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 Link prediction for complex networks is a research hotspot. The main purpose is to predict the 

unknown edge according to the structure of the existing network. However, the edges in real-

world networks are often sparsely distributed, and the number of unobserved edges is usually 

far greater than that of observed ones. Considering the weak performance of traditional link 

prediction algorithms under the above situation, this paper puts forward a novel link prediction 

algorithm called network adjacency matrix blocked-compressive sensing (BCS). Firstly, the 

diagonal blocks were subjected to sparse transformation with the network adjacency matrix; 

Next, the measurement matrix was rearranged into a new measurement matrix using the sorting 

operator; Finally, the subspace pursuit (SP) algorithm was introduced to solve the proposed 

algorithm. Experiments on ten real networks show that the proposed method achieved higher 

accuracy and consumed less time than the baseline methods. 
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1. INTRODUCTION 

 

Link prediction for complex networks has become a 

research hotspot in recent years. The purpose is to identify 

unobserved edges in the existing network or forecast future 

edges based on the current network structure [1]. Link 

prediction has been applied to recommend friends or interest 

points in social networks [2], predict the possible protein 

interactions without costly experiments in biology [3], 

simulate the drug interactions through a limited number of 

tests in medical pharmacy [4], and analyze the structure of 

criminal and terrorist networks to combat organized crime [5]. 

The existing methods for link prediction are either based on 

similarity or grounded on probability.  

The similarity-based methods [2] assume that two nodes 

with a high similarity are more likely to be edged, and 

characterize the similarity between different nodes by local 

and global indices. The common indices include common 

neighbors (CN) index [6], adamic-adar (AA) index [7], local 

path (LP) index [8], and resource allocation (RA) index [9]. 

The methods using local indices enjoy fast speed and high 

efficiency. However, their prediction is not sufficiently 

accurate, as the node similarity is only constrained by local 

information. By contrast, the methods using global indices, e.g. 

Katz index [10], consumes lots of time to process large 

networks, despite its good accuracy. 

The probability-based methods often assume that the 

network has a known structure. Under this assumption, the 

model is built and the parameters are estimated by statistical 

methods. The common probability-based models are 

hierarchical structure model [11] and random block model 

[12]. These methods boast many advantages in network 

analysis. However, the parameter learning and reasoning 

greatly increase the computing complexity, which limits the 

application range of such methods. 

Both the similarity- and probability-based methods predict 

the possibility of unobserved edges between network nodes 

according to the structure of the existing network. 

Nevertheless, many real networks are so sparse that the edges 

of observed nodes only account for a small portion of network 

edges [13]. This poses a huge challenge to the existing link 

prediction methods, calling for the improving the link 

prediction in sparse network.  

A possible way of improvement lies in the compressive 

sensing (CS) theory. Since it was proposed by Donoho [14], 

the CS has been implemented mainly in the processing of 

signals and images. The basic idea is that, in a proper low-

dimensional representation, the information needed for a 

signal is fully contained in its under-sampled data. In other 

words, a signal can be reconstructed from a small set of 

sampled data, which is often the case in real networks with 

sparse edges. Considering the poor effect of existing link 

prediction methods in sparse network, this paper puts forward 

a novel link prediction algorithm called network adjacency 

matrix blocked-compressive sensing (BCS). Firstly, the 

diagonal blocks were subjected to sparse transformation with 

the network adjacency matrix; Next, the measurement matrix 

was rearranged into a new measurement matrix using the 

sorting operator; Finally, the subspace pursuit (SP) algorithm 

was introduced to solve the proposed algorithm. Experiments 

on ten real networks show that the proposed method achieved 

higher accuracy and consumed less time than the baseline 

methods. 

 

 

2. PROBLEM STATEMENT AND PROPOSED 

METHOD 

 

2.1 Introduction to the CS 

 

In the CS theory [13], the measurement 𝑥 ∈ 𝑅𝑛  can be 

defined as: 
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1 1m m n nx A b  =                                                                        (1) 

 

where 𝑚 << 𝑛; A is the measurement matrix; 𝑏 ∈ 𝑅𝑛 is the 

original signal. The sparsest solutions can be obtained by: 

 

0min || || . .
b

b s t Ab x=                                                            (2) 

 

Since it is an NP-hard problem, (2) can be solved by l1-

minimization: 

 

1min || || . .
b

b s t Ab x=                                                            (3) 

 

From (2) and (3), we have: 

 
2

1 2min || || || ||
b

b Ab x+ −                                                               (4) 

 

Here, (4) is known as the least absolute shrinkage and 

selection operator (LASSO). After introducing the sparseness 

control parameter 𝜆, (4) can be rewritten as: 

 
2

1 2
ˆ argmin || || || ||

b
b b Ab x= + −                                           (5) 

 

The construction of measurement matrix is shown in Figure 

1 below. 

 

 
 

Figure 1. Construction of measurement matrix 

 

2.2 Problem statement 

 

In graph theory, an undirected network can be described as 

G=(V, E), where V and E are the set of nodes and set of edges, 

respectively. In the network, the number of nodes and the 

number of edges can be denoted as N=|V| and M=|E|, 

respectively. Let X be the adjacency matrix of the network. If 

there are edges between nodes i and j, then xij=xji=1; otherwise, 

xij=xji=0. 

For each dataset, the network edges were divided into a 

training set Etrain and a test set Etest. Apparently, Etrain∪Etest=E 

and Etrain∩Etest =∅. Let Xtrain and Xtest be the adjacency matrix 

of the training set and the test set, respectively. Both matrices 

consist of 1 or 0 elements. Assuming that L=|Etest| is the 

number of edges in the test set, then the number of edges in 

the training set can be expressed as |Etrain|=M-L. In addition, 

the number of all possible edges in the network is denoted as 

the candidate set |𝐸̅|=
𝑁(𝑁−1)

2
-(M-L). During the solution, the 

model was trained with the training set Etrain, each possible 

edge between the nodes in the candidate set were given a score, 

and the scores were ranked in descending order. In this case, 

the node pair on the top has the largest probability of edge 

connection. Then, the test set Etest results were verified by 

different evaluation metrics. 

 

2.3 Proposed method 

 

Let X be a 𝑐 × 𝑟 adjacency matrix of the network. First, the 

matrix was divided into n 𝐵 × 𝐵  matrix blocks, and the 

column vector of the i-th block was labelled 𝑥𝑖, where i=1, 2, 

3, …, n, 𝑛 = 𝑐 × 𝑟/𝐵2 . Under the same conditions, 𝑥𝑖  was 

measured by measurement matrix 𝜙𝐵. Then, the vector of the 

measured value 𝑦𝑖  was obtained, where the vector length is 

𝑀𝐵 (𝑀𝐵 << 𝐵2). The vector 𝑦𝑖  can be expressed as: 

 

( 1,2,3,..., )i B iy x i n= =                                                     (6) 

 

where the 𝑀𝐵 × 𝐵2  matrix 𝜙𝐵 is a Gaussian matrix. The 

original adjacency matrix x can obtain m CS values. For the 

original adjacency matrix, the total measurement matrix 𝜙 is 

the block diagonal matrix. The values of diagonal elements 𝜙𝐵 

can be expressed as: 
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                                     (7) 

 

The above analysis shows that the total measurement matrix 

𝜙 can be stored with 𝑀𝐵 × 𝐵2 matrix by our method, rather 

than with the B B  matrix. The required storage space is very 

small when B is small, which accelerate the implementation. 

In our method, the matrix is solved by l1-norm [13]: 

 
2

1 2
ˆ arg min || || || ||

i
i i i i

b
b b Ab x= + −  

ˆ. . 1,2,3,...,i B i B is t y x b i n  = = =                                   (8) 

 

where 𝜓 is the transformation matrix. To explain the principle 

of CS with matrix block, the network in Figure 2(a) was cited 

as an example. The construction of the measurement matrix is 

illustrated in Figure 2 below. 

 

 
(a) Network (b)Adjacency matrix X (c) Block matrix (d) Measurement matrix 

 

Figure 2. Construction of measurement matrix 
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The network adjacency matrix X in Figure 2 can be 

expressed as: 

 

1 3
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                                      (9) 

 

where xi are matrix blocks. According to Figure 2, the variable 

y can be described as: 
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        (10) 

 

Sorting operator R, the vector (x1, x2, x3, x4)T can be 

rearranged into adjacent matrix: 

 

1
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                                                                             (11) 

 

The following can be derived from (10) and (11): 

 

y R X X =  =                                                               (12) 

 

Thus, the similarity adjacency matrix * Nx R can be 

obtained [14]: 

 
* 2

1 2arg min || || || ||
i

i i i
x

X x x y = + −  

*. . 1,2,3,...,i i B is t y x x i n  = = =                                  (13) 

 

The l1-norm minimization cannot guarantee the 

nonnegativity of the solution, but the size of network 

adjacency matrix must be nonnegative. To solve the problem, 

the SP algorithm [16, 17] was employed to recalibrate the 

prediction results. 

Taking edges as the unknown vectors, a linear system was 

formed to find a solution to link prediction. The proposed 

method can identify unobserved edges in the existing network 

or forecast future edges based on the current network structure. 

The details on our method are given below. 

 

Algorithm 1 BCS algorithm 

Input: Undirected network G=(V, E) 

Measurement matrix 𝝓 ∈ 𝑹𝑴×𝑵 

Vector 𝒚 ∈ 𝑹𝑴 

Network adjacency matrix 𝑿 ∈ 𝑹𝑵 

Sparsity K for network adjacency matrix 

Output: Similarity adjacency matrix 𝑿∗ ∈ 𝑹𝑵 

Steps: 

1. Initialize error 𝒓𝟎 = 𝒚, index set 𝜦𝟎 = 𝝓, and number of 

iterations n=1; 

2. Generate intermediate candidate vectors 𝒖𝒏 = 𝝓𝑻𝒓𝒏−𝟏; 

3. Judge reliability: 𝜦𝒏 = 𝒔𝒖𝒑( (𝒖𝒏)|𝑲) , find the index 

with maximum K; 

4. Update index: 𝜦̄𝒏 = 𝜦𝒏 ∪ 𝜦𝒏−𝟏 

5. Update intermediate candidate vectors: 𝜽𝒏 = 𝝓𝜦̄𝒏
𝒚; 

6. Update candidate vectors: 𝜽̂𝒏 = (𝜽𝒏)|𝑲; 

7. Update error: 𝒓𝒏 = 𝒚 − 𝝓𝜽𝒏 

8. Update the number of iteration n=n+1; If n<<K, go to 

step2; Otherwise, execute step 9; 

9. Output similarity adjacency matrix 𝑿∗ ∈ 𝑹𝑵 

 

 

3. EVALUATION METRICS AND DATA RESOURCE 

 

3.1 Evaluation metrics 

 

Two evaluation metrics, namely, area under the curve (AUC) 

[18] and precision [19], were set up to compare the 

performance of our method with that of baseline methods. The 

two metrices are defined as follows. 

(1) AUC 

The AUC index measures the overall accuracy of the 

algorithm. It can be understood as the probability that a 

randomly selected missing edge has a higher score than a 

randomly chosen non-existent edge out of all unobserved 

edges. The AUC can be expressed as: 

 
' ''n n

AUC
n

+
=                                                                    (14) 

 

where n is the number of independent comparisons; n’ is that 

the probability estimate of randomly selecting an edge in the 

n’ test set is greater than that of randomly selecting an edge in 

the E test set; n’’ is that the probability estimate of randomly 

selecting an edge in the n” test set equals that of randomly 

selecting an edge in the nonexistent edge set. 

If all the scores are generated from an independent, identical 

distribution, the AUC value will approximate 0.5. Therefore, 

AUC>0.5 shows how much the algorithm outperforms random 

selection. 

(2) Precision 

Precision is defined as the ratio of the most likely predicted 

accuracy in the first L predicted edges given by the algorithm:  

 

rL
Precision

L
=                                                                   (15) 

 

where L is the size of the predicted edges; Lr is the size of 

correctly predicted edges. Obviously, the higher the precision, 

the better the accuracy. 
 
 

3.2 Baseline algorithms  

 

The performance of our algorithm was compared with that 

of six typical similarity algorithms, i.e. the baseline algorithms, 

namely, common neighbors (CN) [6], resource allocation (RA) 

[9], adamic-adar (AA) [7], preferential attachment (PA) [20], 

local path (LP) [8] and Katz 10]. These similarity indices are 

described in details in Table 1. 
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Table 1. Six classical similarity indices 

 

Name Score Description 

CN 𝑆𝑥𝑦
𝐶𝑁 = |𝛤(𝑥) ∩ 𝛤(𝑦)|  𝛤(𝑥) and 𝛤(𝑦) are the sets of neighbors of node x and node y, respectively. 

RA 𝑆𝑥𝑦
𝑅𝐴 = ∑

1

𝑘𝑧
𝑧∈𝛤(𝑥)∩𝛤(𝑦)   𝑘𝑧 is the degree of node z. 

AA 𝑆𝑥𝑦
𝐴𝐴 = ∑

1

𝑙𝑜𝑔 𝑘𝑧
𝑧∈𝛤(𝑥)∩𝛤(𝑦)   𝑘𝑧 is the degree of node z. 

PA 𝑆𝑥𝑦
𝑃𝐴 = 𝑘𝑥𝑘𝑦  𝑘𝑥 is degree of node x. 

LP 𝑆𝑥𝑦
𝐿𝑃 = (𝐴2 + 𝛼𝐴3)𝑥𝑦  𝛼 is the adjustable parameter,𝐴 is the adjacency matrix 

Katz 𝑆𝑥𝑦
𝐾𝑎𝑡𝑧 = ((𝐼 − 𝛽𝐴−1) − 𝐼)𝑥𝑦  𝛽 is the adjustable parameter, 𝐼 is the diagonal matrix 

 

3.3 Experiment data 

 

Table 2. The statistics of the real-world networks 

 
 |V| |E| C r <k> H 

FoodWeb 128 2075 0.335 -0.112 32.422 1.237 

Karate 34 78 0.571 -0.476 4.588 1.693 

Jazz 198 2742 0.617 0.020 27.697 1.395 

USAir 332 2126 0.625 -0.208 12.807 3.464 

Neural 297 2148 0.292 -0.163 14.465 1.801 

Metabolic 453 2025 0.646 -0.226 8.940 4.485 

Email 1133 5451 0.220 0.078 9.622 1.942 

PB 1490 16715 0.263 -0.221 22.436 3.622 

Yeast 2361 6646 0.130 -0.099 5.630 2.944 

Router 5022 6258 0.012 -0.138 2.492 5.503 

Note: |V| and |E| are the set of nodes and the set of edges, respectively; 

C is the clustering coefficient; r is the degree-degree correlation 

coefficient; <k> is the average degree. H is the degree heterogeneity. 

 

To verify the performance of our algorithm, ten real 

networks from different domains were selected for 

experiments, including FoodWeb [21], Karate [22], Jazz [23], 

USAir [24], Neural [25], Metabolic [26], Email [27], PB [28], 

Yeast [29] and Router [30]. The statistics on the real-world 

networks are listed in Table 2 above. 

 
 

4. RESULTS AND ANALYSIS 

 

As mentioned before, our method was compared with six 

classical method through experiments on ten typical networks. 

Firstly, the observed edges were randomly divided into a 

training set and a test set. The training set was used to establish 

the prediction model, while the test set was adopted to verify 

the link prediction accuracy in complex networks. Next, the 

typical networks were transformed into undirected networks. 

Tables 3 and 4 compare the AUC and precision, two metrics 

of prediction accuracy, of the contrastive algorithms, 

respectively. Both the AUCs and precisions are the average 

values of 100 runs. The optimal AUC or precision on the ten 

networks are bolded, and the proportion of training set is 90%. 

 

Table 3. The AUCs of different methods 

 

Network BCS CN AA RA PA LP Katz 

FoodWeb 0.8152 0.6104 0.6094 0.6120 0.7342 0.6223 0.6745 

Karate 0.8116 0.6994 0.7341 0.7283 0.7008 0.7209 0.7371 

Jazz 0.9663 0.9545 0.9612 0.9701 0.7668 0.9591 0.9485 

USAir 0.9599 0.9355 0.9474 0.9537 0.8856 0.9427 0.9242 

Neural 0.8847 0.8441 0.8589 0.8644 0.7529 0.8595 0.8575 

Metabolic 0.9319 0.9198 0.9506 0.9544 0.8174 0.9243 0.9197 

Email 0.8973 0.8442 0.8464 0.8467 0.7779 0.8974 0.8942 

PB 0.9336 0.9361 0.9392 0.9393 0.9327 0.9495 0.9500 

Yeast 0.8412 0.7061 0.7066 0.7061 0.7865 0.8357 0.8184 

Router 0.6654 0.5580 0.5579 0.5579 0.4694 0.6320 0.3738 

 

Table 4. The precisions of different methods 

 
Network BCS CN AA RA PA LP Katz 

FoodWeb 0.1762 0.0707 0.0755 0.0754 0.1607 0.0758 0.1023 

Karate 0.1487 0.1525 0.1538 0.1538 0.0863 0.1750 0.1613 

Jazz 0.6225 0.5041 0.5242 0.5391 0.1304 0.5126 0.4920 

USAir 0.3905 0.3730 0.3898 0.4505 0.3164 0.3738 0.3695 

Neural 0.1262 0.0962 0.1039 0.1025 0.0575 0.0981 0.1027 

Metabolic 0.2113 0.1378 0.1932 0.2680 0.0999 0.1449 0.1408 

Email 0.1503 0.1392 0.1552 0.1401 0.0174 0.1467 0.1355 

PB 0.0861 0.1729 0.1716 0.1493 0.0652 0.1735 0.1744 

Yeast 0.1070 0.0924 0.0932 0.0741 0.0093 0.0950 0.0935 

Router 0.0253 0.0168 0.0162 0.0098 0.0096 0.0214 0.0227 

 

It can be seen that the proposed BCS outperformed the 

baseline methods under the AUC metric in 6 out of the 10 

networks, namely, FoodWeb, Karate, USAir, Neural, Yeast 

and Router. Under the precision metric, our method 

outperformed the other methods in 7 out of the 10 networks, 

including FoodWeb, Jazz, Neural, Metabolic, Email, Yeast 

and Router. In particular, our method achieved the best values 

in large sparse networks like Yeast and Router.  

The AUC and precision values of all the seven methods in 

the ten networks were further compared using different 
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proportions of training set. The proportion of the training set 

was changed from 0.5 to 0.9. The results in Figures 3 and 4 

show that our method achieved the best prediction accuracy 

and robustness among all methods. 

 

  
(a) FoodWeb (b) Karate 

  
(c) Jazz (d) Neural 

  
(e) USAir (f) Metabolic 

  
(g) Email  (h) PB 
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(i) Yeast (j) Router 

 

Figure 3. The AUCs of different methods under different proportions of training set 

 

  
(a) FoodWeb (b) Karate 

  
(c) Jazz (d) Neural 

  
(e) USAir (f) Metabolic 
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(g) Email (h) PB 

  
(i) Yeast (j) Router 

 

Figure 4. The precisions of different methods under different proportions of training set 

 

Next, the computing time of our method was contrasted 

against that of the other methods through several experiment 

on a workstation with 64GB RAM and 3.10GHz 8-core 

processor. The comparison result is shown in Figure 5 below. 

 

 
 

Figure 5. Comparison of computing time of different 

methods 

 

As shown in Figure 5, the proposed method consumed much 

less time in computation than most of the contrastive methods. 

This proves the validity and reliability of our method. 

 

 

5. CONCLUSIONS 

 

Real-world networks are often very sparse, posing a severe 

challenge to traditional link prediction methods. What is worse, 

these methods usually have high complexity and low accuracy. 

To overcome these problems, this paper designs the BCS 

method for link prediction in complex networks, which uses 

the sorting operator to transform the measurement matrix into 

a new measurement matrix. The performance of the proposed 

method was verified by two evaluation metrics, the AUC and 

precision, through experiments on ten classical networks. The 

results show that our method outperformed the baseline 

methods in accuracy and computing time. Suffice it to say that 

this research designs a feasible, effective and competitive way 

to predict edges in complex networks. 
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