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Most community detection algorithms for complex networks are focused on nonoverlapping 

communities. However, there are many overlapping communities in real-world complex 

networks. To solve the contradiction, this paper develops a novel overlapping community 

detection algorithm based on Markov chain. First, the input adjacency matrix was expanded to 

guide the information flow. Then, the inflation operation was implemented to enhance the 

weakening boundary of communities. After that, an adaptive threshold was introduced to 

reconstruct the matrix. The network corresponding to the reconstructed matrix displays the 

overlapping communities in the original network. The proposed algorithm was compared with 

several popular community detection algorithms on artificial and real-world networks. The 

results show that our algorithm achieved higher recognition accuracy and faster convergence 

than the contrastive algorithms. 
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1. INTRODUCTION

Complex networks are extremely common in the world, 

ranging from protein interaction, biological organization to 

food chain. In a complex network, the cluster structure of 

nodes is known as the community structure [1]. The nodes in 

the same community are linked closer than those in different 

communities. It is necessary to fully understanding the cluster 

structure, before exploring the structure, evolution and 

predictive control of a complex network. 

To analyze a complex network, an important basis is 

community detection [2], a.k.a. community discovery, which 

refers to the clustering of network nodes by algorithms. Unlike 

common clustering algorithms, community detection aims to 

find communities in the network graph. Community detection 

can be applied to various fields, including but not limited to 

knowledge mining, social network recommendation, and 

traffic flow optimization. 

Judging by the formation of communities in complex 

networks, there are four types of community detections, 

namely, agglomerative detection, splitting detection, search 

detection and other detection. Specifically, agglomerative 

detection constructs the community gradually based on each 

network node; splitting detection considers all network nodes 

as a large community, and gradually split the large community 

into smaller ones; search detection integrates the previous two 

methods and pursues gradual optimization of the community 

structure. 

Considering the above, this paper develops a novel 

overlapping community detection algorithm based on Markov 

chain. First, the input adjacency matrix was expanded and 

inflated to optimize the information flow and highlight the 

community boundary. Next, the matrix was normalized to 

obtain the transition probabilities of its elements. Then, an 

adaptive threshold was introduced to reconstruct the transition 

probability matrix. The reconstructed matrix was normalized 

column by column and used to detect the overlapping 

communities based on random walk and Markov chain. 

2. LITERATURE REVIEW

The community detection of complex networks is a problem 

with non-deterministic polynomial-time (NP) hardness [3]. 

Nonoverlapping community detection provides a way to judge 

whether a node belongs to a community. The existing 

nonoverlapping community detection algorithms utilize either 

topology analysis or flow analysis [4]. The topology analysis 

assumes that the inner edges of a community are linked tightly 

but the communities are linked loosely with each other. The 

basis of topology analysis is graph segmentation, a mature 

method of graph mining. To find the best partition of the graph, 

Borkar and Meyn [5] proposed the Oja’s algorithm that 

optimizes the gain function and constantly exchanges the node 

pairs in different preset communities. Chen et al. [6] 

segmented the graph with preset parameters through 

intelligent optimization. Newman and Girvan [7] developed 

the Girvan–Newman (GN) algorithm for community division, 

which measures the edge importance or node pair similarity 

based on the centrality of intermediate number. Newman and 

Girvan [8] also put forward a fast algorithm for detecting 

community structure in networks, in which communities are 

merged in the direction of maximum modular increment. Both 

the GN and the fast algorithm divides the hierarchical tree with 

the objective function of maximum modularity. Ashrafi 

Payaman and Kangavari [9] mapped the geodesic distance of 

network node pair to high-dimensional space and performed 

sparse linear coding to achieve spectral clustering. 

Jarukasemratana et al. [10] judged the number of communities 

by node distance and density. Zhou et al. [11] realized 

community detection in the light of the density reachable 

between core nodes. 
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Overlapping community detection is a strategy to evaluate 

whether a node can be allocated to more than one community. 

Zhang et al. [12] presented an algorithm based on the well-

known clique percolation method (CPM), which looks for 

overlapping communities using the clique overlap matrix. 

Shahmoradi et al. [13] presented a new definition for 

multilayer community and a comprehensive definition for 

overlapping multilayer community. Mirzaei et al. [14] 

introduced Non-negative Tensor Factorization (NTF) methods 

to identify the overlapping communities in brain networks 

using resting-state functional Magnetic Resonance Imaging 

(rs-fMRI) data. Zhang et al. [15] generated the hierarchical 

tree through maximum clustering, divided the tree by the 

extended module degree, and then searched for the 

overlapping and hierarchical communities. Jonnalagaddaa et 

al. [16] greedy community detection algorithm to disclose the 

underlying community structure of the given network. Huang 

et al. [17] used ant colony optimization (ACO) to detect 

overlapping communities in the network. Chen et al. [18] 

extended the GN algorithm by using nodes with high 

intermediate number in split network, and thus realized the 

detection of overlapping communities. Ding and Fu [19] 

transformed network nodes into points in Euclidean space, and 

performed fuzzy clustering in complex networks, using fuzzy 

C-means (FCM) algorithm. In search of overlapping 

communities, Binesh and Rezghi [20] created a fuzzy 

clustering algorithm based on nonnegative matrix 

decomposition. Li et al. [21] locally extended spectral 

clustering for overlapping community detection. Based on the 

mixed probability model, Ngonmang et al. [22] set up an 

overlapping community detection algorithm, capable of 

identifying the community structure with the maximum 

expectation. Wu et al. [23] detected overlapping communities 

in social network through label propagation. Zhang et al. [24] 

performed community detection by measuring node 

importance and adopting the seed expansion method. 
 
 

3. OVERLAPPING COMMUNITY DETECTION 

ALGORITHM BASED ON MARKOV CHAIN 

 

3.1 Markov clustering (MCL) algorithm 

 

The MCL [25] is a graph clustering method based on 

random walk and Markov chain. It is assumed that any walker 

that randomly enters a community is very unlikely to leave that 

community.  

In the MCL, the random walk is essentially a process of 

changing the transition probability matrix of the Markov chain 

through expansion and inflation. The expansion operation is 

the limit distribution of the transition probability matrix. 

During the operation, the matrix is multiplied continuously to 

reach a stable state, that is, the information flows evenly in 

different regions of the network.  

Meanwhile, the inflation operation is to perform power 

multiplication on each element of the matrix and then 

normalize the elements column by column. In this way, the 

strong correlations between the elements become stronger, and 

the weak ones become weaker. In other words, the information 

flows toward the attractor.  

Through the alternation between the two operations, more 

and more information flows to the attractor, leading to the state 

convergence of transition probability matrix. 

The basic process of MCL algorithm is as follows: 

MCL algorithm 

Input: Undirected and unweighted network G (V, E), 

expansion parameter e, and inflation parameter i. 

Output: Community structure in the complex network. 

1. Add self-loop: Set the diagonal of adjacency matrix to 1. 

2. Normalize the matrix: Normalize the matrix column by 

column. 

3. Perform expansion: Calculate the e power of the matrix. 

4. Perform inflation: Calculate the power r for every 

element of the matrix. 

5. Repeat (3) and (4) until the state convergence of the 

matrix. 

6. Output the result: Convert the resulting matrix to 

clustering. 

 

The MCL algorithm is suitable for weighted graphs, without 

needing the number of network communities. However, it 

cannot be directly applied to detect overlapping communities 

in large diameter networks. 

To solve the problem, this paper reconstructs the transition 

probability matrix with an adaptive threshold, normalizes the 

reconstructed matrix column by column, and then adopts the 

normalized matrix to detect the overlapping communities 

based on random walk and Markov chain. The reconstructed 

transition probability matrix represents the complete graph, in 

which each overlapping node is displayed in its corresponding 

community. In other words, our approach ensures that the 

same community node has the same nonzero element position, 

rather than determine the nonoverlapping communities based 

on the nonzero element positions in the rows of the matrix.  

 

3.2 Improved MCL based on random walk 

 

To improve the MCL, the first step is to clearly define the 

random walk. As shown in Figure 1, the random walk is a 

process that a walker randomly moves from the starting point 

in a graph to any neighboring node. Then, the neighboring 

node becomes the new starting point for the next random 

movement. The random walk can be illustrated as a transition 

probability matrix, in which each element represents the state 

transition probability from row node i to column node j, and 

the total probability of each row adds up to one. 

The transition probability matrix for the random walk in 

Figure 1 can be expressed as: 
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Figure 1. An example of random walk 

 

As shown in Figure 1 and the above matrix, a random 

walker at node 2 will move to node 3 or node 1 at the 

probability of 50%. The probability for him/her to move to any 

other node is 0. If the walker is at node 4, he/she will move to 

nodes 1, 3, 5, 7 or 8 at the probability of 20%. The probability 

for him/her to move to any other node is 0. 

The next step is to clearly understand the Markov chain. The 

Markov chain is a stochastic process that satisfies the Markov 

property. The state of Markov chain at any moment only 

depends on that at the previous moment. Therefore, the future 

state is only related to the current state, rather than the past 

state, i.e. the past and the future states are independent of each 

other. The Markov property can be defined as: 

 

𝑃(𝑋𝑡+1 = 𝑥|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑡 = 𝑥𝑡) = 𝑃(𝑋𝑡+1 =
𝑥|𝑋𝑡 = 𝑥𝑡)                                      (1) 

 

In actual practice, the input adjacency matrix cannot be 

directly used for expansion and inflation. Here, a self-loop is 

added to eliminate the influence of even and odd power on 

random walk. Besides, the nonzero matrix was normalized to 

determine the probability for a node by column number to 

transform into a node represented by row number. 

The transition probability matrix thus obtained was 

expanded by e power. Then, each element in the matrix was 

inflated by r power. The expansion helps to complete the 

random walk, such as to spread the information carried by the 

network flow to the distance. The inflation attempts to enhance 

the intra-cluster correlation, and weaken the inter-cluster 

correlation, enabling the communities to separate from the 

network automatically. 

If the matrix is directly normalized after expansion and 

inflation, the influence of overlapping nodes will be ignored. 

In fact, overlapping nodes with a large degree may act as 

attractors and affect community detection results. Therefore, a 

new network graph was generated by reconstructing the 

adjacency matrix through adaptive thresholding: 

 

𝑒𝑖𝑗 = {
1            𝑒𝑖𝑗 > 𝑚𝑒𝑎𝑛(𝑒) 

0            𝑒𝑖𝑗 ≤ 𝑚𝑒𝑎𝑛(𝑒) 
                 (2) 

 

After matrix reconstruction, the community structure in the 

network become clearer, and the community boundary 

become more obvious. 

The final matrix was obtained through iterations until 

reaching the convergence state: the reconstructed matrices 

before and after the current iteration are consistent with each 

other. The final matrix is a 0-1 symmetric block matrix, which 

implies the community structure of the network. This matrix 

can be interpreted as follows: 

The node represented by the row number of any diagonal 

nonzero element belongs to the same community as the node 

represented by the column number of other nonzero elements 

in the row vector.  

If the community of the node represented by the column 

numbers of other non-zero elements in the row vector is not 

unique, the node belongs to different communities, that is, the 

node is an overlapping node. 

If the other elements in the row vector are all zeros, then the 

node is an outlier.  

Therefore, the final matrix obtained by our algorithm 

clearly reflects the partition of overlapping nodes. The vector 

of overlapping nodes in the matrix can be decomposed into the 

vector form of their communities. 

 

3.3 Algorithm instance 

 

From the network structure of Figure 1, the adjacency 

matrix of the network can be obtained as: 

 

[
 
 
 
 
 
 
 
 
 
0  1  0  1  0  0  0  0  0  0
1  0  1  0  0  0  0  0  0  0
0  1  0  1  0  0  0  0  0  0
1  0  1  0  1  0  1  1  0  0
0  0  0  1  0  1  0  0  0  0
0  0  0  0  1  0  1  0  0  0
0  0  0  1  0  1  0  0  0  0
0  0  0  1  0  0  0  0  1  1
0  0  0  0  0  0  0  1  0  1
0  0  0  0  0  0  0  1  1  0]

 
 
 
 
 
 
 
 
 

 

 

After setting the diagonal element of the adjacency matrix 

to 1, it is assumed that a node can stay in the local area with a 

certain probability without moving. For simplicity, the matrix 

is normalized column by column so that the sum of transition 

probabilities of any column is 1. Through normalization, the 

transition probability matrix can be obtained as: 
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The expansion parameter was set to 2, that is, the random 

walker only moves by one step in the network. The expansion 

was carried out by multiplying the transition probability 

matrix. The inflation parameter was set to 1, indicating that the 

matrix does not change but directly goes to the reconstruction 

phase. The reconstructed matrix can be expressed as: 
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[
 
 
 
 
 
 
 
 
 
1  1  1  1  0  0  0  0  0  0
1  1  1  1  0  0  0  0  0  0
1  1  1  1  0  0  0  0  0  0
1  1  1  1  1  1  1  1  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  1  0  0  0  1  1  1
0  0  0  0  0  0  0  1  1  1
0  0  0  0  0  0  0  1  1  1]

 
 
 
 
 
 
 
 
 

 

 

 
Figure 2. Reconstructed network structure 

 

The mean of all elements of the reconstructed matrix was 

taken as the adaptive threshold, and used to compare and reset 

the elements of that matrix. In this way, a new adjacency 

matrix was obtained, which corresponds the network structure 

in Figure 2. 

In the reconstructed network, the intra-cluster connections 

are denser than the original network, while the inter-cluster 

connections are sparser than before. Hence, the information of 

the overlapping nodes is well preserved.  

The reconstruction was carried out through continuous 

normalization, expansion and inflation operations until two 

successive iterations output the same reconstructed matrices. 

Hence, the final matrix can be expressed as: 

 

[
 
 
 
 
 
 
 
 
 
1  1  1  1  0  0  0  0  0  0
1  1  1  1  0  0  0  0  0  0
1  1  1  1  0  0  0  0  0  0
1  1  1  1  1  1  1  0  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  1  1  1  1  0  0  0
0  0  0  0  0  0  0  1  1  1
0  0  0  0  0  0  0  1  1  1
0  0  0  0  0  0  0  1  1  1]

 
 
 
 
 
 
 
 
 

 

 

For any element in the final matrix that equals 1, the nodes 

represented by the row and column of that element belong to 

the same community. Obviously, if there is a block in which 

all elements are 1 in the final matrix, then the corresponding 

nodes all belong to a community. If there is an intersection of 

such blocks, the nodes in the intersection are the overlapping 

nodes belonging to different communities.  

As shown in Figure 3, the different color regions represent 

different communities in the new network. The node (4) 

covered by more than one color region is an overlapping node 

that belong to two public communities. 

 

 
 

Figure 3. Results of overlapping community detection 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effectiveness, our algorithm was compared 

with several well-known overlapping community detection 

algorithms on three artificial networks (Table 1) and six real-

world networks (Table 3). The community structure of each 

artificial network is listed in Table 2. 

The contrastive algorithms include the balanced multi-label 

propagation algorithm (BMLPA), speaker-listener label 

propagation algorithm (SLPA), conditional pseudonym 

resolution algorithm (CoPRA), order statistics local 

optimization method (OSLOM) algorithm, fast algorithm for 

detecting community structure in networks (Fast-Newman), 

and Markov clustering (MCL). 

Among them, the BMLPA is an overlapping community 

detection algorithm based on the balanced attribution 

coefficient, the SLPA is an overlapping community detection 

algorithm based on historical tags, the CoPRA is an 

overlapping community detection algorithm based on 

membership degree of nodes to communities, the OSLOM is 

a local optimal overlapping community detection algorithm 

based on fitness function, the Fast-Newman is a greedy 

nonoverlapping community detection algorithm based on 

modular increment, and the MCL is an nonoverlapping 

community detection algorithm based on Markov chain and 

random walk. 

The output of each algorithm was evaluated by four metrics, 

namely, extended module degree (EMD) [26] and extended 

partition density (EPD) [27], aiming to reflect the reasonability 

and quality of community detection. 

 

Table 1. The topological features of the artificial networks 

 
Network Number of nodes Number of edges Number of communities Overlapping node 

A 9 15 3 2 

B 16 43 4 3, 4 

C 23 65 4 10, 17, 18, 19 

 

Table 2. The community structures of the artificial networks 

 
Network Community structures 

A [1, 2, 3, 4], [2, 5], [6, 7, 8, 9] 

B [1, 2, 3, 4, 5], [3, 6, 7, 8], [3, 4, 9, 10, 11, 12], [4,13,14,15,16] 

C [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13], [10, 14, 15, 16, 17, 18, 19], [17, 18, 19, 20, 21, 22, 23] 
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Table 3. The topological features of the real-world networks 

 
Network Number of nodes Number of edges Mean degrees of nodes Mean clustering coefficients 

Karate 34 78 4.59 0.257 

Dolphin 62 159 5.13 0.308 

Jazz 221 2759 26.97 0.521 

Net-Sci 388 926 4.872 0.369 

Les 85 257 6.618 0.485 

Books 109 455 8.389 0.246 

 
 

Figure 4. EMD comparison of different algorithms on 

artificial networks 

 

Figures 4 and 5 show the EMDs and EPDs of our algorithm, 

the BMLPA, the SLPA, and the CoPRA on artificial networks, 

respectively. Obviously, our algorithm achieved the best 

overall performance in all three artificial networks, as 

evidenced by the highest EMD and EPD values. 

 

 
 

Figure 5. EPD comparison of different algorithms on 

artificial networks 

 

 
 

Figure 6. EMD comparison of different algorithms on real-

world networks 

Figures 6 and 7 compares the EMDs and EPDs of our 

algorithm, the OSLOM, Fast-Newman, and the MCL on real-

world networks, respectively. Judging by the EMD, Fast-

Newman performed the best in Karate and Les, the OSLOM 

performed the best in Dolphin, while our algorithm performed 

the best in Jazz, Net-Sci and Books. Judging by the EPD, our 

algorithm outperformed the other algorithms in all networks 

except Les. The results fully demonstrate the effectiveness of 

our algorithm. 

 

 
 

Figure 7. EPD comparison of different algorithms on real-

world networks 

 

 

5. CONCLUSIONS 

 

This paper puts forward a random walk algorithm based on 

Markov chain for overlapping community detection in 

complex networks. The proposed algorithm transfers 

information, enhances intra-cluster connections and highlights 

the community boundary through expansion and inflation. The 

adaptive threshold was introduced to reconstruct the network 

to facilitate the mining of overlapping communities. The 

effectiveness of our algorithm was fully demonstrated through 

experiments on artificial and real-world networks. The future 

research will further enhance the applicability of our algorithm 

to real-world complex networks. 
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