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 In this paper, two-dimensional (2-D) direction of arrival (DOA) estimation problem with an 

L-shaped array is investigated. One of the major areas of concern of modern urban combat is 

to locate lives trapped in a building in the presence of enemy jamming conditions at very low 

signal-to-noise ratio. This study provides a suitable design of a tracking system that enables 

location of trapped survivors in hostile situation. A compressive sensing (CS) based model is 

proposed for an L-shaped array which offers more array aperture with reduced computational 

complexity. By exploiting the signal sparsity in the spatial domain, the problem of DOA 

estimation is transformed to the sparse reconstruction problem. To solve the reconstruction 

problem efficiently, the Orthogonal Matching Pursuit (OMP) algorithm is used in which single 

snapshot is sufficient to recover exact target locations. The results are compared with the 

standard Multiple Signal Classification (MUSIC) algorithm for L-shaped array in terms of 

recovery, root mean square error (RMSE), probability of resolution, computational 

complexity, failure rate and reconstruction time. Simulation shows that the proposed method 

considerably improves the DOA estimation performance at low signal-to-noise ratio (SNR).  
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1. INTRODUCTION 

 

Array processing problem mainly emphasises on estimation 

of the direction of arrival (DOA) of an impinging plane wave 

in a noisy environment. Particularly in the domain of radar, 

sonar and remote sensing, estimating the direction of targets is 

an active area of research for many years. Conventional DOA 

estimation methods [1-3] are based on 1-D estimation, i.e., 

either determining the elevation angle (θ) or the azimuthal 

angle (ϕ) of multiple signals in the plane wave form collected 

by a Uniform Linear Array (ULA). Nevertheless, it is more 

realistic to accept that the locations of the received signals 

have two dimensional (2-D) (i.e., both elevation and azimuth 

angle) characters.  

A planar array of antenna is required for 2-D DOA 

estimation. One special planar array, the L-shaped array, is 

composed of two orthogonal ULAs connected head-to-head. It 

is not only a simple arrangement, as compared to other planar 

configurations, but also provide improved accuracy for 2-D 

DOA estimation. Moreover, the L type shape offers more array 

aperture [4]. It is also observed that as compared to other 

planar configurations, the L-shape array provides about 37% 

lesser value of the Cramer-Rao lower-bound (CRLB) of the 

estimated direction of the signal [5, 6]. Thus, the L-shaped 

array has found a great deal of consideration for DOA 

estimation research in recent years. 

Over the last decade, various literatures are accessible on 

the development of 2-D DOA estimation using an L-shaped 

array [7-9]. These are mainly based on delay-and-sum 

beamforming concept, such as CAPON [10, 11], or minimum 

variance method (MVDR) or subspace based processes 

extended to 2-D like MUSIC [12], joint-singular value 

decomposition (J-SVD) [13], or cross-correlation method 

(CCM) [14-16] etc. Sampling of the signals in all these 

methods are based on Nyquist theorem and multiple snapshots. 

Also these methods suffer from high computational 

complexity. However, in hostile conditions, due to physical 

constraints, less number of snapshots or only one snapshot 

may be accessible for DOA estimation [17, 18]. All adaptive 

algorithms, which depend on an estimation of noise covariance 

matrix, will fail for single snapshot instance. Thus, in a hostile 

situation, where the signal-to-noise ratio (SNR) is low and 

single snapshot is only available, the conventional methods for 

DOA estimation would be ineffective considerably. So, the 

necessity of a competent method for DOA estimation in noisy 

environment where multiple snapshots would not available 

(example-urban warfare situation) has become the need of the 

hour. 

 

 

2. RELATED WORK 
 

Compressive Sensing (CS) theory proposed in [19] attracted 

a lot of attention in DOA estimation recently as signal 

restoration of the original signal from the sparse or 

compressible representation becomes possible through some 

reconstruction algorithm by a single snapshot with reduced 

computational complexity. 

In the papers [20, 21] contribute a general idea of DOA 

estimation and signal reconstruction using CS. A detailed 

mathematical model of sparse array representation of 1-D 

DOA estimation and signal reconstruction using Multiple 
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Measurement Vectors Focal Underdetermined System Solver 

(MFOCUSS) algorithm is proposed [17]. In another literature 

[4], the problem of estimating 2-D DOA is addressed with an 

L-shaped array, which is constructed with two orthogonal sub-

arrays of a sparse linear array (SLA) and an ULA. The 

proposed method has much lower complexity in computation, 

although achieves lesser performance in estimation. Using the 

CS trilinear model over a rectangular array produces much 

lower complexity as suggested [22]. Although the above 

methods have satisfactory computational complexity, accurate 

reconstruction with low failure rate at lower SNR was not 

realizable [23]. As proposed in MFOCUSS based 

reconstruction [17], although the probability of resolution is 

high, but the method is more complex in computation. Also, it 

provides a method for 1-D DOA estimation only. On the other 

hand, the proposed method of [4] and [22], provide much 

lesser computation complexity for 2-D DOA estimation, but 

with reduced resolution probability. 

The motivation and purpose of this paper is to propose a 

method of 2-D DOA estimation by reconstruction of the signal 

from a sparse L-shaped array using compressive sensing at low 

SNR values. The two dimensional L-shaped array provides 

better antenna aperture, with lower CRLB [5, 6] and efficient 

maximum likelihood estimation. For reconstruction technique, 

a suitable greedy algorithm based on Orthogonal Matching 

Pursuit (OMP) is used that can restore in a single snapshot only. 

This reduces the complexity of computation further. Results 

exhibit that far better estimation of the DOAs are possible at 

lower SNR circumstances. The performance is evaluated by 

comparing the results with the standard 2-D MUSIC algorithm 

for an L-shaped array in relations of variation of Signal-to-

Noise Ratio (SNR), Root Mean Square Error (RMSE) plot, 

probability of resolution (Pres) plot, computational complexity, 

failure rate and reconstruction time. 

The rest of the paper is structured as follows: Section 3 

describes the data model of an L-shaped array for 2-D DOA 

estimation. Section 4 establishes CS based method of antenna 

array pattern reconstruction. In Section 5, the MATLAB 

simulation results and discussions of DOA and reconstruction 

plots, variation of Root Mean Square Error (RMSE) and 

probability of resolution (Pres) with Signal-to-Noise ratio 

(SNR) in dB scale are provided. Also complexity of 

computation, failure rate and reconstruction times are 

compared in this section. Conclusion in Section 6 completes 

this paper. 

 

 

3. SIGNAL MODEL FOR 2-D DOA ESTIMATION 

WITH L-SHAPED ARRAY 
 

Notations: 𝑁 denotes the number of array elements at each 

sub-array of a dense L-shaped antenna. Bold font uppercase 

and lowercase letters represents matrices and vectors 

respectively, until otherwise specified. It is assumed that there 

are 𝐾 uncorrelated targets in the far field region with respect 

to the array structure. The locations of these targets are to be 

estimated. 𝜃𝑖 and 𝜙𝑖 are the elevation and azimuth angles of 

the targets. 𝒂𝑛(𝜃𝑖 , 𝜙𝑖), (where the subscript 𝑛 implies 𝑌 or 𝑍) 

indicates the 𝑁 −element array steering vector for the (𝜃𝑖 , 𝜙𝑖) 

direction of arrival. 𝐸(. ) represents the expectation operator, 

‖. ‖p  denotes the p − norm, (. )𝑇  and (. )𝐻  indicate the 

transpose and Hermitian transpose correspondingly. 

A two dimensional antenna array structure in the form of an 

L-shape, placed alongside the 𝑦 − 𝑧 axis is shown in Figure 1. 

It consists of two orthogonal sub-arrays of uniform linear 

arrays (ULAs) connected one end of each other. The spacing 

between the elements is 𝑑 = 𝜆/2 where 𝜆 is the wavelength of 

the incoming waveform. Each sub-array consists of N  

isotropic sensors. 

 

 
 

Figure 1. An L-shaped array placed along the 𝑦 − 𝑧 axis for 

DOA estimation 

 

The received signal vectors along the orthogonal sub-arrays 

of y −  axis and z −  axis at the 𝑡𝑡ℎ snapshot can be written as: 

 

𝒀(𝑡) = 𝑨𝑌(𝜃, 𝜙)𝑺(𝑡) + 𝒏𝑌(𝑡)                (1) 

 

𝒁(𝑡) = 𝑨𝑍(𝜃, 𝜙)𝑺(𝑡) + 𝒏𝑧(𝑡)                (2) 

 

where, 

 

𝒀(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), … … … 𝑦𝑁(𝑡)]𝑇 

 

and  

 

𝒁(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), … … … 𝑧𝑁(𝑡)]𝑇 

 

are the received signals of each sub-array of dimension 𝑁 × 1. 

𝑨𝑌(𝜃, 𝜙) is the 𝑁 × 𝐾 array manifold matrix of the sub-array 

along the 𝑦 −axis including the reference sensor given by: 

 

𝑨𝑌(𝜃, 𝜙) = [𝒂𝑌(𝜃1, 𝜙1), 𝒂𝑌(𝜃2, 𝜙2), … … … 𝒂𝑌(𝜃𝐾 , 𝜙𝐾)] 
∈ ℂ𝑁×𝐾                                    (3) 

 

Similarly 𝑨𝑍(𝜃, 𝜙)  is the 𝑁 × 𝐾  is the array manifold 

matrix of the sub-array along the z -axis including the 

reference sensor given by: 

 

𝑨𝑍(𝜃, 𝜙) = [𝒂𝑍(𝜃1, 𝜙1), 𝒂𝑍(𝜃2, 𝜙2), … … … 𝒂𝑍(𝜃𝐾 , 𝜙𝐾)] 
 ∈ ℂ𝑁×𝐾                                       (4) 

 

The source signal vector is given as: 

 

𝑺(𝑡) = [𝑆1(𝑡), 𝑆2(𝑡), … … … 𝑆𝐾(𝑡)]𝑇            (5) 

 

𝒏𝑌(𝑡) and 𝒏𝑍(𝑡)  are the vectors of Additive White 

Gaussian Noise (AWGN) whose elements have variance 

𝜎2and mean value of zero. 

 

 

4. COMPRESSIVE SENSING METHOD FOR 

ANTENNA ARRAY PATTERN RECONSTRUCTION 

 

As per the CS concept, signals can be reconstructed from 
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very less measured samples than Nyquist rate. It searches for 

a dominion in which the signal is considered in a scarce way 

and then only measure and save the most perceptible features 

of the signal. It decides and measures only 𝑀 (say) of the most 

noticeable features without having to take all the 𝑁 

measurements. For DOA estimation, the angular domain is 

identified as the sparse domain. As sparse vectors are formed 

by the DOAs of sources in the signal space, CS can be applied 

for DOA estimation. 

Let 𝐱  denotes a signal vector which is required to be 

reconstructed, such that 𝐱 ∈ ℂ𝑁×1, where 𝑁 is the size of the 

signal. Now let us represent 𝐱 in the form, 𝐱 = 𝚿𝐪, where 𝐪 

is the 𝐾 − sparse source vector of the order of [𝐿 × 1] where 

𝐿 is the size of the vector 𝐪 and 𝚿 is the [𝐿 × 𝑁] sparsity basis 

matrix. Again let 𝐲 signifies the measurement vector such that 

𝐲 = ℂ𝑀×1 , where 𝑀  is the number of measurements. The 

purpose is to reconstruct the  [𝑁 × 1]  signal 𝐱 , using the 

[𝑀 × 1]  measurements of 𝐲 , such that 𝑀 < 𝑁 , which 

represents the underdetermined system. The CS theory 

statuses that 𝐱  can be reconstructed using 𝑀  measurements 

projecting on a [𝑀 × 𝑁] sensing matrix 𝚽 which is incoherent 

with the sparsity basis matrix 𝚿 such that 𝐲 = 𝚽𝐱 = 𝚽𝚿𝐪 =
𝚯𝐪. The matrix 𝚯 is known as observation matrix of the order 

of [𝑀 × 𝐿] . The sensing matrix 𝚽  is independent of the 

original signal 𝐱, thus making the measurement process non-

adaptive. 

Consequently, CS mainly includes three aspects: (1) sparse 

representation of the signal; by finding the orthogonal basis 𝚿 

such that the signal is sparse in the orthogonal basis. (2) 

designing of a stable sensing matrix 𝚽, so that no information 

is lost in the 𝐾 −  sparse source signal 𝐪  on decrease in 

dimension from 𝑁  to 𝑀  in accordance with the Restricted 

Isotropic Property (RIP), [24, 25]. (3) designing of a proper 

reconstruction algorithm that recovers 𝑁 −  length 𝐱  from 

𝑀 − length 𝐲 with the condition M<N. 

For proper designing of a signal reconstruction algorithm, 

the conditions that must be met are:  

(1) sparsity criteria of 𝐱 and (2) incoherency between the 

basis matrix 𝚿 and sensing matrix 𝚽. 

In the proposed DOA estimation method, the sparsity is 

assured as the numbers of incoming signals are far less than 

the total number of isotropic sensors. The incoherency can be 

accomplished with overwhelming probability by selecting the 

observation matrix 𝚯 as a random matrix, provided that [24]: 

 

𝑀 ≥ 𝐶. 𝐾log10 (
𝑁

𝐾
)                           (6) 

for 𝐶 ≈ 1 

 

4.1 Mathematical modelling of 2D DOA estimation using 

Compressive Sensing 

 

To find the DOA of the incoming targets, observation area 

is discretized the into 𝑁𝑆  angles and test for constructive 

interference in all directions using the steering matrix 

𝑨𝑛(𝜃, 𝜙) (where the subscript 𝑛 implies 𝑌 or 𝑍) for 𝑁𝑆 values 

of 𝜃 and 𝜙. This results in a scan angle matrix of the order of 

[𝑁 × 𝑁𝑆] given by: 

 

𝚿𝑛(𝜃, 𝜙) = [𝒂𝑛(𝜃1, 𝜙1), 𝒂𝑛(𝜃2, 𝜙2), … … … 𝒂𝑛(𝜃𝑁𝑆
, 𝜙𝑁𝑆

)]     (7) 

 

where, (𝜃1, 𝜙1)…(𝜃𝑁𝑆
, 𝜙𝑁𝑆

) are the set of angles to scan. 

Hence, transforming Eq. (1) and Eq. (2), the scanned 

received signal that are used for DOA estimation along the 

𝑦 −axis and 𝑧 −axis at the 𝑡𝑡ℎ snapshot can be expressed as: 

 

𝒀(𝑡) = 𝚿𝑌(𝜃, 𝜙)𝑺(𝑡) + 𝒏𝑌(𝑡)                     (8) 

 

𝒁(𝑡) = 𝚿𝑍(𝜃, 𝜙)𝑺(𝑡) + 𝒏𝑧(𝑡)                     (9) 

 

Most of the DOA estimation problems, particularly in radar 

and sonar applications, the incoming signal impinging on the 

array are reflections from targets. Consequently, the source 

signal vector, 𝑺(𝑡)  becomes a sparse vector, provided that 

only 𝐾 targets are present. Thus, 𝒀(𝑡) and 𝒁(𝑡) in the above 

equations become sparse representations. 

Next, to design a stable sensing matrix 𝚽, we describe the 

measurement vector 𝐲  (at the 𝑡𝑡ℎ  snapshot) of the order of 

[𝑀 × 1] with 𝑀 < 𝑁, such that, 

 

𝐲𝒀[𝑀×1]
= 𝚽[𝑀×𝑁].𝒀(𝑡)[𝑁×1]                 (10) 

 

𝐲𝒁[𝑀×1]
= 𝚽[𝑀×𝑁].𝒁(𝑡)[𝑁×1] v             (11) 

 

where, 𝐲𝑛[𝑀×1]
 (for 𝑛  inferring 𝒀  or 𝒁 ) is the measurement 

vector at each sub-array. 

Using Eq. (8) and Eq. (9) in Eq. (10) and Eq. (11), and 

dropping the order of the matrices for convenience, finally 

yields: 

 

𝒚𝒀 = 𝚯𝑌(𝜃, 𝜙)𝑺(𝑡) + 𝚽. 𝒏𝑌(𝑡)               (12) 

 

𝒚𝒁 = 𝚯𝑍(𝜃, 𝜙)𝑺(𝑡) + 𝚽. 𝒏𝑍(𝑡)               (13) 

 

where, 𝚯𝑌(𝜃, 𝜙) and 𝚯𝑍(𝜃, 𝜙) are the [𝑀 × 𝑁𝑆] observation 

matrices. 

As long as Eq. (6) is satisfied, the random sensing matrix 𝚽 

obeys the restricted isometric property (RIP). This implies that 

the observation matrix 𝚯𝑛 (where the subscript 𝑛 implies 𝑌 or 

𝑍) also obeys RIP, as per Eq. (12) and Eq. (13). 

 

4.2 Design of a signal reconstruction process  

 

To reconstruct 𝑺(𝑡) from Eq. (12) and Eq. (13) the essential 

condition that must be met is that 𝑺(𝑡) must be sparse. In the 

problem of DOA estimation, sparsity is ensured as in radar or 

sonar applications, the impinging signal are RF reflections 

from targets which is few in number. This makes the source 

signal sparse in the angular domain [24]. Also, the incoherency 

condition between 𝚽  and 𝚿 must be satisfied. This can be 

achieved by obeying Eq. (6). 

When the conditions of sparsity and incoherency are 

established the reconstructed source vector 𝐱̂  (say) can be 

determined by solving the resulting constrained optimisation 

problem, as [25]: 

 

𝐱̂ =
argmin

x
 ‖. ‖p         𝑠. 𝑡   𝐲 = 𝚯𝐪           (14) 

 

where, ‖. ‖p stands for ℓp norm given by: 

 

‖. ‖p = √∑|x𝑖|
pp

                          (15) 

 

4.3 Use of orthogonal matching pursuit as the signal 

reconstruction algorithm 

 

The recovery algorithm must be accurate, fast and must 
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process the data in real time. Even in noisy situation, it is 

desirable that the algorithm can determine a sparse solution 

which is unique. Using the norm with p = 2 leads to ℓ2 norm 

or least square optimisation that minimizes the sum of the 

squares of measurements. Solution by least square 

optimisation is well-organized but lean towards to return non-

zero elements resulting in non-sparse vector. In CS, least 

square or ℓ2 optimisation is not appropriate recovery method 

as CS looks for sparse solution only.   

An improved way is to look for solution that tries to 

determine the number of non-zero elements in a vector. In CS, 

it means to find the sparsest solution to an underdetermined set 

of equations. This leads to ℓ0 norm of spatial recovery which 

is a non-convex optimisation problem. Greedy algorithms are 

most suitable non-convex optimisation for signal recovery in 

high sparsity conditions [26, 27]. Orthogonal Matching 

Pursuit (OMP), which is a model of greedy algorithm, 

incorporates least square approach to compute the signal 

reconstruction [27]. Compared to its predecessor Matching 

Pursuit, the OMP algorithm has reduced number of required 

iterations due to the least square steps. But due to several 

comparison operations, matrix inversions and mainly owing to 

huge amount of inner-product computation (IPC), 

computational complexity for each iteration becomes high 

[28]. But it is very accurate and has low failure rate as evident 

from the simulation results. The minimum samples required 

and complexity measurements of OMP algorithm is given [28] 

as 𝒪(𝐾 log 𝑁) and 𝒪(𝐾 𝑀 𝑁), respectively. 

An estimation of the original signal 𝐱 as 𝐱̂ is calculated by 

accepting the inputs as the measured vector 𝐲  and the 

measurement matrix 𝚽. It selects one of the columns of 𝚽 

during each iterations. The columns of 𝚽  are closely 

correlated with the residual of the measurements of 𝐲. A new 

residual is computed as the contribution of this column is 

removed. A new estimation of the original signal is also 

computed by solving a least square problem for the new 

estimation 𝐱̂  of the signal 𝐱  afterwards each iterations such 

that: 

 

𝐱̂𝑖 =
argmin

x
‖𝐲 − 𝚽̅𝐢𝐱‖                    (16) 

 

The brief outline of the OMP algorithm for signal recovery 

is depicted in the next column. 

The OMP function returns the estimated value of 𝑥 . 

Spectrum is then plotted as: 

 

𝑃(𝜃) = 𝑎𝑏𝑠(𝑥(𝜃) ∗ 𝑥(𝜃))                  (17) 

 

 

5. SIMULATION RESULTS    

 

5.1 Performance evaluation parameters 

 

One of the most prominent area of array signal processing 

application is in the domain of detection of targets in radar 

systems. Some literature suggests a suitable detection method 

for Compressive Sensing radar systems [29, 30]. The 

reconstruction spectra based on CS-OMP for underdetermined 

DOA estimation is studied through varying the SNR levels by 

MATLAB simulation and the results are compared with the 

standard 2-D MUSIC spectrum. The experiment was carried 

out using randomly selected 𝑀 = 16  isotropic sensor 

elements out of 𝑁 = 64 elements at each sub-array with three 

( 𝐾 = 3 ) non-coherent sources impinging on the L-shaped 

array. To compare the performance of reconstruction with 

MUSIC, the root mean square error (RMSE) is calculated and 

plotted for different SNR values. The RMSE for 𝑀𝑐 number 

of Monte Carlo trials, where 𝜃̂𝑛,𝑘  is the estimated angle at 𝑛𝑡ℎ 

trial and 𝜃𝑘 as actual value of the angle, is given as [31]: 

 

RMSE=√
1

𝑀𝑐
∑ {

1

𝐾
∑ (𝜃̂𝑛,𝑘 − 𝜃𝑘)𝐾

𝑘=1

2
}

𝑀𝑐
𝑛=1              (18) 

 

We define probability of resolution as follows [31]: 

 

𝑃𝑟𝑒𝑠 = 𝑃𝑟𝑜𝑏 {|𝜃̂𝑖 − 𝜃𝑖| ≤
Δ𝜃

2
} , 𝑖 = 1 … … 𝑚      (19) 

 

where, Δ𝜃 = min {|𝜃𝑖1 − 𝜃𝑖2|, 1 ≤ 𝑖1 ≤ 𝑖2 ≤ 𝑚}  and 𝜃̂𝑖 , 𝜃𝑖 

are the estimated and actual value of the angles respectively. 

We use RMSE and 𝑃𝑟𝑒𝑠  as parameters of performance in 

this paper, together with computational complexity, failure 

rate and reconstruction time. 

 

Algorithm: Signal Reconstruction by Orthogonal 

Matching Pursuit (OMP) 

Input 

• Signal vector 𝒙, such that 𝒙 ∈ ℂ𝑁×1 

• Sparsity level 𝐾 of the signal 

• A sensing matrix of the order of 𝑀 × 𝑁 

 

Output 

• Estimate of the reconstructed signal of the order of 

𝑁 × 1 

• 𝐾 × 1 dimension approximate peak numbers 

 

Procedure 

1. Initialise the values of the basis matrix, residue 

matrix and set the iteration counter as 𝑡 = 1. 

2. Project each column of the sensing matrix 𝜙 with 

respect to 𝑦 and choose the maximum projection 

by 𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1,2,3,…𝑁|𝜙𝑗
𝑇𝑦| 

3. Augmentation of the 𝑚𝑡ℎ  column of the sensing 

matrix 𝜙 is to be achieved in a new basis matrix 𝜓 

such that 𝜓 = |𝜓𝜙𝑚|  
4. Using the minimum least square method, estimate 

𝑥 as ‖𝑦 − 𝜙𝑚𝑥𝑚‖2 

5. Estimate the value of 𝑥  in terms of 𝜓  as 𝑥𝑚 =
(𝜓𝑚

𝑇 𝜓𝑚)−1𝜓𝑚
𝑇  𝑦 

6. Calculate the residue after every iteration by 

𝑟(𝑚) = 𝑦 − 𝜓𝑚(𝑥𝑚) 

7. Update the counter at each iteration until the 

difference between the residual in successive 

iteration is less than a threshold or the counter 

reaches the sparsity 𝐾. 

8. Finally the estimated 𝑥  would be of dimension 

𝐾 × 1 . Build it to the size 𝑁 × 1  by filling the 

values of 𝑥 at the places where the projection is 

maximum.   

 

5.2 Simulation setup in MATLAB 

 

The simulations are carried out in MATLAB R2015 on a 

PC with Intel (R) Core (TM) i7-4790 CPU @ 3.60 GHz and 8 

GB RAM. The system type is 64-bit operating system-

Microsoft Windows 7 Home Premium. An L-shaped antenna 

532



 

array with 𝑁 = 64  isotropic elements, positioned equally 

spaced in each of the orthogonal sub-arrays of 𝑦 − and 𝑧 − 

axis is designed in MATLAB. The element at the origin of the 

co-ordinate system is common to both the sub-arrays, thus 

totaling the number of elements in the dense array as 127. In 

accordance with the restricted isometric property (RIP) of Eq. 

(6), it is presumed that M=16 random working elements at 

each sub-array, which warrants achievable initial conditions. 

The array boresight consists of the elevation angle (𝜃) varying 

between ±900 and the azimuth angle (𝜙) between 00 and 900. 

We discretize the above observation area by angle grids, with 

a separation of 1 degree between the grid points. This result in 

using Ns=181 grid points. It is assumed that the far field 

source's DOA falls on the selected grids only. 

The received signal vector 𝒀(𝑡) and 𝒁(𝑡) of the elements 

are generated in MATLAB. Assuming 𝐾 −  sparsity of the 

source signal, we generate the sensing matrix 𝚽  with a 

constraint that the first and last rows cannot be removed as the 

first and the last element of the array always persists. Now the 

aim is to reconstruct the signal and estimate the DOA of 

incoming targets correctly using the OMP algorithm. 

The basic configurations that have been used for simulation 

is: 

• Along the 𝑦 − 𝑧  axis, an L-shaped array is placed 

with 𝑁 = 64 elements, with the common element at 

the origin. Thus the L-shape construction is a dense 

array of 127 elements. 

• Size of the 𝐲 vector is 𝑀 = 16 along each axis. 

• We assume three (𝐾 = 3) targets in the observation 

area. (From Eqn. (6), the maximum number sources 

whose DOAs can be estimated is 𝑀/ log10 𝑁). 

• The central frequency of the source signals are fixed 

at 3 𝐺𝐻𝑧. 

• The first and the last element of the array are always 

working so that the array dimension remains fixed. 

• The element spacing for the dense array is 𝑑 = 𝜆/2. 

• The source power is fixed at 0 dB. The noise power 

is varied from very low value to high value so that the 

SNR varies between −15 dB to 15 dB. 

 

5.3 Results and discussion 

 

Simulated plots of OMP based reconstruction and 2-D 

MUSIC by single snapshot of DOA estimation for 

sparse/dense L-shape array for three sources located at 

(𝜃, 𝜙)=(350, −210), (420, −100) and (480, 00) in the far field 

at various SNRs are shown in Figure 2. 

The black and the magenta continuum represents the 

MUSIC spectrum for azimuth and elevation angles 

respectively for a 𝑁 = 127 dense L-shaped array. The peaks 

are created at the estimated DOAs of the signal. The yellow 

and the purple asterisks signifies the peak values of the 

reconstructed power continuum of the proposed reconstruction 

method of CS-OMP in dB for azimuth and elevation angles 

respectively for 𝑀 = 16 random samples. The vertical blue 

and red dashed lines indicate the actual DOAs of the target 

signals in azimuth and elevation angles respectively.  

Figure 3 shows the simulated comparison plot of root mean 

square error (RMSE) of the elevation and azimuth angle 

estimation with the variation of SNR values between ±15 𝑑𝐵 

with steps of 1 𝑑𝐵 for both OMP based compressively sensed 

undetermined reconstruction and MUSIC by using Eq. (18) 

with 𝑀𝑐 = 100 Monte Carlo trials. 

Figure 4 shows the simulation of variation of probability of 

resolution (𝑃𝑟𝑒𝑠) of the elevation and azimuth angle estimation 

with the similar variation of SNR values between ±15 𝑑𝐵 

with steps of 1 𝑑𝐵  for both CS-OMP based undetermined 

reconstruction and MUSIC by using Eqn. (19). 

It is evident from Figure 2 that CS-OMP based 

underdetermined DOA estimation by single snapshot using 

sparse L-shaped array over-achieves the standard 2D-MUSIC 

estimate, particularly at low SNR values. Predominantly, at 

SNR= −15 𝑑𝐵 and −5 𝑑𝐵 (Figure 2 (a) and (b)) the CS-OMP 

based method completely outclasses MUSIC. As MUSIC 

looks for eigenvalue decomposition of the array correlation 

matrix (to exploit the noise eigenvector subspace), at low SNR 

values the formation of the array correlation matrix nearly 

becomes deficient. In contrast, the compressive sensing based 

approach exploits the sparsity character of the impinging 

signals on the array and efficient recovery suits conceivable 

using the orthogonal matching pursuit, based on a small 

number of noisy measurements. As OMP is an iterative greedy 

algorithm, it selects a column of 𝚽 at each step which is most 

correlated with the current residuals. By solving the least 

square problem a new estimate is calculated provided mutual 

incoherence exists between 𝚽 and 𝚿.   

At equivalent and high SNR values also CS-OMP based 

approach performs better as compared to MUSIC based 

estimate. The above interpretations turn out to be more 

apparent if we observe Figure 4. The error (RMSE) committed 

for elevation and azimuth angle estimation at lower SNR 

values are much lesser for CS-OMP based approach as 

compared to MUSIC. At higher SNR values, the error 

committed for MUSIC decreases, but CS-OMP based 

reconstruction commits considerable lower estimation errors.  

From Figure 3 and Figure 4, it is clear that the proposed 

method of signal reconstruction by CS-OMP outperforms the 

standard 2-D MUSIC method, particularly at low SNR values. 

Also at considerable higher SNR, the error committed and the 

resolution to resolve the target locations are fared better by 

CS-OMP method.  

In the next simulation, we compute and compare the 

complexity levels of the standard 2-D MUSIC and the 

proposed CS-OMP based reconstruction methods. Table 1 lists 

the complexity measures. 𝑁 represents the size of the signal 

while 𝐾 is the sparsity level of the signal. 𝑀 signifies the total 

number of collected or measured samples such that M>N. 

 

Table 1. Comparison on computational complexity 

 
Algorithm Complexity 

2D-MUSIC 𝒪(𝑁3 +  𝐾𝑁2) 

Proposed CS-OMP 𝒪(𝐾 𝑀 𝑁) 

 

Table 2 shows the simulation of failure rate of 2-D MUSIC 

and the proposed CS-OMP based algorithms. The failure rate 

is measured as the percentage of failed trials in total trials. A 

trial is said to be succeeded if the estimated signal 𝒙 is not 

same as the 𝐾 largest true indices. From Table 2, it is clear the 

CS-OMP based method has lower failure rate for both azimuth 

and elevation angles.  

 

Table 2. Comparison of failure rate 

 
Algorithm Failure Rate 

2D-MUSIC 0.33 

Proposed CS-OMP 0.09 
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(a) -15 dB 

 
(b) -5 dB 

 
(c) 0 dB 
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(d) 5 dB 

 
(e) 15 dB 

 

Figure 2. Plot of DOA estimation using 2-D MUSIC and CS-OMP based reconstruction for varying SNR 

 

 
 

Figure 3. Plot of variation of RMSE of DOA estimation with SNR 
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Figure 4. Plot of variation of probability of resolution (𝑃𝑟𝑒𝑠) of DOA estimation with SNR 

 

Table 3 shows the simulation of execution times of 2-D 

MUSIC and CS-OMP algorithms for DOA estimation. It is 

clear that the proposed method requires lesser reconstruction 

time as compared to standard MUSIC. 

 

Table 3. Comparison of reconstruction time 

 
Algorithm Reconstruction Time (sec) 

2D-MUSIC 0.053 

Proposed CS-OMP 0.008124 

 

At equivalent and high SNR values also CS-OMP based 

approach performs better as compared to MUSIC based 

estimate. The above interpretations turn out to be more 

apparent if we observe Figure 4. The error (RMSE) committed 

for elevation and azimuth angle estimation at lower SNR 

values are much lesser for CS-OMP based approach as 

compared to MUSIC. At higher SNR values, the error 

committed for MUSIC decreases, but CS-OMP based 

reconstruction commits considerable lower estimation errors. 

Simulation results of Table 2, 3 and 4 are carried at 𝑆𝑁𝑅 =
0 𝑑𝐵, considering equivalent signal and noise power levels.  

Decent estimation of the target locations by CS-OMP 

method at low SNR by single snapshot generate suitable 

application area in hostile environments, where the signal 

power is very less as compared to the noise power. This 

increases the prospect of development of an intelligent, 

cognitive radar system that can locate and track quasi-

stationary objects, including human beings. The L-shaped 

array, with all its benefits in DOA estimation, together with 

compressive sensing based OMP reconstruction method can 

provide information of things or human lives trapped inside a 

building or behind a wall, to the military or police to take 

instant decisions. As modern day warfare practises are 

predominantly bound to urban combat, shrewd enemy or 

terrorists may deploy jammers and high power interferers to 

lower the SNR level, thus blocking possible tracking and 

locating their movements within a building. O'connor et al. 

[32] provides a good method to mitigate jamming and 

interferences up to a certain level, but the technique is based 

on GPS tracking, which may not be feasible always in urban 

battleground. Thus, CS-OMP based reconstruction method 

using a sparse L-shaped array structure can be implemented in 

a synthetic aperture radar (SAR) for through-the-wall-radar 

imaging (TWRI) applications in unfavourable circumstances. 

In a severe multi-path consequence, as in a densely 

populated mobile communication environment, more accurate 

DOA estimation or localization of a source mobile station can 

be achieved in a single snapshot with low complexity by using 

the CS-OMP based sparse reconstruction approach with a L-

shaped array at the base station. Consequently, the SNR is very 

low in a multi-path scenario with multi-path signals impinging 

on the receiver array from various directions from the same or 

different source. The proposed method can be used to identify 

or localize a source more accurately in a low SNR conditions 

with lesser complexity. 

  

 

6. CONCLUSION 

 

In this paper, we recommend a method of estimation of 2-D 

DOA of sources by single snapshot at the far field using an L-

shaped array by compressive sensing. Orthogonal Matching 

Pursuit algorithm is used at the reconstruction. It is a greedy 

iterative algorithm which is single snapshot based. It requires 

less number of samples and much lower computationally 

complex compared to eigen-decomposition, like MUSIC. The 

failure rate and reconstruction time are also very low. The 

performance of the proposed method is compared with the 

standard MUSIC algorithm for 2-D DOA estimation, RMSE 

and probability of resolution measure. Simulation results show 

that the proposed method outperforms MUSIC, particularly at 

low SNR. This becomes more evident from the RMSE and 

𝑃𝑟𝑒𝑠 vs SNR (dB) plot. More accurate direction finding with 

lower complexity and single snapshot is achievable. The 

proposed method incorporated with the L-shaped array can 

lead to the development of synthetic aperture radar systems 

which can be a very effective in hostile situations, like urban 

warfare scenario. Also, base station antennas can be 

incorporated with CS-OMP based sparse L-shaped array for 

multi-path mitigation.  
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