 

that for a given coalition size, the smaller the reporting time 

slot, the longer the transmission period, and hence 
 

 
Figure 4: Average throughput versus transmission time 
 

throughput improves. Figure 5 presents the scenario of false 

alarm constraint and the respective maximum feasible 

coalition size. The figure portrays that as the value of 𝑃𝐹,𝑚𝑎𝑥  

increases, the |𝑆𝑚𝑎𝑥| of coalition 𝑆 also rises and as a result, 

the probability of occurring overhead of 𝐸𝑅 and 𝑇𝑅 increases 

too.  From the figure, we can conclude that to reduce the 

overhead in terms of reporting energy and reporting time in 

the proposed model, it is preferable to consider a lower value 

of false alarm constraint. 

 
Figure 5: Maximum feasible coalition size for different  

false alarm constraints 

 

6. Conclusion and future work 

In this paper, we have devised a coalition formation game for 

cooperative spectrum sensing in interweave cognitive radio 

networks under the constraint of cooperation overhead in 

terms of reporting energy and reporting time. The objective of 

this work was to design schemes to reduce overhead to 

improve throughput gain. To limit overhead we propose 

theorem1 that approximates the maximum number of 

cooperating SUs that can be accommodated in a coalition 

under a given false alarm constraint. Theorem1 describes that 

the lower the false alarm constraint, the lesser the overhead 

incurred. For better performance, IEEE 802.22 recommends 

false alarm constraint to be less than 0. 1[31]. Algorithm1 is a 

better choice of solution for optimization of reporting energy 

overhead and similar type of overhead that depends on the 

distance between 𝑆𝑈s and the 𝐹𝐶. On the other hand, 

algorithm2 is another scheme that permits only eligible 𝑆𝑈s to 

report sensing decisions to the 𝐹𝐶 and thereby minimizes 

reporting time overhead. The outline of algorithm2 can be a 

choice for similar kinds of problems where it is required to 

reduce the overhead of reporting time.  In conclusion, we can 

say that the proposed model can be referred by any CSS-based 

problems that consider reporting overhead. In future work, we 

would like to explore other cooperation overhead constraints 

and design efficient schemes to optimize them for better 

performance of cooperative spectrum sensing in cognitive 

radio networks. 
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