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This paper attempts to construct a suitable wavelet for image denoising based on wavelet 

thresholding algorithm. First, the author discussed how image thresholding is affected by the 

wavelet orthogonality and bi-orthogonality, the features of vanishing moments and the odd or 

even symmetry of the decomposition end filter. The discussion shows that the most desirable 

wavelet for image denoising is the biorthogonal wavelet, in which the decomposition end filter 

has zero point even symmetry, the low-pass decomposition enjoys a wide support interval, and 

the high-pass decomposition filter has a short support and attenuates fast. On this basis, three 

zero point even symmetric biorthogonal wavelets with different vanishing moment features 

were developed through the parametric construction of fixed-length tightly-supported (FLTS) 

biorthogonal wavelet, and a self-adaptive hierarchical thresholding algorithm was designed. 

The simulation results show that the developed wavelets have excellent denoising ability and 

enhance the images with rich details. Coupled with the self-adaptive hierarchical thresholding 

algorithm, these wavelets can effectively improve the image quality. 
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1. INTRODUCTION

Fourier transform is the most popular denoising method in 

engineering. But the Fourier transform has a severe limitation 

in the positioning of the time and frequency domains. This 

limitation can be overcome by wavelet analysis, a multi-

resolution (multi-scale) representation method for signals or 

images. The wavelet analysis can simultaneously provide the 

signal or image information in the time (space) and frequency 

domains [1-3]. Whereas the Fourier transform relies on a 

single triangular basis function, the wavelet analysis can select 

wavelet functions flexibly according to signal features and 

denoising requirements, and choose from various forms of 

wavelet transforms, such as multiwavelet or wavelet packet. 

In the wavelet transform domain, noise smoothing is selective 

in both space and frequency, which overcomes the limitation 

of Fourier transform. 

Image denoising is not a new topic. In the past, however, 

only linear filtering methods have been adopted to denoise 

images. The wavelet theory and its application in 2D images 

provide a better solution to image denoising, and promote the 

progress in this field. Based on the wavelet theory, the noisy 

signals are subject to wavelet transform. The filtered signals 

differ greatly from the noises in wavelet coefficient on 

different scales. Then, the wavelet coefficients of signals and 

noises are processed by different sets of rules, aiming to reduce 

or eliminate the coefficients of noises. Meanwhile, the wavelet 

coefficients of the original signals are retained as much as 

possible. Finally, the original signals are reconstructed 

through inverse wavelet transform [4]. 

There are various denoising methods based on wavelet 

analysis. The most popular one is wavelet thresholding [5]. 

This method enjoys many advantages. For example, the edge 

information of the images can be retained well through multi-

resolution analysis; the algorithm runs fast due to the relatively 

small computing load; the method supports multiple scales and 

various directions in local areas of time and frequency 

domains. The wavelet thresholding can pinpoint signals 

accurately and suppress noises, creating high-quality 

processed images. There are two types of wavelet thresholding, 

namely, soft thresholding and hard thresholding. Nonetheless, 

there are some defects with the two approaches. If an image is 

denoised with a soft threshold function, the edges of the 

processed image might be blurry; if the image is denoised with 

a hard threshold function, pseudo Gibbs phenomenon and the 

ringing artefact tend to occur [6], leading to visual distortion.  

Other commonly used wavelet denoising algorithms also 

have obvious limitations. For instance, the wavelet transform 

modulus maxima (WTMM) method cannot achieve 

satisfactory denoising effect, because its calculation accuracy 

is affected by various factors [7, 8]. In correlation-based 

wavelet denoising, the noises can be suppressed effectively 

through multi-layer decomposition, but few details are 

available through the decomposition. What is worse, the 

wavelet coefficients will have small offsets on various scales, 

making the inter-layer correlation coefficients inaccurate and 

distorting the reconstructed signals. 

To solve the problems, this paper puts forward a novel 

image thresholding method based on wavelet. First, the author 

explored how image thresholding is affected by the wavelet 

orthogonality and bi-orthogonality, the features of vanishing 

moments and the odd or even symmetry of the decomposition 

end filter. Then, a zero-point even-symmetric bi-orthogonal 

wavelet with a filter length of (13-3) and different vanishing 

moment features was constructed following the parametric 

construction of fixed-length tightly-supported (FLTS) 
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biorthogonal wavelet. The constructed wavelet, coupled with 

the proposed self-adaptive thresholding algorithm, was proved 

effective through example analysis. 

 

 

2. WAVELET FEATURES IN IMAGE 

THRESHOLDING  

 

2.1 Influence of structural similarity on denoising effect 

 

During wavelet decomposition of signals or images, the 

approximation effect of the wavelet on the target improves 

with the structural similarity between the wavelet and the 

signals or images.  

To disclose the influence of structural similarity on 

denoising effect, haar wavelet and sym8 smooth wavelet with 

vanishing moment of 8 were adopted to perform thresholding 

on two 1D signals, namely, doppler signal and blocks signal. 

The signal-to-noise ratio (SNR) of the signals is 20. The hard 

threshold function was adopted, for the two signals are 

relatively simple without many details.  

The two noisy signals are illustrated in Figure 1. It can be 

seen that the doppler signal is a smooth curve, while the blocks 

signal consists of several step edges. Figure 2 shows the 

wavelet function waveforms of haar wavelet and sym8 

wavelet. Comparing Figures 1 and 2, it is easy to learn that 

haar wavelet has a similar structure to the blocks signal, while 

the doppler signal and sym8 wavelet are relatively smooth.  

Table 1 lists the SNRs of the denoised signals obtained 

through thresholding of doppler signal and blocks signal by 

four different threshold selection methods. The results show 

that, for the relatively smooth doppler signal, the denoising 

effect of sym8 wavelet is always better than that of haar 

wavelet, under any of the four threshold selection methods; the 

exactly opposite results were observed for the blocks signal 

with relatively large singularity. Therefore, the wavelet 

structure has a greater impact on signal denoising than 

threshold selection. Moreover, the smooth wavelet with a high 

vanishing moment has a larger application scope than the 

unsmooth wavelet. The latter only applies to signals with high 

singularity. If applied to smooth signals, the unsmooth wavelet 

might cause a plunge in the SNR [9]. 

 

 

 
 

Figure 1. Noisy blocks and doppler signals 

 

 
 

Figure 2. Haar (left) and sym8 (right) wavelet functions 

 

 

Table 1. Wavelet thresholding of Doppler and Blocks signals 

 
 

doppler signals Blocks signal 

Haar signal Sym8 signal Haar wavelet Sym8 wavelet 

Fixed threshold 15.0811 25.9739 29.3399 22.8408 

Unbiased likelihood 

estimation threshold 
21.0939 23.9615 23.3225 22.2165 

Hybrid threshold 19.6438 24.9749 26.555 23.6326 

Minimax criterion threshold 18.5175 25.6156 26.3144 24.0433 

 

2.2 Influence of orthogonality and bi-orthogonality on 

denoising effect 

 

Besides structural similarity, the denoising effect is greatly 

affected by other wavelet features, such as orthogonality and 

bi-orthogonality, the order of vanishing moment, and the odd 

or even symmetry of high-pass wavelet filter [10-12]. 

Orthogonal wavelets have minimal correlations between the 

wavelet coefficients within and between the scales after 

decomposition. However, Haar wavelet is the only orthogonal 

wavelet that obeys symmetry, i.e. having linear phase features. 

The image obtained by wavelet decomposition is a wavelet 

series, which is the result of a linear filtering. If the wavelet 

filter has a linear phase or generalized linear phase, it is 

possible to fully reconstruct the original image [13-15]. Thus, 

no orthogonal wavelet except for Haar  wavelet boasts the 

capability of full reconstruction.  

This problem can be solved by the construction of 

biorthogonal wavelet, which acquires linear phase features at 

the cost of some of its orthogonality. With symmetric features, 

the biorthogonal wavelet can preserve the edge information 

well in image decomposition, and fully reconstruct the original 

image. However, the decomposition process has a high 

redundancy, owing to the large correlation between the 

wavelet decomposition coefficients. 

To disclose the influence of orthogonality and bi-

orthogonality on denoising effect, both orthogonal wavelets 

(db4 and coif2) and biorthogonal wavelets (bior2.6 and 

bior4.4) were applied to denoise the same image. The global 

hard threshold function was adopted, with the decomposition 

scale of 2. The target image is an airplane image with additive 

zero-mean Gaussian white noises of different variances. The 

Threshold 
SNR 

Wavelet 
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variance of the noise increased from 0.01 to 0.173 at the step 

length of 0.0224. The corresponding SNR changed from 35 to 

10.  

According to the SNR-variance curves after thresholding by 

orthogonal and biorthogonal wavelets (Figure 3), the SNR 

curves of the two orthogonal wavelets db4 and coif2 were very 

close to each other; the two biorthogonal wavelets achieved 

higher SNRs than the two orthogonal wavelets. The SNR-

variance curves also indicate that biorthogonal wavelet 

outperforms orthogonal wavelet in denoising, in addition to its 

abilities of full reconstruction and edge preservation. 

 

 
 

Figure 3. The SNR-variance curves after thresholding by 

orthogonal and biorthogonal wavelets 

2.3 Influence of vanishing moment features on denoising 

effect 

 

Apart from orthogonality and bi-orthogonality, the 

symmetry and vanishing moment also have important impacts 

on the wavelet denoising effect. The vanishing moment largely 

determines the smoothness of the wavelet. In general, wavelets 

with higher-order vanishing moments are smoother than those 

with lower-order vanishing moments. Furthermore, with the 

growing vanishing moment, more and more detail coefficients 

of wavelet decomposition approach zero, facilitating the 

localization of abrupt information like image edges. Of course, 

if the vanishing moment is too high, most of the high-

frequency coefficients on the fine scale will also tend to zero, 

which weakens some information of the image [16]. 

Table 2 shows the SNRs of a noisy image after being 

denoised by db family wavelets db1～db10. The original 

image contains three levels of noises: 10, 15 and 20. Both soft 

and hard threshold functions were adopted in the denoising 

process. The data in Table 2 show that, for db family wavelets, 

hard thresholding is suitable for high noise level and soft 

thresholding for low noise level [17]. The vanishing moment 

should fall between 4 and 6, rather than take a very high value. 

 

 

Table 2. Relationship between vanishing moment and SNR of db family wavelets 

 
Wavelet db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 

Vanishing moment 1 2 3 4 5 6 7 8 9 10 

Soft thresholding SNR 

10 16.65 17.463 17.652 17.825 17.872 17.816 17.911 17.925 17.892 17.96 

15 17.87 18.87 19.09 19.282 19.317 19.271 19.316 19.333 19.308 19.36 

20 20.3 21.03 21.29 21.341 21.414 21.344 21.28 21.26 21.24 21.24 

Hard thresholding SNR 

10 16.76 17.503 17.671 17.861 17.915 17.827 17.922 17.916 17.885 17.96 

15 18.37 19.26 19.45 19.635 19.608 19.567 19.568 19.594 19.511 19.59 

20 19.07 20.04 20.33 20.47 20.51 20.458 20.459 20.43 20.41 20.46 

 

Table 3 shows the SNRs of a noisy image after being 

denoised by coif family wavelets coif1~coif5. The results 

demonstrate that, for coif family wavelets, the denoising effect 

was better under hard thresholding than under soft 

thresholding. Under the same vanishing moment, the SNRs 

obtained by coif family wavelets were better than those 

obtained by db family wavelets, through hard thresholding.  

In addition, the coif family wavelets have approximately 

symmetry, which is not found in the db family wavelets. 

Therefore, the coif family wavelets can reconstruct the original 

image with a smaller error than the db family wavelets. 

 

Table 3. Relationship between vanishing moment and SNR of coif family wavelets 

 
Wavelet coif1 coif2 coif3 coif4 coif5 

Vanishing moment 2 4 6 8 10 

Soft thresholding SNR 

10 17.525 17.846 17.932 17.966 17.985 

15 18.916 19.311 19.405 19.441 19.46 

20 20.04 20.46 20.548 20.572 20.586 

Hard thresholding 

SNR 

10 17.571 17.888 17.97 18.017 18.029 

15 19.263 19.635 19.689 19.711 19.717 

20 21.069 21.401 21.518 21.487 21.497 

2.4 Influence of waveform and odd or even symmetry of 

the decomposition end filter on denoising effect 

 

The comparison between coif family wavelets and db 

family wavelets also shows the importance of symmetry in 

image denoising. There are two types of symmetry: odd 

symmetry and even symmetry. To disclose the influence of 

odd or even symmetry of high-pass decomposition filter, the 

bior family wavelets were selected to denoise a noisy airplane 

image. The SNRs of the denoised image were computed, and 

used to evaluate the said influence [18-20]. 

First, four bior family wavelets were adopted to perform 

global thresholding of the noisy airplane image at the 

decomposition scale of 3. The wavelet symmetries and SNRs 

of the denoised image are recorded in Table 4. The initial SNR 

of the original image was set to 15 and 20, respectively. 

As shown in Figure 4, the SNR curves of the denoised 

images obtained through soft thresholding and hard 

thresholding were of the same form, although the SNR of the 

original image changed from 15 to 20.  For the odd-symmetric 

high-pass decomposition filter, the SNRs were relatively low 

at wavelets bior1.3 and bior3.3. In addition, the soft 
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thresholding result was better than hard thresholding result at 

bior3.3. Overall, the hard thresholding had much better result 

than soft thresholding, due to the high level of initial noise. 

Judging by the parity of the high-pass decomposition filter, the 

SNRs obtained by even symmetric wavelets clearly outshined 

those obtained by odd symmetric wavelets, especially those of 

bior2.2 and bior6.8. 

 

 
 

Figure 4. The SNR curves of the denoised image by bior 

family wavelets 

 

Next, five bior family wavelets were adopted to hard 

thresholding of the noisy airplane image at the decomposition 

scale of 3. The initial SNR of the original image was set to 20. 

According to the denoising results of different bior family 

wavelets (Figure 5), the odd symmetric wavelet of high-pass 

decomposition could improve the SNR of the original image 

to a certain extent, but lost many details in the denoising 

process, making the reconstructed image unclear. With the 

growth in decomposition scale, many edges of the 

reconstructed image became blurry. Hence, even symmetric 

biorthogonal wavelet should be selected for high-pass 

decomposition filter, during the wavelet thresholding of 

images. 

 

 
 

Figure 5. The SNR curves of the denoised image by hard 

thresholding of bior family wavelets (SNR=20) 

 

 

Table 4. The SNRs of the denoised image by bior family wavelets 

 
Wavelet bior1.3 bior2.2 bior3.3 bior4.4 bior5.5 bior6.8 

Symmetry 
Odd 

symmetry 

Even 

symmetry 

Odd 

symmetry 

Even 

symmetry 

Odd 

symmetry 

Even 

symmetry 

SNR=15 hard 

thresholding 
20.8815 22.6693 19.5274 22.4725 21.4613 22.6251 

SNR=15 soft 

thresholding 
19.5879 21.4057 21.9581 20.9503 20.333 21.3654 

SNR=20 hard 

thresholding 
23.2618 25.238 23.391 24.9368 23.8632 25.1753 

SNR=20 soft 

thresholding 
21.5684 23.2624 24.0116 22.6849 22.0757 22.0349 

 

In the process of image denoising, the high-pass 

decomposition filter should have zero-point even symmetry. 

The low-pass decomposition filter should also be analyzed 

quantitatively [21]. If a wavelet has an even-symmetrical high-

pass decomposition filter, then its low-pass decomposition 

filter must be symmetrically even at the zero point.  

To analyze the abilities of the above wavelet families to 

retain low-frequency approximate information, the following 

biorthogonal wavelets, whose decomposition end filters are 

symmetrically even at the zero point, were adopted to denoise 

the airplane image: bior2.2, bior2.4, bior2.6, bior2.8, bior4.4, 

bior5.5 and bior6.8. Three decomposition scales were selected 

2, 3, and 4. The initial SNR was set to 15 or 20. Figure 6 

presents the SNR curves through hard thresholding under the 

above conditions. 

It can be seen from Figure 6 that the decomposition-end 

filters of biorthogonal wavelets bior2.2, bior2.4, bior2.6 and 

bior2.8 exhibited the same behavior. These filters agree well 

in high-pass decomposition filter sequence, yet differ greatly 

in the length of low-pass decomposition filter sequence. 

From the decomposition scale, when the low-pass 

decomposition filter is short, the SNR of the denoised image 

reduced greatly on the high-resolution scale (e.g. 4), indicating 

that shortening the sequence length will cause a severe loss of 

low-frequency information in the image. The growing 

decomposition scale improved the denoising effect, but the 

image reconstructed after denoising was not ideal. 

Moreover, bior2.6 wavelet produced the best SNR on all 

decomposition scales, followed in turn by bior2.4, and bior2.2. 

Therefore, when the length of low-pass decomposition filter 

sequence falls in a certain range, the SNR is proportional to 

the sequence length. If the sequence is excessively long, the 

SNR cannot be further improved. 

Comparing the results under the initial SNR of 15 with those 

under the initial SNR of 20, it can be seen that, when the noisy 

image has a high noise level (e.g. SNR=15), the denoising 

effect of decomposing scale 3 was way better than that of scale 

2; when the noisy image has a low noise level (e.g. SNR=20), 

the denoising results of all wavelets were better on the single-

scale than on the multi-scale, for the low-frequency 

information loss is alleviated by the reducing number of 

decomposition layers.
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Figure 6. The SNR curves of biorthogonal wavelets with 

zero-point even-symmetrical decomposition end filters 

 

Figure 7 shows the decomposition-end filter waveforms of 

four wavelets bior2.6, bior5.5, zqwo6e5 and zqwo6e6. The 

latter two are a pair of wavelets obtained by parametric 

construction of FLTS biorthogonal wavelet. The two wavelets 

have the same initial scale factor, the same vanishing moment 

(1), and different values of the sign function. If the sign 

function is positive, the zqwo6e5 wavelet can be obtained; 

otherwise, the zqwo6e6 wavelet can be obtained. 

Concerning high-pass decomposition filters, bior2.6, 

zqwo6e6 and zqwo6e5 all oscillated, with a negative peak. 

Among them, bior2.6 exhibited the best locality, followed by 

zqwo6e6; zqwo6e5 had the worst convergence. By contrast, 

bior5.5 wavelet also oscillated, but with a positive peak, and 

boasted the widest support.  

Concerning low-pass decomposition filters, the waveforms 

of bior2.6 and zqwo6e6 were the most similar, and both 

attenuated rapidly. However, bior2.6 had a much wider 

support than zqwo6e6. The low-pass filter of bior5.5 was 

widely supported and oscillatory but attenuated slowly. 

Meanwhile, zqwo6e5 was not oscillatory and its 

decomposition scale function attenuated at the slowest rate. 

Table 5 compares the SNRs of the airplane images denoised 

by the above four wavelets with the decomposition scales of 2 

and 3 and the initial SNRs of 15 and 20. The hard thresholding 

and simple reconstruction were adopted for the denoising, 

aiming to reveal the abilities of the wavelets to retain low-

frequency approximate information. The simple 

reconstruction refers to the reconstruction of a nosy image 

after setting all the detail coefficients to zero. Thus, the SNR 

of the denoised image only relates to the low-frequency 

approximation coefficient of the wavelet. 

 

 
 

Figure 7. The decomposition-end filter waveforms of four 

wavelets bior2.6, bior5.5, zqwo6e5 and zqwo6e6 

 

According to the data of simple reconstruction (Table 5), the 

increase of decomposition scale led to a serious loss of the 

approximate information of the image. Under the 

decomposition scale of 2, the SNR ratio of the simply 

reconstructed image was highly correlated with the noise level. 

The reconstruction results of each wavelet at SNR=20 were 

much better than those at SNR=15. This means, at a high noise 

level, the low-frequency approximation coefficients after the 

two-layer decomposition still carry a certain amount of noises. 

When the decomposition scale increased to 3, the initial SNR 

exerted no significant effect on the simply reconstructed image. 

Each wavelet had almost the same SNR of the reconstruction 

image, whether the initial SNR was 15 or 20. In other words, 

the noises have basically been separated from the approximate 

coefficients after the three-layer wavelet decomposition. In 

this case, if thresholding is performed, the SNR of the 

denoised image hinges on the denoising ability of the wavelet. 

From the thresholding results, it can be seen that the SNRs 

of the images denoised by bior2.6 and zqwo6e6 increased 

faster than the SNRs of those denoised by other wavelets. In 

contrast, bior5.5 failed to achieve a satisfactory thresholding 

effect, despite its good ability in retaining low-frequency 

information. Hence, bior5.5 has a poor noise separation ability. 

 

Table 5. The SNRs of the airplane image denoised by the four wavelets (N: decomposition scale) 

 

Wavelet 

SNR=15 N=2 SNR=15 N=3 SNR=20 N=2 SNR=20 N=3 

Zero-

setting 
Denoising Zero-setting Denoising Zero-setting Denoising Zero-setting Denoising 

bior2.6 22.493 23.2403 18.5688 23.4053 23.6912 25.8429 18.6643 25.7905 

bior5.5 22.8175 23.08 18.9707 21.5624 24.1752 25.226 19.0077 23.8354 

zqwo6e5 12.6756 16.2966 6.2448 15.8144 13.0849 20.744 6.3099 20.1436 

zqwo6e6 21.9776 22.3119 18.1279 22.1605 23.0318 24.8075 18.2175 24.4207 

 

The following conclusions can be drawn from the 

waveforms of the decomposition end filters of wavelets: 

In wavelet thresholding, the low-pass decomposition filter 

should have attenuating oscillation.  The wavelet with a wide 

support interval can effectively retain the approximate 

information of the image. Both orthogonal wavelet and 

biorthogonal wavelet could suppress image noise and enhance 

the SNR, but the biorthogonal wavelet has the better 

performance, for its linear phase features prevent the visual 

distortion of the reconstruction image. A high vanishing 

moment is not necessarily favorable for image denoising; if 

the vanishing moment is too high, the detail coefficients of 

wavelet decomposition will approach zero, and the 

reconstructed images after thresholding will have blurry edges 

and a low SNR. For biorthogonal wavelets, the odd or even 

symmetry of high-pass decomposition filter has a great impact 

on the decomposition coefficients.  

To sum up, the most desirable wavelet for image denoising 

is the biorthogonal wavelet, in which the decomposition end 

filter has zero point even symmetry, the low-pass 

decomposition filter is oscillatory with a wide support interval, 

and the high-pass decomposition filter has a short support and 

attenuates fast. 

 

543



 

3. CONSTRUCTION OF NOVEL THRESHOLD 

DENOISING WAVELET 

 

3.1 Wavelet construction 

 

To achieve the optimal performance, our wavelet was 

designed by parametric construction of FLTS biorthogonal 

wavelet [22]. Suppose the high-pass decomposition filter is 3 

in length and even-symmetric at the zero point. Then, the high-

pass decomposition g  ̃and the low-pass reconstruction filter h 

can be expressed as: 

 

�̃� = {�̃�0, �̃�1, �̃�2} and ℎ𝑘 = (−1)
𝑘−1�̃�1−𝑘 ℎ = {ℎ−1, ℎ0, ℎ1} 

 

According to the conditional relationship of filters, we have: 

 

ℎ = {
√2

4
,
√2

2
,
√2

4
}  �̃� = {

√2

4
, −

√2

2
,
√2

4
} 

 

Under the limitation of the odd-length filter, if the ℎ is 3 in 

length, then the length N of the low-pass decomposition filter 

ℎ̃ must satisfy that 𝑁 + 1 is not an integer multiple of 4. In 

other words, if the sequence length of ℎ̃ is 7, 11, 15…, the 

wavelet to be constructed does not exist [23]. Let the sequence 

length of the low-pass decomposition filter ℎ̃ be 13, we have: 

 

ℎ̃ = {ℎ̃−6, ⋯ , ℎ̃−1, ℎ̃0, ℎ̃1, ⋯ , ℎ̃6} 
 𝐸𝑣𝑒𝑛 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 
→               {ℎ̃6, ⋯ , ℎ̃1, ℎ̃0, ℎ̃1, ⋯ , ℎ̃6} 

 

To adjust the attenuation of the low-pass decomposition 

filter ℎ̃, a scale factor k was introduced such that: 

 

ℎ̃0 = 𝑘ℎ̃1    𝑘 > 0 

 

According to the conditional relationship of the filter and 

the PR relationship of full reconstruction, the construction 

relation equations of the biorthogonal wavelet with the filter 

length (13-3) at the decomposition end can be derived as: 

 

{
 
 
 
 
 

 
 
 
 
 ℎ̃0 + 2(ℎ̃2 + ℎ̃4 + ℎ̃6) =

√2

2

ℎ̃1 + ℎ̃3 + ℎ̃5 =
√2

4

√2

4
ℎ̃1 +

√2

2
ℎ̃0 +

√2

4
ℎ̃1 = 1

√2

4
ℎ̃1 +

√2

2
ℎ̃2 +

√2

4
ℎ̃3 = 0

√2

4
ℎ̃3 +

√2

2
ℎ̃4 +

√2

4
ℎ̃5 = 0

√2

4
ℎ̃5 +

√2

2
ℎ̃6 = 0

 ℎ̃0=𝑘ℎ̃1 
→        

{
 
 
 
 

 
 
 
 𝑘ℎ̃1 + 2(ℎ̃2 + ℎ̃4 + ℎ̃6) =

√2

2

ℎ̃1 + ℎ̃3 + ℎ̃5 =
√2

4

ℎ̃1 =
√2

𝑘+1

ℎ̃1 + 2ℎ̃2 + ℎ̃3 = 0

ℎ̃3 + 2ℎ̃4 + ℎ̃5 = 0

ℎ̃5 = −2ℎ̃6

                                            (1) 

 

 

The attenuation speed at the center of the low-pass 

decomposition filter ℎ̃ can be changed by adjusting the scale 

factor k. According to the condition of vanishing moment, the 

m-th order of the vanishing moment can be obtained if: 

 

{
ℎ̃0 − 2ℎ̃1 + 2ℎ̃2 − 2ℎ̃3 + 2ℎ̃4 − 2ℎ̃5 + 2ℎ̃6 = 0

−ℎ̃1 + 2
𝑗ℎ̃2 − 3

𝑗ℎ̃3 + 4
𝑗ℎ̃4 − 5

𝑗ℎ̃5 + 6
𝑗ℎ̃6 = 0

    0 < 𝑗 <

𝑚  𝑗 is an even number                              (2) 

The parametric expressions of the biorthogonal wavelet 

with the m-th order vanishing moment and zero point even 

symmetry can be derived from formulas (1) and (2). If m=2 

and k=1, 2 or 4, the three biorthogonal wavelets obtained have 

the same high-pass decomposition filter. Meanwhile, the low-

pass decomposition filters can be expressed as: 

 

 

𝑘 = 1   𝑑𝑙 = {−0.0718, 0.1436, 0.1768, −0.4972, −0.1050, 0.7071, 0.7071,⋯ ,−0.0718} 
𝑘 = 2      𝑑𝑙 = {−0.0203, 0.0405, 0.0589, −0.1584, −0.1565, 0.4714, 0.9428⋯ ,−0.0203} 
𝑘 = 4      𝑑𝑙 = {0.0343, −0.0685, −0.0354, 0.1392, −0.2110, 0.2828, 1.1314,⋯ , 0.0343} 

 

 
 

Figure 8. Waveforms of the three low-pass decomposition 

filters of the wavelet at different scale factors 

 

Figure 8 shows the waveforms of the three low-pass 

decomposition filters of the wavelet. As shown in Figure 8, 

when k=1, the dual scale function of the constructed wavelet 

had poor convergence, which oscillated violently rather than 

attenuate in most of the support interval. This means the 

constructed wavelet has very poor locality. When k=4, the 

attenuation of the dual scale function was greatly improved, 

especially the localization ability. However, the function was 

not smooth in this case. By contrast, when k=2, the dual scale 

function of the constructed scale enjoyed good attenuation 

features and high smoothness. 

Table 6 shows the global hard thresholding results of the 

three wavelets with second-order vanishing moments 

constructed at k=1, 2 and 4 on the missile image. The 

decomposition scales were set to 2, 3 and 4, in turn, and the 

initial SNRs were set to 15 and 25. The SNRs in the table show 

that, when k=1, the constructed wavelets were basically unable 

to suppress image noise. When the initial SNR was high, the 

denoising could not greatly improve the SNR; when the initial 
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SNR was low, the denoising reduced the image quality. When 

k=4, the constructed wavelets had a certain denoising ability, 

and improved the SNR of the noisy image under both initial 

SNRs. When k=2, the constructed wavelets achieved the best 

denoising effects, showing excellent attenuation and 

smoothness features.  

From the relationship between SNR and decomposition 

scale, it is learned that the SNR decreased, as the 

decomposition scale increased further from 2. Hence, the 

wavelets with second-order vanishing moment cannot detect 

the highly singular points. The noises with large singularities 

in the decomposition detail coefficients cannot be separated 

effectively. 

 

Table 6. The SNRs of the images denoised by wavelet thresholding at the vanishing moment of 2 and different scale factors 

 
  Initial condition 

 

 

 

Constructed wavelet 

Initial SNR=15 Initial SNR=25 

N=2 N=3 N=4 N=2 N=3 N=4 

k=1 17.3667 16.6902 16.4669 24.3188 23.7421 23.5604 

k=2 22.8442 23.206 23.0617 27.2328 27.0348 26.9243 

k=4 21.1013 20.8559 21.0633 26.3372 26.0678 25.9785 

To further improve the denoising ability of the constructed 

wavelet, the vanishing moment features were optimized at the 

scale factor of 2. When the vanishing moment increased from 

2 to 4, the relationship of the vanishing moment of the wavelet 

to be constructed can be expressed as: 

 

{
ℎ̃1 = 4ℎ̃2 − 9ℎ̃3 + 16ℎ̃4 − 25ℎ̃5 + 36ℎ̃6               𝑚 = 2

ℎ̃1 = 16ℎ̃2 − 81ℎ̃3 + 256ℎ̃4 − 625ℎ̃5 + 1296ℎ̃6    𝑚 = 4
 

(3) 

 

From formulas (1) and (3), the low-pass decomposition 

filter at the vanishing moment of 4 can be derived as: 

 

𝑑𝑙 = {−0.0091, 0.0181, 0.0589, −0.1360,  
−0.1677, 0.4714, 0.9428⋯ ,−0.0091} 

 

Similarly, the low-pass decomposition filter at the vanishing 

moment of 6 can be constructed as: 

 

𝑑𝑙 = {−0.0042, 0.0084, 0.0589, −0.1263, 
 −0.1726, 0.4714, 0.9428⋯ ,−0.0042} 

 

For simplicity, the wavelets of the second-, fourth- and 

sixth- order vanishing moments obtained at k=2 are denoted 

as zqwo6e12, zqwo6e14 and zqwo6e16, respectively.  

 

3.2 Self-adaptive hierarchical thresholding algorithm   

 

During image thresholding, the global thresholding cannot 

retain image details while effectively removing noises [24, 25]. 

Theoretically speaking, the hierarchical thresholding can 

strike a balance between noise suppression and detail 

preservation.  

Let m be the decomposition scale, thr be the initial threshold, 

and k be the current number of decomposition layers. The 

hierarchical thresholding algorithm can be implemented as 

follows: 

Step 1. Obtain the approximate coefficients {𝑎}𝑘 and detail 

coefficient of each layer through wavelet transform, 1 ≤ 𝑘 ≤
𝑛; 

Step 2. Calculate and normalize the energy of the detail 

coefficient of each layer, and derive the variance of the 

normalized detail coefficient sequence 𝑠𝑡𝑑_𝑑𝑘 1 ≤ 𝑘 ≤ 𝑛; 

Step 3. Compute the threshold value at each scale by the 

hierarchical threshold relationship:  

𝑡ℎ𝑟𝑘 =
𝑠𝑡𝑑_𝑑1
𝑠𝑡𝑑_𝑑𝑘

× 𝑡ℎ𝑟 

 

Step 4. Perform soft or hard thresholding of the detail 

coefficients at each scale, using the hierarchical threshold 𝑡ℎ𝑟𝑘. 

Step 5. Reconstruct the post-thresholding coefficients to 

obtain the denoised results. 

The self-adaptive hierarchical threshold algorithm can 

adaptively select the proportional relationship between 

thresholds of different scales for the denoising process, 

according to the noise level of the original image and the 

attenuation speed of the noises. 

 

 

4. EXAMPLE ANALYSIS 

 

This section aims to evaluate the noise suppression ability 

of the constructed wavelet and verify the self-adaptive 

hierarchical thresholding algorithm. Specifically, six 

biorthogonal wavelets were adopted for thresholding a noisy 

image called smallplane. The image is a simple photo of a 

flying plane taken from the distance. The six wavelets are all 

even symmetric at the zero point, including zqwo6e12, 

zqwo6e14, zqwo6e16 and bior5.5, bior2.6 and bior4.4. 

Table 7 shows the global thresholding results of the 

smallplane image at the decomposition scale of 2-5 and the 

initial SNRs of 15 and 20, and Table 8 presents the results of 

self-adaptive hierarchical thresholding on the same image.  

Through global thresholding, the SNR obtained by every 

wavelet decreased with the growth in decomposition scale, due 

to the erroneous deletion of detail coefficients. bior5.5 had the 

fastest decline in denoising quality, revealing an extremely 

poor ability to retain low-frequency approximation 

information. Through self-adaptive hierarchical thresholding, 

the image details were preserved well, as the threshold of each 

scale was adjusted. As a result, the SNR obtained by self-

adaptive hierarchical thresholding was much better than that 

of global thresholding. As shown in Table 8, the SNRs 

obtained by bior5.5 and bior2.2, which had poor denoising 

effects through global thresholding on large decomposition 

scales, did not decrease, but remained on a high level. By 

contrast, the other four wavelets achieved better denoising 

effects. When the decomposition scale was not greater than 4, 

the SNR of the denoised image through self-adaptive 

hierarchical thresholding increased with the scale. 
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Table 7. Global thresholding results of smallplane image 

 
   Initial condition 

 

 

 

Wavelet 

Initial SNR=15 Initial SNR=25 

N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5 

bior5.5 24.59 24.2 22.5 21.63 26.98 25.26 24.17 23.77 

bior2.6 24.66 25.17 24.74 24.45 27.24 27.07 26.75 26.75 

bior2.2 24.47 25.01 24.76 24.47 26.99 26.77 26.55 26.4 

zqwo6e12 24.62 25.2 24.8 24.51 27.24 27.05 26.88 26.76 

zqwo6e14 24.61 25.14 24.79 24.51 27.23 27.11 26.87 26.73 

zqwo6e16 24.59 25.12 24.77 24.48 27.22 27.1 26.86 26.73 

 

Table 8. Self-adaptive hierarchical thresholding results of smallplane image 

 
     Initial condition 

 

 

Wavelet 

Initial SNR=15 Initial SNR=25 

N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5 

bior5.5 24.63 25.72 25.68 25.7 27.4 27.6 27.67 27.63 

bior2.6 24.28 24.78 24.67 24.68 27.51 27.77 27.86 27.83 

bior2.2 23.8 23.914 23.912 23.911 27.24 27.28 27.27 27.27 

zqwo6e12 24.13 24.59 24.55 24.51 27.4 27.69 27.74 27.66 

zqwo6e14 24.15 24.64 24.56 24.54 27.42 27.71 27.75 27.71 

zqwo6e16 24.14 24.61 24.54 24.54 27.43 27.71 27.73 27.73 

 

Figures 9 and 10 display the denoising results of the global 

thresholding and self-adaptive hierarchical thresholding on the 

smallplane image at the initial SNR of 20 and decomposition 

scale of 5, respectively. It can be seen that the self-adaptive 

hierarchical thresholding achieved a much higher SNR and 

retained more edge details than the global thresholding. The 

advantages are most obvious in the results of bior5.5. In the 

denoised image by global thresholding, there are obvious 

ringing artefacts, and the edges of the smallplane are 

completely blurred. 

 

 
 

Figure 9. Global thresholding results of smallplane image 

(initial SNR=20) 

 

 
 

Figure 10. Self-adaptive thresholding results of smallplane 

image (initial SNR=20) 

 

 

5. CONCLUSIONS  

 

This paper proves that the three wavelets obtained by the 

parametric construction of FLTS biorthogonal wavelet have 

good denoising ability facing various noise levels, large 

decomposition scales, and images of different complexities. 

Comparing the SNRs obtained by the three wavelets, it is 

concluded that the vanishing moment should be controlled at 

a moderate level if the target image is relatively simple, and 

the vanishing moment should be relatively high if the target 

image is complex. The author also compared the denoising 

effects of global thresholding and self-adaptive hierarchical 

thresholding. The comparison shows that the self-adaptive 

hierarchical thresholding is less dependent on the wavelet 

features, more adaptable to different types of images, and 

better in denoising ability. In particular, the self-adaptive 

hierarchical thresholding can preserve the edges of the target 

image excellently under a high decomposition scale. 
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