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Currently, tourists tend to plan travel routes and itineraries by searching for relevant 

information on tourist attractions via the Internet and intelligent terminals. However, it is 

difficult to achieve good retrieval effect on tourist attraction images with text labels. Based 

on deep learning, the visual location identification faces such defects as frequent 

mismatching, high probability of weak matching, and long execution time. To solve these 

defects, this paper puts forward a novel method for location identification and personalized 

recommendation of tourist attractions based on image processing. Specifically, the authors 

detailed the ideas and steps of the location identification algorithm for tourist attractions. 

The algorithm, grounded on hash retrieval, encompasses two stages: an offline stage, and an 

online stage. Besides, a personalized recommendation model for tourist attractions based on 

geographical location and time period. Finally, the proposed algorithm and model were 

proved accurate and effective through experiments.  
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1. INTRODUCTION

With the improving level of economy, tourism has become 

a popular way of leisure. Tourists tend to plan travel routes and 

itineraries by searching for relevant information on tourist 

attractions via the Internet and intelligent terminals. 

Nevertheless, the search results are often not as desired, 

because they hardly understand the image classification of 

tourist attractions and have difficulty in organizing the search 

terms clearly [1-3]. 

The image retrieval technique of reverse image search can 

avoid the defects of depicting images with text labels [4, 5]. 

Therefore, this paper aims to realize location identification and 

personalized recommendation of tourist attractions. The two 

tasks were solved based on image processing, for location 

identification of tourist attractions is usually transformed into 

an image retrieval problem. 

Many scholars have conducted lots of research on image 

processing of tourist attractions. Based on image processing, 

some mined the semantics of tourist attractions, some 

classified the images on tourist attractions, some 

recommended tourist attractions, and some planned travel 

routes [6, 7]. Through probabilistic latent semantic analysis 

(PLSA), Khaliq et al. [8] optimized three semantic-based 

classification methods for tourist photos, and explored the 

association between image index semantics, geographical 

location of tourist attractions, and text labels. Focusing on 

travel photo libraries with geographic location, Oertel et al. [9] 

clustered popular landmark attractions based on user interests, 

and optimized travel routes according to the representative 

images on landmarks.  

Thanks to the progress of online multimedia technology, 

service providers of smart tourism have paid attention to image 

retrieval, classification, and positioning. Niu and Qian [10] 

designed a user-friendly information retrieval system for 

multiple associated images on tourist attractions. Based on big 

data analysis and Hadoop distributed platform, Barbeau et al. 

[11] realized the image matching and retrieval of tourist

attraction resource libraries, by optimizing the image quality,

storage structure, and geographical location index. Maffra et

al. [12] matched local and global features by scale-invariant

feature transform (SIFT) / generalized search tree (GiST) for

low similarity images, and verified the effectiveness of the

feature matching method in positioning tourist attractions on a

library of numerous tourist attraction images.

The advancement of artificial intelligence and data mining 

has promoted the application of depth convolutional neural 

network (CNN) in image processing. Many researchers have 

constructed training samples based on online images of tourist 

attractions to train neural networks, for the purpose of image 

matching, identification, and positioning [13-16]. Lowry and 

Milford [17] developed a trained deep neural network not 

limited to a specific task or dataset, and obtained image feature 

descriptors like sum pooling of convolutions (SPoC), 

maximum activation of convolutions (MAC), and regional 

MAC (rMAC) from the response of convolutional layer; the 

deep neural network has a good generalization ability and high 

retrieval accuracy. After collecting the training samples 

relevant to the target image retrieval task, Sizikova et al. [18] 

redesigned the deep retrieval architecture of deep neural 

network, defined the Siamese Loss function, and trained the 

network again; experimental results show that the trained 

network is very effective and accurate in the search for tourist 

attraction images in Oxford5k dataset. 

Because the images and geographic coordinates of tourist 

attraction are easy to obtain, some researches have tried to 

extract features from tourist attraction images, compute 

similarities between these images, and identify the tourist 

attraction locations, with the help of trained deep neural 

networks; but their algorithms often have a high overhead [19-
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23]. Doan et al. [24] trained a deep neural network, using 

tourist attraction images with weak labels of global positioning 

system (GPS), and obtained the more accurate feature called 

NetVLAD (where VLAD stands for vector of locally 

aggregated descriptors); their approach cannot effectively 

recognize images taken at night, owing to its poor 

generalization ability and susceptibility to training samples.  

When it comes to tourist attraction recommendation, 

Vysotska and Stachniss [25] constructed a TGSC probabilistic 

matrix factorization model (PMF), which is aware of 

geographical location and time, and empirically investigated 

the influence of popularity, geographical location, and 

classification over recommendation effect, using the location-

based social network (LBSN) dataset. Chen et al. [26] 

designed a travel route planning model aware of traffic and 

attraction congestion, after analyzing the tourists’ browsing 

history on tourist attractions, as well as uncontrollable factors 

like traffic and weather. 

The CNN-based visual location identification of tourist 

attractions still faces several defects: frequent mismatching, 

high probability of weak matching, and low computing 

efficiency. In terms of tourist attraction recommendation, it is 

highly necessary to improve the efficiency and accuracy of 

recommendation and tourist preference modeling. Therefore, 

this paper puts forward a novel method for location 

identification and personalized recommendation of tourist 

attractions based on image processing. Section 2 introduces 

the ideas of the location identification algorithm for tourist 

attractions, which is based on hash retrieval and composed of 

an offline stage, and an online stage. Section 3 completes the 

personalized recommendation of tourist attractions based on 

geographical location and time period. Finally, the proposed 

algorithm was proved accurate and effective through 

experiments. 

2. LOCATION IDENTIFICATION OF TOURIST 

ATTRACTIONS BASED ON HASH RETRIEVAL

Figure 1. Workflow of the hash retrieval-based location identification algorithm for tourist attractions 
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To solve the poor matching effect and long identification 

time of traditional image location identification technology, 

this section establishes the framework for the two-stage 

location identification of tourist attraction images based on 

hash retrieval. The two stages include an offline stage and an 

online stage. The offline stage mainly creates two tables before 

system operation: the hash table and the query table for the 

image location features of the reference image set. The online 

stage searches for images with similar location features as the 

target image in the hash table and query table of the reference 

image set, and constructs a set of candidate images. Figure 1 

explains the ideas of the hash retrieval-based location 

identification algorithm for tourist attractions. 

2.1 Offline stage 

The offline stage mainly includes four steps: the feature 

identification, extraction, dimensionality reduction of location 

features in the reference image set, as well as the construction 

of the hash table and query table. The edge boxes algorithm, 

which is based on the edge similarity with the target image, 

offers a highly adaptive and fast tool to identify targets. It 

avoids the limitations of advanced model training. Based on 

the edge boxes algorithm, a location feature extracted from the 

n-th image in the reference image set can be expressed as:
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where, the subscript In means the location feature belong to 

tourist attraction image In; i is the serial number of the location 

feature on In; a and b are the coordinates of the upper left 

corner of the target box of the location feature; Δa and Δb are 

the width and height of the target box, respectively. Let M be 

the number of images in the reference image set, and N be the 

number of location features extracted from each image. Then, 

In is an integer in [1, M], and I is an integer in [1, N]. 

Figure 2. Structure of the CNN 

After being identified, the target box of location features 

needs to be cropped and normalized in size. The CNN extracts 

the features from the processed box, and outputs the result of 

LFCIn={LFCIn
i}. The structure of the CNN is illustrated in 

Figure 2. The dimensionality reduction of the extracted 

location features can effectively shorten the execution time of 

the algorithm. Capable of mapping the center point of an 

image from the high-dimensional space to a low-dimensional 

space, Gaussian random projection can control a small 

Euclidean distance between the two points, without changing 

the identification and processing effects on the extracted 

location features. The dimensionality reduction by Gaussian 

random projection can be described as: 

( ) ( ) 222
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where, s and 𝑟 ∈ ℝ𝑋 are high-dimensional space vectors; 𝑒 ∈
ℝ𝑋×𝑌  (Y<<X) is the low-dimensional space vector being

mapped. After dimensionality reduction, the z-dimensional 

location features of the reference image set can be expressed 

as: (LFC΄In
1, LFC΄In

2, LFC΄In
3,…, LFC΄In

z). 

During the construction of hash table and query table, the 

location features after dimensionality reduction should be 

normalized to the same dimension, such that all of them are 

distributed on the same high-dimensional sphere: 
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In Multiple Locality Sensitive Hashing (MutipCpLSH) 

algorithm, the hash function can map the location features 

distributed on the same high-dimensional sphere. Within the 

constructed hash table, every storage unit saves the location 

features with the same hash code. While the hash table stores 

location features, the query table stores target box sizes. The 

two storage functions are of equal importance. In the query 

table, the index of each target box is the same as that of the 

corresponding location feature in the hash table. Therefore, the 

target box corresponding to any location feature can be queried 

for with the index number. 

2.2 Online stage 

The retrieval of the target tourist attraction image is 

completed online. The online stage consists of two phases: 

preprocessing and matching retrieval. Like the single image 

processing in offline stage, the preprocessing is also 

implemented in three steps: feature identification, extraction, 

and dimensionality reduction. The matching retrieval mainly 

maps the location features of the target image by MutipCpLSH 

algorithm, looks up the hash table and query table for the 

candidate images with the same or similar hash code as the 

target image, calculates the similarities between two or 

multiple candidate images, and recommends the candidate 

image with the highest similarity. Let IIL be the target image. 

The location feature of the image can be described as: 
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The k-nearest neighbors algorithm (k-NN) algorithm was 

adopted to look for the candidate images with the same or 

similar hash code as the target image, owing to its advantages 

in processing samples that are highly overlapped in classes. 

Specifically, the k-NN algorithm was executed in each storage 

unit to calculate the Euclidean distance from the location 

features of the target image to the K similar location features 

in each storage unit. The K similar location features constitute 

a set of candidate location features, where the k-th feature is 

denoted as δk
i. The Euclidean distance that expresses the 

location similarity is denoted as DISk
i. The set of candidate 

location features is very likely to contain the global optimal 

matching location features. 

Image similarity calculation mainly targets the shape 

similarity of target boxes, similarity of location features, and 

overall similarity of tourist attraction images. The shape 

similarity of target boxes attempts to eliminate the candidate 

locations from the set of candidate location features, which are 
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similar in tourist attraction location but different in target box 

shape. By looking up the tables, the shape of the target box 

corresponding to the δk
i-th candidate location feature CLFIn

j 

can be obtained. Then, the shape similarity of the target box 

can be computed by: 
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where, τ=0.25 is the difference in the shape similarity of the 

target box, that is, the difference in the shape similarity of the 

target box is controlled under 25%. 

Next, it is necessary to compute the similarity between the 

location feature of the target image and the candidate location 

features retained through the calculation of the shape 

similarity of target boxes. The similarity with the δk
i-th 

candidate location feature CLFIn
j can be calculated by: 
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where, SS and SF are shape similarity and feature similarity. 

The former is characterized by the exponential function, and 

the latter by the cosine distance between the two features. 

After the calculations of shape similarity of target boxes and 

location feature similarity, there were at most K remaining 

candidate images with similar location features as the target 

image. Then, the candidate images were sorted in descending 

order of the number of similar location features. Let IC
l be the 

l-th image in the first L images, and l be an integer in [1, L].

The overall similarity of each candidate image and the target

image can be calculated by:

( )  −=
i,j LC

l

CIL j
l
C

I

i
k

S
L

,IIS
,

1
1


(7) 

Figure 3. Location feature matching and generation of 

candidate image set 

By a properly set threshold, a group of candidate images 

with the highest overall similarity was chosen. If the similarity 

between a candidate image and the target image is greater than 

the preset threshold, then the candidate image must have been 

taken at the same geographical location and in the same scene 

as the target image. In this case, the geographical location of 

the candidate image could be outputted as the location 

identification result of the target image. Figure 3 presents the 

location feature matching effect and the generated set of 

candidate images. 

3. PERSONALIZED RECOMMENDATION OF

TOURIST ATTRACTIONS BASED ON SPACE AND

TIME FACTORS

The probability of a tourist choosing a travel destination or 

tourist attraction mainly depends on geographical location and 

time period. The analysis on historical destinations of tourists 

shows that, if the attractions visited by a tourist are close to 

each other and densely distributed, it is better to recommend 

him/her tourist attraction images whose geographical locations 

are close to the target image and evaluations are general; if the 

attractions visited by a tourist are far from each other and 

sparsely distributed, it is better to recommend him/her tourist 

attraction images whose geographical locations are far from 

the target image and evaluations are good. 

3.1 Geographical location 

Figure 4. Geographical location-based personalized 

recommendation algorithm of tourist attractions 

Figure 4 explains the ideas of the geographical location-

based personalized recommendation algorithm of tourist 

attractions. The prediction model of historical destinations 

actually predicts the distance preference from one destination 

to another. The distance sensitivity of tourists can be modelled 

by the two methods below: 
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where, D(U, V) is the distance between destinations U and V. 

Formula (8) assumes that the tourist sensitivity to the 

destination distance is negatively correlated with the distance 

between historical destinations; Formula (9) constructs an 

exponential function about the distance sensitivity of tourists. 

Both methods compute the distance between far away 

destinations with the mean distance. However, neither of them 

applies to the processing of data on the attractions centering 

on a particular attraction in the same city.  
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Figure 5. Mining visit center of destination by k-means 

clustering 

After arriving at a destination, a tourist tends to choose 

attractions around the center of geographical location, or the 

fixed centers like hotels or special restaurants. If there are 

many attractions in the city, it is possible to identify the visit 

center through k-means clustering, compute the distance 

between each candidate attraction and the center, and make 

personalized recommendation based on the distance 

sensitivity of the tourist. Figure 5 explains how to mine the 

visit center of destination by k-means clustering. Let CA be the 

set of attractions in the same city; CAT be the set of attractions 

in the same city that have been visited by tourist T; D(u,v) be 

the distance between attractions u and v in the same city. Then, 

the specific modeling process can be described as follows: 

Step 1. Compute the distance from each attraction in the 

destination to the visit center. 

Step 2. Model the power law distribution of the tourists’ 

distance tendencies, convert parameters δ and γ in the solving 

process, and solve the parameters fitted by converted curve by 

the least squares method. 

Step 3. Derive the probability of choosing a new attraction 

by the naïve Bayes method: 
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The above geographical location-based recommendation 

method for destination or attraction assumes that the 

probability of choosing the destination or attraction at a 

geographical location has a significant negative correlation 

with the distance between the location and the current position 

of the tourist. 

3.2 Time period 

The popularity of destination or attraction varies between 

seasons, holidays, and even the hours on the date of travel. The 

frequency of choosing a destination or an attraction is 

distributed unevenly from period to period. Museums, science 

expos, and art galleries, which only open to the public in 

daytime, are more likely to be chosen during the day, while the 

entertainment venues are more likely to be selected at night. 

The popularity of the attractions offering both day and night 

views is distributed relatively uniformly between different 

time periods. Let FS-t,U be the probability of choosing 

destination U in time period t; FT-t,u be the probability of 

attraction u being visited in time period t; FP(u,t) be the 

popularity of attraction u in time period t. Under the influence 

of time period, the popularity of destination or attraction can 

be calculated by: 
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where, St(U) is the number of destination U being selected in 

time period t; Tt(u) is the number of attraction u being visited 

in time period t; SΣ(U) is the total number of destination U 

being selected in a year; TΣ(u) is the total number of attraction 

u being visited in a day. Formula (12) needs to be modified to

prevent judging the popularity of the destination or attraction

not selected or visited in time period t as zero:

( ) ( ) ( ) ( )uFtuFtuF PPP −+=  1,, (13) 

where, FP(u) is the probability of attraction u being visited in 

a year. Here, each year is divided into 12 periods by month, 

and every day into 24 periods by hour. Then, the similarity of 

tourist selection of destination or attraction was modeled by 

the similarity between time periods. Let ||CVw,t|| be the 

number of visits of tourist w to destination or attraction in time 

period t; CSw,t,t΄ be the similarity of the selection of destination 

or attraction by tourist w between time periods t and t΄. Then, 

the value of CSw,t,t΄ can be calculated by:  
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The similarity between time periods t and t΄ can be 

calculated by: 
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Let Sw,t,t΄ be an element in the vector of ||CVw,t||. After 

smoothing by the similarity between time periods, the element 

can be calculated by: 
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The similarity between tourists w and o in the selection of 

destination or attraction u can be calculated by: 
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The probability that tourist w visits destination or attraction 

u in the given time period t can be calculated by:
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4. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental data include more than 100,000 images 

on 84 tourist attractions and their geographical locations. The 

data were crawled from the online information on domestic 

tourist attractions. The images were divided into 3 sub-image 

libraries, and split into a training set and a test set by the ratio 

of 4:1.  

Our algorithm was called to mine the deep features 

containing the geographical locations of the attractions. Then, 

hash retrieval was performed to identify the images with high 

visual similarity of the target image, creating a set of candidate 

images with similar visual features and geographical locations. 

The geographical location of the most similar image was 

outputted, completing the geographical location identification 

of the input image. Table 1 presents the identification results. 

Table 1. An example of geographical location identification 

Number Target image Geographical coordinates Number Target image Geographical coordinates 

1 

Jinji Lake 

N: 31.31 

E: 120.70 

4 

Zhouzhuang Village 

N: 31.11 

E: 120.85 

2 

Zhuozheng Garden 

N: 31.32 

E: 120.62 

5 

Hanshan Temple 

N: 31.31 

E: 120.56 

3 

Huqiu Hill 

N: 31.33 

E: 120.58 

6 

Yangcheng Lake 

N: 31.50 

E: 120.72 

Table 2. Results of geographical location identification 

Location identification methods top-1 top-5 top-10 top-20 

CNN-based method 10.4 20.5 40.3 76.4 

Dynamic landmark screening-based method 16.8 26.4 44.2 78.9 

Hash retrieval-based method 21.1 31.8 53.9 82.1 

Our algorithm 23.7 37.9 62.8 89.7 

(a) 

(b)  (c) 

Figure 6. Precision-recall curves on different image libraries 
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The candidate images with high similarities were subject to 

top-N ranking, and the actual location of the attraction images 

with an error smaller than 50m was determined as the correct 

geographical location. Table 2 presents the results of 

geographical location identification. 

As shown in Table 2, the recalls of our algorithm for top-1, 

top-5, top-10, and top-20 rankings were 23.7%, 37.9%, 62.8%, 

and 89.7%, respectively. Compared with building and 

intersection images, tourist attraction images cover a large 

range and exhibit a weak regularity. The proposed 

geographical location identification method outperformed the 

methods based on CNN, dynamic landmark screening, or hash 

retrieval, as evidenced by its high recognition effectiveness. 

Figure 6 presents the precision-recall curves of our model 

(blue) and CNN-based method (orange) on different image 

libraries. Facing the appearance and visual angle differences 

between the three image libraries, our model clearly outshined 

the CNN-based method for geographical location 

identification. The robustness of our algorithm against 

different image libraries comes from the inclusion of 

MutipCpLSH algorithm and edge boxes algorithm into the 

identification system. The two algorithms promote the global 

optimal matching of location features, pushing up the 

identification accuracy of the entire model. 

Table 3. Location data on tourist attractions 

Image number Latitude (N) Longitude (E) 

525733865 41.43 125.74 

4543856 41.51 131.55 

31668637 42.23 127.73 

278558948 44.24 120.65 

5325769 41.59 122.71 

On the recommendation of attractions in the same city, this 

paper clusters the geographical locations of the attractions 

(Table 3) in the same city by k-means clustering, and thus 

obtains the visit center of tourists. Here, a contrastive 

experiment is designed with different number of cluster heads 

(K). From the experimental image libraries, 15,000 plus 

images on ten attractions in a destination were chosen as test 

samples. Figure 7 shows the clustering results on the 

geographical locations of the ten attractions at K=50. The left 

subgraph displays the locations of the attraction images 

(attraction clusters in different places are given in different 

shades); the right subgraph presents the 50 cluster heads 

corresponding to the attraction clusters, i.e., the visit centers of 

tourists to the destination. The Baidu Map coordinate 

analyzing app was adopted to obtain the geographical 

locations of the visit centers, as well as the geographical 

locations and text illustrations of the nearby attractions. 

(a) 

(b) 

Figure 7. Clustering results on the geographical locations of 

the ten attractions (K=50) 

Figure 8 shows the clustering results on the geographical 

locations of the ten attractions at K=70. Similarly, the left 

subgraph displays the locations of the attraction images, while 

the right subgraph presents the 70 cluster heads corresponding 

to the attraction clusters. 

(a) 

(b) 

Figure 8. Clustering results on the geographical locations of 

the ten attractions (K=70) 

To verify its effectiveness, the proposed personalized tourist 

attraction recommendation algorithm, which considers both 

space and time factors, was compared with several tourist 

attraction recommendation algorithms, some of which are 

based on matrix decomposition. Figure 9 compares the 

precision and recall of these algorithms. The contrastive 

algorithms include: (1) our algorithm; (2) recommendation 

algorithm based on attraction and tourist similarities; (3) 
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recommendation algorithm based on geographical location of 

images; (4) recommendation algorithm based on similarity of 

tourist behaviors; (5) recommendation algorithm based on 

attraction similarity; (6) recommendation algorithm based on 

time factor. 

(a) 

(b) 

Figure 9. Precision and recall of different recommendation 

algorithms for tourist attractions 

As shown in Figure 9, algorithm (6) ended up with the worst 

performance, because it only considers time factors like season 

or holidays, failing to take account of travel preference of 

tourists; algorithms (3)-(5) failed to achieve comparable 

recommendation performance as algorithm (2), for they only 

consider a single aspect of tourist preference. By contrast, our 

algorithm boasted the best performance, owing to the 

comprehensive consideration of various factors (e.g., tourist 

similarity, attraction similarity, and time period). Our 

algorithm applies to both nation-wide destination 

recommendation, and attraction recommendation in the same 

city. Its application scope is obviously wider than that of the 

contrastive algorithms. 

5. CONCLUSIONS

This paper proposes a novel way to identify the locations 

and make personalized recommendation of tourist attractions. 

Firstly, the authors detailed the ideas and steps of the location 

identification algorithm for tourist attractions based on hash 

retrieval. Experimental results verify that this algorithm is 

more effective than CNN-based method, dynamic landmark 

screening-based method, and simple hash retrieval-based 

method. Next, a personalized recommendation model was 

established for tourist attractions based on both geographical 

location and time period. Comparative experiments revealed 

that our algorithm boasted the best performance, owing to the 

comprehensive consideration of various factors (e.g., tourist 

similarity, attraction similarity, and time period). Our 

algorithm applies to both nation-wide destination 

recommendation, and attraction recommendation in the same 

city. Its application scope is obviously wider than that of the 

contrastive algorithms. 
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