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In recent times, medical scan images are crucial for accurate diagnosis by medical 

professionals. Due to the increasing size of the medical images, transfer and storage of 

images require huge bandwidth and storage space, and hence needs compression. In this 

paper, multilevel thresholding using 2-D histogram is proposed for compressing the 

images. In the proposed work, hybridization of optimization techniques viz., Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO) and Symbiotic Organisms Search 

(SOS) is used to optimize the multilevel thresholding process by assuming the Renyi 

entropy as an objective function. Meaningful clusters are possible with optimal threshold 

values, which lead to better image compression. For performance evaluation, the proposed 

work has been examined on six Magnetic Resonance (MR) images of brain and compared 

with individual optimization techniques as well as with 1-D histogram. Recent study 

reveals that peak signal to noise ratio (PSNR) fail in measuring the visual quality of 

reconstructed image because of mismatch with the objective mean opinion scores (MOS). 

So, we incorporate weighted PSNR (WPSNR) and visual PSNR (VPSNR) as performance 

measuring parameters of the proposed method. Experimental results reveal that hGAPSO-

SOS method can be accurately and efficiently used in problem of multilevel thresholding 

for image compression. 
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1. INTRODUCTION

Medical images are an efficient source for better diagnosis 

of the disease and also help in assessing the severity of the 

disease. Their effective transmission of the diagnosis details 

through telemedicine benefits rural areas at times of 

emergencies or doctors’ absence or unavailability of the 

infrastructure. They play a significant part in identifying 

internal structure of the human body and helps understand the 

affected areas. But due to their increasing size, transfer and 

storage requires huge bandwidth and storage space, hence 

needs compression. Image compression reduces size of the 

image or video that is to be transmitted by removing 

irrelevant or repeated bits, so that image can be stored and 

transmitted in an efficient form and it reduces the Bits per 

Pixel (BPP), and maintain quality in reconstructed image. In 

general, images of the medical scan can be compressed in 

two ways: lossless compression and lossy compression. As 

the images that are to be provided for physicians and 

surgeons need to be of high quality and as lossless 

compression techniques provide low compression ratio it is 

quite difficult to transmit large amounts of data. In such a 

condition, lossy compression technique that comes with good 

compression ratio is needed. Therefore, it is essential to 

derive effective compression algorithms which have minimal 

loss, less time complexity, increased reduction in size and 

still preserve a significant amount of quality in reconstructed 

image. To achieve this, Various strategies for Image 

compression are developed and is ordered into two classes, 

with and without transform technique. JPEG is the principal 

global lossy transformed approach and is advantageous for 

consistent tone still gray scale and color image compression. 

International Organization for Standardization (ISO) and 

International Electro-specialized Commission (IEC) together 

presented JPEG in 1992 [1]. DCT is utilized as transform 

technique in JPEG image compression. The element of DCT 

is that the large portion of the energy is focused on D.C 

coefficients and in low frequency sub-band [2]. After 

progressive creation of DWT, image compression has been 

moved to next stage which offers enhanced reformed image 

quality with high compression [3, 4]. Due to tedious coding 

measure, the computational complexity of JPEG-2000 is 

slower than JPEG by 30 times [5, 6]. 

Quantization is of two types: scalar quantization and 

vector quantization. When compared to scalar quantization, 

execution of Vector Quantization (VQ) procedure is superior. 

VQ is essentially a C-means clustering technique broadly 

utilized for image compression [7]. Linde et al. presented the 

Linde–Buzo–Gray (LBG) algorithm, which starts with the 

lowest codebook size and bit by bit increment size of 

codebook, utilizing a parting system [8] to progress the 

enactment of c-means. LBG algorithm is simple, adaptable 

and flexible but, does not guarantee the best global solutions. 

Recently, the evolutionary optimization algorithms had been 

developed to design the codebook for improving the results 

of LGB algorithm. Rajpoot et al. designed a codebook by 

using an ant colony system (ACS) algorithm [9]. Moreover, 

vector quantization using particle swarm optimization (PSO) 
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[10] beats LBG algorithm, which depends on solution of 

updating the global best (gbest) and local best (lbest). Wang 

et al. developed Quantum particle swarm algorithm (QPSO), 

to tackle the 0–1 backpack issue [11]. Kumari et al. proposed 

Flower Pollination Algorithm (FPA) for efficient codebook 

design to compress the medical images [12]. Vector 

quantization is one which is utilized for clustering the image 

and data. But due to time consuming procedure, design of 

codebook is troublesome task [13]. Fractal image 

compression is a non-transformation technique where image 

is changed into more modest locales for improved image 

compression however this procedure is totally tedious [14]. 

Another non-transformation technique is Artificial Neural 

Networks, is accomplished for image compression by the 

neural organization; the outcomes are demonstrated that the 

training algorithm and the back propagation neural 

organization can expand the performance [15, 16]. Mardani 

et al. have used Generative Adversarial Neural Networks 

(GANs) based compressive sensing framework to model the 

(low-dimensional) manifold of high-quality MR images [17]. 

Gözcü et al. have proposed a learning-based framework for 

optimizing MRI subsampling patterns for a specific 

reconstruction rule and anatomy [18]. Gao and Xiong have 

proposed a deep learning framework for the enhancement of 

compressed brain images [19]. Another non-transformation 

procedure is thresholding. Thresholding is performed as in 

otsu technique by class variance or depending on the criterion 

of entropies like Shannon, Fuzzy, and Kapur [20, 21]. One of 

inherent thresholding procedure is Birge–Massart, which is 

utilized for image compression [22]. A weighted membership 

function is altered by the spatial information of local and 

global to improve the results of thresholding MR images in 

conditional spatial FCM [23]. CT images are segmented by 

SVM using various kernel functions and optimization of 

sequential minimal using threshold optimization [24-26]. 

Kumari et al. proposed Hybrid Bacteria Foraging 

Optimization Algorithm and Particle Swarm Optimization 

(HBFOA–PSO) algorithm for effective outcomes of 

thresholding to achieve improved image compression [27]. 

Ahilan et al. have proposed the use of PSO and its variants 

Darwinian PSO and Fractional Order DPSO algorithms for 

multi-level thresholding for image segmentation for lossless 

compression of medical images [28]. Hoang et al. proposed a 

new layered image compression framework with encoder-

decoder matched semantic segmentation (EDMS) and shows 

better results when compared to the state-of-the-art semantic-

based image codec [29]. A serious problem of first-order 

thresholding using 1-D histogram is that the spatial 

correlation between pixels is not considered. Recent 

investigations show that the outcomes acquired with 2D 

histogram oriented methodologies are better than those got 

with 1D histogram [30]. Farnad et al. have shown that hybrid 

PSO/GA/SOS algorithm (HPG-SOS) dominates other 

evolutionary algorithms in terms of convergence, execution 

time and success rate [31]. This work, therefore, proposes the 

use of Hybrid Genetic Algorithm Particle Swarm 

Optimization Symbiotic Organisms Search (hGAPSO-SOS) 

for effective and efficient 2-D histogram based multilevel 

thresholding for the first time, for image compression. 

Multilevel thresholding is developed using 2-D histogram by 

assuming the Renyi entropy as an objective function. 

Meaningful/useful clusters are possible with optimal 

threshold values, which lead to better image thresholding and 

thereby to the objective of image compression. The obtained 

results are compared with individual optimization techniques 

such as Grey Wolf Optimization (GWO), Moth-flame 

Optimization (MFO), Flower Pollination Optimization (FPO), 

Particle Swarm Optimization (PSO), Bacteria Foraging 

Optimization Algorithm (BFOA), and Hybrid Bacteria 

Foraging Optimization Particle Swarm Optimization 

(HBFOA-PSO) and, with 1-D histogram. For the 

performance evaluation of the proposed work, Peak Signal to 

Noise Ratio (PSNR), Weighted Peak Signal to Noise Ratio 

(WPSNR), objective function, Visual PSNR (VPSNR), and 

Compression Ratio (CR) are considered. In every parameter, 

the performance of proposed hGAPSO-SOS algorithm with 

2-D histogram is better than other state of the art algorithms 

and, with 1-D histogram.  

This paper is organized as follows: Section 2 describes the 

objective function Renyi Entropy. In Section 3, the 

algorithms GA, PSO and SOS are explained. The proposed 

approach is explained in Section 4. Finally, results are 

discussed in Section 5 followed by Conclusion in Section 6. 
 

 

2. INTRODUCTION TO RENYI ENTROPY 
 

For additive and independent random events, consider ‘n’ 

array discrete probability distributions (pdf) as (F1, F2, F3 … 

Fn) ε Δn where Δn={(F1, F2, F3 … Fn), Fi≥0, and ∑ 𝐹𝑖
𝑛
𝑖=1 = 1} 

for random variables (X1, X2, X3, …… Xn) then Renyi 

entropy is given as 
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Here ‘α’ is higher than zero and, is approaches towards to 

one, the Renyi entropy turn out to be Shannon entropy. 

Basically, image is clustered into two, one conveys object 

data (cluster C1) and another conveys background (cluster 

C2), at that point Renyi entropy is 
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where, 𝐹(𝐶1) = ∑ 𝐹𝑡
𝑖=0 (𝑖), 𝐹(𝐶2) = ∑ 𝐹𝐿−1

𝑖=𝑡+1 (𝑖), Here Fi is 

the normalized histogram of image and, ‘L’ is highest 

intensity level of gray scale image. With single threshold 

value ‘t’, the Renyi entropy is given as 
 

( ) ( )max 1 2
argt C CH H 

     = +    
 (4) 

 

2.1 Concept of multi-level thresholding 
 

With ‘N’ threshold values, t=(t1, t2, t3 … tN), the image be 

portioned into ‘N’ clusters C=(C1, C2, C3 … CN). The Renyi 

entropy for every distinct cluster is characterized as 
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where, 𝐹(𝐶1) = ∑ 𝐹
𝑡1
𝑖=0 (𝑖) , 𝐹(𝐶2) = ∑ 𝐹

𝑡2
𝑖=𝑡1+1

(𝑖)  and 

𝐹(𝐶𝑁) = ∑ 𝐹𝐿−1
𝑖=𝑡𝑁

−1 (𝑖). 

With ‘N’ thresholds, the overall Renyi entropy or objective 

function of image is given as 
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Two fake thresholds are presented t0 and tN=L-1 which 

have the condition t0 < t1………. < tN-1 < tN to make simpler 

calculations. The optimal thresholds are attained with any 

soft computing technique by maximizing the Eq. (8). 

 

2.2 Two-dimensional Renyi entropy 

 

Consider I(m, n) is an intensity of image at spatial location 

(m, n) with size of the image as ‘M×N’ for gray scale image, 

and its 1D-histogram is ‘h(x)' for x ε {1, 2, 3,……., L-1}, 

here ‘L’ is 256 with elements in histogram as G. In literature, 

1D-histogram is used for selection of optimal thresholds and 

are attained by optimizing the objective function i.e. entropy. 

The 2-D histogram of an image is found by characterizing a 

local average of nine neighboring pixels, I(x, y), denoted g(x, 

y) as 
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Figure 1. Sample for 2-D histogram calculation 

 

For instance let us take an image of size 4×4 as appeared 

in Figure 1(a) and its average intensity g(x, y) is determined 

by padding required number of zeros at edges as appeared in 

Figure 1(b) for first element i.e. 126 of Figure 1(a), and is 

given in Figure 1(c). 

The 2-D histogram computed using Eq. (9) of the marked 

area of Metastatic image is shown in Figure 2. It is 

divided/grouped into four clusters by a single threshold (t, s), 

where ‘t’ and ‘s’ are thresholds for original image I(x, y) and 

average image g(x, y) respectively. The area of divided 

clusters is not the same. From the 2-D histogram, it is seen 

that corner to corner quadrants convey a lot of data. The 

diagonal 1st quadrant indicates object, 3rd background and 2nd, 

4th quadrants are ignored because they do not convey any 

information. 

 

 
 

Figure 2. Metastatic image and 2-D histogram 

 

For object and background quadrants, Renyi entropy is 

given as 
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where, 𝐹𝐷1(𝑡, 𝑠) = 1 − ∑ ∑ 𝐹𝑠
𝑗=0

𝑡
𝑖=0 (𝑖, 𝑗)  and, 𝐹𝐷2(𝑡, 𝑠) =

1 − ∑ ∑ 𝐹𝐿−1
𝑗=𝑠+1

𝐿−1
𝑖=𝑡+1 (𝑖, 𝑗).  

For optimum threshold (t, s) selection, the objective 

function which is to be maximized is 
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2.3 Multi-level thresholding using 2D-hisotgram  

 

Thresholding with 2-D histogram conveys superior 

outcomes particularly in multilevel thresholding. Multilevel 

thresholding picked up lots of popularity over bi-level 

thresholding because; it clusters the image into several 

suitable clusters, helps in precise examination and 

interpretation of the image [36]. With two thresholds (t1, t2) 

and (s1, s2), the 2-D histogram of an image is clustered into 9 

clusters as appeared in Figure 3(a). At that point the slanting 

quadrants first, fifth and ninth represents objects(s) regions, 

intermediate and background respectively as shown in Figure 

3(a) and other regions are noise and edges and are neglected. 

The 2-D histogram of an image is clustered into 16 clusters 

with three thresholds (t1, t2, t3) and (s1, s2, s3) as shown in 

Figure 3 (b).  

995



 

 
 

Figure 3. 2-D histogram: a) 2- level b) 3- level 

 

With two thresholds, Renyi entropy of diagonal quadrants 

are calculated as 
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where, 

𝐹𝐷1(𝑡, 𝑠) = 1 − ∑ ∑ 𝐹
𝑠1
𝑗=0

𝑡1
𝑖=0 (𝑖, 𝑗) , 𝐹𝐷2(𝑡, 𝑠) = 1 −

∑ ∑ 𝐹
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𝑗=𝑠1

+1
𝑡2
𝑖=𝑡1+1

(𝑖, 𝑗)  and 𝐹𝐷3(𝑡, 𝑠) = 1 −
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+1
𝐿−1
𝑖=𝑡2+1

(𝑖, 𝑗), for optimum threshold (t, s) selection, 

the objective function which is to maximize is 
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For ‘N’ thresholds, the equation is given as 
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Two dummy variables are selected t0 and tN+1= L-1 which 

fulfill the condition t0 < t1………. < tN-1 < tN+1 for simplifying 

the calculations. Likewise, s0 and sN+1=L-1 are selected with 

condition s0 < s1………. < sN-1 < sN+1. The 2-D histogram of 

four brain MR images is appeared in Figure 4. From the 

figure, it is seen that the greater part of the data/energy is 

focused on corner to corner quadrants. Multilevel 

thresholding is a tedious procedure and is relative to the 

number of thresholds ‘N’. So, soft computing techniques play 

a significant role in this challenge by assuming Eq. (17) as an 

objective function which prompts decrease in the 

computational time.  

 

 
 

Figure 4. Input images and corresponding 2-D histogram 

 

 

3. OVERVIEW OF GA, PSO, AND SOS ALGORITHMS 

 

3.1 Genetic Algorithm (GA) 

 

It was initiated and developed between the years 1960s to 

1970s by a team called Holland team and is being used for 

many constrained and unconstrained optimization problems. 

It is inspired and developed by in-depth study of natural 

selection of Charles Darwin’s theory [25]. GA being a non-

swarm-based technique consists of chromosome for each and 

every population or solution of the problem. Initial 

populations are generated by a random number within the 

range of search space. The ordinary GA uses two steps for 

selection and creation of new population i.e., mutation 

operation and crossover operation. The newly generated 

population or chromosomes are named as offspring. The 
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crossover operation is performed between two parents for 

generation of new healthy child. Offspring C is calculated 

from parents A and B, with the following equation, 

 

( ) ,1 BAC iiii
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where, 𝛼𝑖 ∈ [0,1] is a random number. 

In all iterations, chromosomes change their values by 

mutation operation. Mutation in real number is obtained by 

addition of chromosome with randomly created real number 

or randomly generated number from Gaussian (normal) 

distribution. Let A is chromosome and it’s ith variable is Ai 

then new offspring Al is obtained by mutating ith gene Ai
l and 

is calculated with the following equation: 

 

,
1

NAA ii
+=  (20) 

 

where, ‘N’ is random number or value taken form Gaussian 

distribution as 
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Here, ‘M’ is random real number (range between 1 and 

1000, mostly authors prefer M value 10) and rand (0,1) is a 

random number lies between 0 to 1. LB and UB are lower 

limit and upper limit of Ai and Ai
l respectively. 

The genetic algorithm can be explained in the following 

steps:  

Step 1: Initialize number of chromosomes as N. 

Step 2: Calculate the objective function/fitness function for 

all N chromosome. 

Step 3: N chromosome are updated by four repeated steps 

i.e., best chromosome selection – Crossover operation 

and Mutation operation and finally Replacement. 

Step 4: The generated chromosomes are forwarded for next 

iterations. 

Step 5: Repeat step 2 - 4 till stopping criteria or maximum 

Iteration. 

 

3.2 Particle swarm optimization 

 

It is inspired by the searching behavior of particles; some 

examples are swarm of fish or birds and was developed in the 

year 1995 by Eberhart and Kennedy 1995 [25]. The PSO, 

follows randomness and some intelligence in updation of the 

both particle positions and velocity. The PSO being a swarm-

based optimization and is simple and easily adopted for any 

particle and mathematical problems. Each particle in PSO 

may be assumed as one bird or one fish and are indicated 

with Oi. Each particle gains some initial velocity Vi and 

position Oi of dimensions equal to dimensions of the problem. 

In all iterations each particle holds some position called 

personal best (Op) and highest fitness particle holds global 

best (Obest) position and these positions are updated in 

upcoming iterations. Let ‘t’ is current iteration, then PSO 

velocity and position update follows Eq. (21) and Eq. (22). 
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Eq. (21) is for velocity updation and Eq. (22) is for 

updation of particle position with the help of updated 

velocities. Op(i, d) is a personal best for particle i and Obest 

is the best particle among all particle in current iteration ‘t’, 

c1 and c2 are user defined control tuning parameters, r1 and 

r2 are random numbers lying between 0 to 1. The PSO 

algorithm is as follows. 

PSO algorithm: 

1: Initialize positions of all particles Oi and corresponding 

velocities Vi. 

2: Assign highest fitness particle as Obest 

3: While (termination criterion) 

4: for i=1, 2,...,n do 

5: Update velocities of all particles by using Eq. (21) 

6: Update positions of all particles by using Eq. (22) 

7: Find new objective function of updated particle Oi(t + 1) 

8: If new objective function value Oi(t + 1) is higher than old 

Op,i(t) then 

9: Replace Op,i(t) with Oi(t + 1) 

10: end if 

11: end for 

12: Now find Obest(t) in all updated particles Op(t) 

13: itr=itr + 1 (iteration increment) 

14: end while 

15: Finally, outcome Obest is generated. 

 

3.3 Symbiotic organisms search (SOS) 

 

SOS is a soft computing technique developed based on 

organisms and was proposed in the year 2014 by Prayogo 

and Cheng, it is inspired by the natural behavior of symbiotic 

organisms that used to survive in the ecosystem [28]. The 

fitness for each organism shows the level of adaption to the 

treated objective. The major advantage of SOS is, it does not 

require prior tuning of tuning parameters. As like other 

algorithms, SOS updates the all organism position in each 

iteration. Position update is done in three successive 

operations; those are Mutualism, Commensalism and 

Parasitism. The organism positions will be changed based on 

best possible relation among all. The algorithm is 

summarized as following: 

1. Initialize the required parameters 

2. While (until stopping criterion) do 

Three phases I. Mutualism II. Commensalism III. Parasitism 

3. End while 

In each iteration, update the phases with the corresponding 

equations and are as follows. 

 

3.3.1 Mutualism phase 

It is a phase, in which both the organisms are benefited, 

associated with the connection among flowers and honey 

bees. In this stage, organism Oj randomly selected and it 

interacts with the other organism Oi. They maintain a good 

relationship between them so that both organisms get 

benefited. The updated position of both the organisms is 

obtained with the following equations. 
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where, mutal_vector gives relationship between the 

organisms Oi and Oj and above equation explains the efforts 

of mutualistic in gaining their goals and enhance their living 

survival. The benefit factors BF1 and BF2 show how much 

of benefit organism acquired while interacting with another 

organism. These two are randomly selected and must be 

either 1 or 2. Obest is the best level of adaption that has 

established up to this point. 

 

3.3.2 Commensalism phase  

This phase is developed on the basis of relation between 

the Remora fish and sharks. The remora always receives 

benefits whereas shark may or may not receive benefits from 

relationship. As discussed in mutualism phase, in this Oi 

organism gets benefit by maintaining a relationship with 

randomly selected Oj organism. Then updated equation is (26) 
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3.3.3 Parasitism phase  

This phase exit between the human being and malaria 

mosquito, in which human being gets effected and some time 

may die and mosquitoes get benefited with the relationship. 

As one of the organisms got effected so there is a need to 

replace with newly generated organism. As like other phases, 

one organism is selected arbitrarily Oj and it acts as a victim 

for parasite vector. In problem search space this vector is 

obtained by duplicating Oi with newly generated and then 

modifies the randomly chosen organism. If at all this vector 

is better as compared to Oj then this phase kills Oj and 

replace or else Oj gains some energy from parasite and live 

for some other days. 

 

 

4. HYBRID ALGORITHM BASED ON GA, PSO AND 

SOS (HGAPSO-SOS) 

 

Three of the evolutionary algorithms GA, PSO and SOS 

are combined, represented as hGAPSO-SOS, inspired by 

Charles Darwin’s natural selection for the first time [29]. 

Here is fact that if any organism has good genetic structure, it 

leads to a better feature, and has long life in ecosystem. The 

GA creates a better offspring with good genetic structure 

from parents. The PSO algorithm gives some important 

experiences to all organisms which leads better survival of 

each organism. In the proposed algorithm, PSO follows GA 

and then SOS follows the sequence. 

In all iterations, the hGAPSO-SOS starts with GA with 

required population, dimension of problem and required 

initialization of parameters. In next step, all organisms get 

some best experience with PSO. If any organism position is 

better as compared to past position, then it will move to 

better level or else it will remain in same position. If best 

experience is better than the global best Obest, then replace it 

with new position. So PSO always trying to check for better 

position by updating the velocity and keep best for the next 

iterations and also it updates the Obest. As all the organisms 

got some experience with the PSO, now they try to establish 

a better relation with other organism which leads to better 

offspring and healthy population. In third phase, if any 

organism gets improved fitness value, then that organism 

position is updated with SOS interaction. From the whole 

observation the GA and SOS are useful for position update 

and PSO update the Obest and personal best of organism. If 

the current iteration is equal to stopping condition then 

algorithm stop or else same process is repeated. Block 

diagram of proposed HGAPSO-SOS algorithm for image 

compression using multilevel thresholding with 2-D 

histogram is shown in below Figure 5. 
 

 
 

Figure 5. Block diagram of image compression using hGAPSO-SOS Algorithm with 2-D histogram 
 

 

5. RESULTS AND DISCUSSION 

 

In this paper, Hybridization of GA, PSO, and SOS 

(HGAPSO-SOS) is used for 2-D histogram by maximizing 

the Renyi’s entropy for effective and efficient image 

thresholding for image compression. For evaluation of the 

experiments the method adopted for design of thresholds 

with the assistance of both 1-D and 2-D histogram is gray 

scale image coding. Six Magnetic Resonance Imaging (MRI) 

brain images of four diverse patients with age 3, 32, 35, and 

42 taken from BraTS dataset 2018 of size 256 × 256 namely 

“Astrocytoma”, “Coronary T1 Astrocytoma”, “Glioma”, 

“Metastatic”, “PNET”, and “Meningioma’’ are adopted for 

valuation of compression and each pixels take 8 bits (bits per 

pixel=8). The programs are implemented using Matlab15a 

with 100 initial solutions. The performance of the proposed 

hGAPSO-SOS algorithm is compared with six different 

algorithms namely GWO, MFO, FPO, PSO, BFOA and 

hBFOA-PSO with thresholds of five. 
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5.1 Performance metrics for evaluation  

 

To assess the impact of the hGAPSO-SOS algorithm for 

the subject of multilevel thresholding, we considered Renyi 

entropy as fitness function with thresholds ‘5’ and are 

enhanced with the proposed hGAPSO-SOS for successful 

and effective image compression. Performance of proposed 

2-D histogram thresholding technique is validated with 

performance metrics of fitness function, standard deviation, 

PSNR, MSE, WPSNR, VPSNR, CR and BPP against six 

different algorithms such GWO, MFO, FPO, PSO, BFOA 

and hBFOA-PSO. Fitness function describes how best a 

solution is appropriate for the given problem. The standard 

deviation of maximum fitness function is stability measuring 

parameters of the algorithm. 

 

5.1.1 Peak signal to noise ratio (PSNR) 

The fidelity of encoded image is evaluated using the Peak 

Signal-to-Noise Ratio (PSNR). The PSNR outlines the visual 

quality of reconstructed image and is expressed in decibels 

(dB). If the quality of the reproduced image is better, then it 

demonstrates the higher estimation of PSNR. The definition 

of PSNR is 
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From the Eq. (27), it is clear that PSNR value has 

increased with the decrement in MSE value. 

 

5.1.2 Mean square error (MSE) 

MSE measures the degradation of the reformed image as 

compared to input image and reconstructed image. MSE 

calculated as 
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where, M×M is the size of image, Xi,j and Yi,j denotes the 

value at the location (i,j) of actual and reconstructed images 

respectively. 

 

5.1.3 Weighted PSNR (WPSNR) 

The WPSNR includes human visual system parameters. 

The WPSNR is obtained by weighting the PSNR by the 

human visual system (HVS). The WPSNR is given as 
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Here, NVF is noise visibility function with the standard 

deviation block of pixels of size (8×8), given as  
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5.1.4 Visual-PSNR (VPSNR) 

The visual MSE of n blocks of image is calculated as 
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where, K=1, 2, 3………n, X and Y are input and 

decompressed images respectively, N is size of the image 

block. Then MSE of Kth image block is given as 
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And, standard deviation of the block is calculated as 

follows 
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Then, VPSNR is given as 
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where, 𝑉𝑀𝑆𝐸 =
1

𝑁
∑ 𝑉𝑁
𝐾=1 𝑀𝑆𝐸𝐾. 

 

5.1.5 Compression ratio (CR) and Bits per pixel (BPP) 
CR is defined as the ratio of original image size to 

compressed image size and Bits per Pixel is the number of 

bits required represent compressed image. CR and BPP are 

calculated using Eq. (33) and Eq. (34) respectively. 

 

sizeimageCompressed

sizeimageOriginal
CR =  

(33) 

 

pixelsofNumber

bitsofNumber
BPP =  

(34) 

 

5.2 Quantitative analysis 

 

The procured result of the hGAPSO-SOS is compared 

against six different optimization algorithms such GWO, 

MFO, FPO, PSO, BFOA and hBFOA-PSO for six MRI brain 

images Astrocytoma, Coronary T1 Astrocytoma, Glioma, 

Metastatic, PNET, and Meningioma at number of thresholds 

Th=5. The bits per pixel (bpp) is the ratio of size of 

compressed image and number of pixels in compressed 

image. The values of Bits per Pixel (BPP) are variable and 

are calculated by encoding the thresholded image with 

cascaded run length and arithmetic coding. To evaluate bpp 

versus PSNR results, all the pixels in the input image are 

supplanted with optimal thresholds. If number of thresholds 

Th=2, at that point 2 bits are sufficient to represent 2 

thresholds. So size of compressed image (in terms of bits) is 

256×256×2 (since size of input image is 256×256). In this 

manner, bpp=(256×256×Th)/(256×256×8). Table 1 gives the 

relation between the number of thresholds (Th) and bpp. 

 

Table 1. Number of thresholds versus bpp 

 
Number of thresholds (Th) bpp  

2 0.25 

3 0.375 

4 0.50 

5 0.625 

 

In order to analyze the performance of proposed algorithm 

for metrics of fitness function, standard deviation, PSNR, 
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MSE, WPSNR, VPSNR, CR and BPP, the number of 

thresholds Th is chosen as 5. The results are evaluated and 

compared in Table 2, Table 3, Table 4, and Table 5 for both 

1-D and 2-D histogram. Table 2 below shows the quality 

metrics of fitness function, and standard deviation. PSNR and 

MSE values attained from the different algorithms are shown 

in below Table 3. The principal advantage of PSNR is, it is 

simple to calculate and the drawback is that, it ignores the 

attributes of human visual system (HVS). So, there is an 

essential of different parameters, which gives esteem value to 

visual quality. Along these lines, Weighted PSNR (WPSNR) 

and Visual PSNR (VPSNR) are considered for exact quality 

metrics of proposed technique. Computational time is the 

total time taken by the algorithm to produce outcome or 

results and, is measured in seconds. The WPSNR, VPSNR 

values and, computational time attained from the different 

algorithms for MRI brain test images are shown in below 

Table 4. 

 

Table 2. Performance analysis of fitness function & standard deviation of seven algorithms for brain images 

 

Brain Input Images Optimization Technique 
Fitness function Standard deviation 

1-D histogram 2-D histogram 1-D histogram 2-D histogram 

Meningioma 

GWO 16.172 16.9871 0.117654 0.08711 

MFO 16.631 17.1642 3.61E-15 0.0001 

FPO 16.745 17.2092 5.42E-15 3.61E-15 

PSO 16.913 17.2727 0.410305 0.547852 

BFOA 16.922 17.2311 1.45E-14 1.14E-15 

hBFOA-PSO 16.968 17.3589 3.61E-15 2.01E-15 

hGAPSO-SOS 17.745 18.4089 0.241575 0.125874 

Glioma 

GWO 19.041 19.5462 0.06534 0.04761 

MFO 19.634 19.7893 4.32E-15 2.08E-14 

FPO 19.642 19.8561 0.12408 0.0909 

PSO 19.658 19.9687 0.204440 0.478956 

BFOA 19.824 20.3785 3.61E-15 1.02E-14 

hBFOA-PSO 19.835 20.3738 3.61E-15 2.01E-15 

hGAPSO-SOS 19.947 20.4214 0.369852 0.587945 

Coronary T1 

Astrocytoma 

GWO 16.965 17.5236 0.03465 0.053441 

MFO 17.452 17.8964 0.0075 1.61E-15 

FPO 18.248 18.3783 0.12238 1.81E-15 

PSO 18.268 18.4124 0.341585 0.014785 

BFOA 18.273 18.5245 7.23E-15 5.01E-14 

hBFOA-PSO 18.348 18.7458 3.61E-15 1.45E-14 

hGAPSO-SOS 18.410 18.9589 0.145789 0.258974 

Astrocytoma 

GWO 17.244 17.4672 0.078797 0.02483 

MFO 17.635 17.8534 3.61E-15 1.81E-15 

FPO 17.724 17.9251 3.61E-15 1.81E-15 

PSO 17.825 18.1245 0.424639 0.569874 

BFOA 18.040 19.2354 3.61E-15 4.25E-15 

hBFOA-PSO 18.091 19.5478 7.23E-15 6.02E-14 

hGAPSO-SOS 18.658 19.6578 0.458965 0.589745 

PNET 

GWO 15.971 16.3241 0.144739 0.03428 

MFO 16.912 17.4583 3.61E-15 2.37E-15 

FPO 16.987 17.9475 4.42E-15 3.61E-15 

PSO 17.015 18.4732 0.569382 0.0982 

BFOA 17.075 18.5173 1.08E-14 5.42E-15 

hBFOA-PSO 17.086 18.7549 7.23E-15 6.42E-15 

hGAPSO-SOS 17.987 19.5367 5.42E-15 4.98E-15 

Metastatic 

GWO 19.011 19.6709 0.038206 0.03401 

MFO 19.704 19.9143 1.08E-14 8.03E-15 

FPO 19.709 20.6160 2.41E-15 1.34E-15 

PSO 19.711 20.8521 0.22731 0.12774 

BFOA 19.762 20.9045 0.0909 9.03E-15 

hBFOA-PSO 19.765 21.0152 0.09090 1.81E-15 

hGAPSO-SOS 19.983 21.2475 0.104217 0.029367 

 

The values of BPP and CR are variable and are calculated 

by encoding the thresholded image with cascaded run length 

and arithmetic coding and are given in below Table 5. From 

the results, it is found that the proposed hybrid algorithm 

hGAPSO-SOS outperforms in all performance parameters 

when compared to other algorithms i.e. higher PSNR, lower 

MSE, better fitness function, and standard deviation and, also 

noted that the results are better with 2-D histogram when 

compared with the 1-D histogram. From Table 2, quality 

metrics such as fitness function and standard deviation were 

evaluated using proposed hybrid algorithm hGAPSO-SOS on 

six MRI brain images and compared with six different 

algorithms namely GWO, MFO, FPO, PSO, BFOA and 

hBFOA-PSO, for both 1-D and 2-D histogram at number of 

thresholds Th=5. 

From the table, it is observed that, proposed hGAPSO-

SOS technique provides fitness value is 4.7573% more with 

1-D, 6.486% more with 2-D than other existing algorithms. 

From comparison, it is also observed that fitness value 

provided is 2.514% more with 2-D than 1-D histogram. 

Figures 6 and Figure 7 below shows the graphical 

representation of variation in PSNR values of six MRI brain 
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images Astrocytoma, Coronary T1, Glioma, Metastatic, 

PNET, and Meningioma of all optimization algorithms 

obtained with 1-D and 2-D histogram respectively at 0.625 

bpp at number of thresholds Th=5. The graphical 

representation of variation in MSE values of six MRI brain 

images of all optimization algorithms obtained with 1-D and 

2-D histogram at 0.625 bpp are shown in below Figure 8 and 

Figure 9 respectively. 

 

 
 

Figure 6. Variation of PSNR obtained with 1-D histogram of 

MRI brain images at bpp=0.625 

 

 
 

Figure 7. Variation of PSNR obtained with 2-D histogram of 

MRI brain images at bpp=0.625 
 

 
 

Figure 8. Variation of MSE obtained with 1-D histogram of 

MRI brain images at bpp=0.625 

 

From below Table 3, quality metrics such as PSNR and 

MSE were evaluated using proposed hybrid algorithm 

hGAPSO-SOS on six MRI brain images and compared with 

other six different algorithms for both 1-D and 2-D histogram 

at number of thresholds Th=5. From the table, it is observed 

that, proposed hGAPSO-SOS technique provides PSNR is 

4.91% more with 1-D, and 4.1% more with 2-D than other 

existing algorithms. From comparison, it is also observed that 

PSNR provided is 0.857% more with 2-D than 1-D histogram. 

From the table, it is clear that proposed hybridization 

technique provides MSE is 52% less with 1-D, and 49% less 

with 2-D than other existing algorithms. From comparison, it 

is also observed that MSE value is 6.7395% less with 2-D 

than 1-D histogram. 

 

 
 

Figure 9. Variation of MSE obtained with 2-D histogram of 

MRI brain images at bpp=0.625 

 

From below Table 4, quality metrics such as WPSNR, 

VPSNR and Computational time were evaluated using 

proposed hybrid algorithm hGAPSO-SOS on six MRI brain 

images and compared with six different algorithms namely 

GWO, MFO, FPO, PSO, BFOA and hBFOA-PSO, for both 

1-D and 2-D histogram at number of thresholds Th=5. From 

the table, it is observed that, proposed hGAPSO-SOS 

technique provides WPSNR is 5.77% more with 1-D, 

VPSNR is 18.4787% more with 1-D, 7.69% more WPSNR 

with 2-D, and 19.16% more VPSNR with 2-D than other 

existing algorithms. From comparison, it is also observed that 

WPSNR provided is 4.1575% more with 2-D than 1-D, and 

2.23697% more VPSNR with 2-D than 1-D histogram. From 

the table, it is clear that proposed hybridization technique 

computational time is little bit higher as compared with other 

algorithms in 2-D because of cascading GA, PSO, and SOS, 

and is illustrated in Table 4. But in comparison with the 1-D, 

computational time is 2.514% lower with 2-D. From the 

results, it is found that the proposed hybrid algorithm 

hGAPSO-SOS outperforms in all performance parameters 

when compared to other algorithms i.e. higher WPSNR, 

VPSNR, and also noted that, the results are better with 2-D 

histogram when compared with the 1-D histogram. From 

comparison of results, it is observed that, proposed hGAPSO-

SOS technique gives better compression ratio, i.e. 16.365% 

using 1-D and, 36.94% using 2-D histogram than the existing 

techniques GWO, MFO, FPO, PSO, BFOA and hBFOA-PSO, 

and is illustrated in below Table 5. From the table, it is clear 

that proposed hybridization technique provides higher 

compression ratio 68.77% using 2D than 1D histogram. From 

the results, it is found that the proposed hybrid algorithm 

hGAPSO-SOS provides better CR than the existing 

techniques GWO, MFO, FPO, PSO, BFOA and hBFOA-PSO. 

So, hGAPSO-SOS method can be accurately and capably 

used in problem of multilevel thresholding using 2-D for 

image compression. 
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5.3 Qualitative analysis 

 

Here we focus on visual clarity of decompressed images 

with the proposed work by maximizing the Renyi entropy by 

thresholding the image with proposed hybrid GAPSO-SOS 

and with GWO, MFO, FPO, PSO, BFOA and hBFOA-PSO 

algorithms. Figure 10 to Figure 15 below, shows original 

MRI brain images and the corresponding decompressed 

images of GWO, MFO, FPO, PSO, BFOA, hBFOA-PSO and 

hybrid GAPSO-SOS algorithms of Astrocytoma, Coronary 

T1 Astrocytoma, Glioma, Metastatic, PNET, and 

Meningioma brain MRI images respectively.  

 

Table 3. Performance evaluation of PSNR & MSE values of seven algorithms for brain images 

 

Brain Input 

Images 
Optimization Technique 

PSNR in dB MSE 

1-D histogram 2-D histogram 1-D histogram 2-D histogram 

Meningioma 

GWO 36.36813 36.54231 17.6145 16.3126 

MFO 36.46615 36.64134 15.5373 14.2353 

FPO 36.54133 36.79182 14.7675 13.3815 

PSO 36.84133 36.88658 13.4569 13.31749 

BFOA 37.39621 37.47584 11.8429 11.62777 

hBFOA-PSO 37.58954 38.65026 11.3273 8.872671 

hGAPSO-SOS 39.10687 39.91545 7.9871 7.789962 

PNET 

GWO 34.26407 34.66402 18.8179 18.8179 

MFO 34.55097 35.05037 17.6144 17.6144 

FPO 34.78454 35.53424 16.2546 14.2641 

PSO 35.09575 35.99365 15.5373 13.2343 

BFOA 35.31654 36.21428 14.7672 13.1532 

hBFOA-PSO 35.55442 37.16502 13.9807 11.6745 

hGAPSO-SOS 36.54231 38.38712 11.5923 9.7609 

Metastatic 

GWO 29.12323 29.72544 61.4678 53.6106 

MFO 29.21606 30.16525 60.1674 48.8914 

FPO 29.23780 30.29682 59.8663 48.2973 

PSO 29.29132 31.26530 59.1335 47.1272 

BFOA 29.72694 31.15134 53.4896 43.7657 

hBFOA-PSO 31.96948 32.95464 31.9162 28.6059 

hGAPSO-SOS 32.27554 33.79839 29.7458 19.8202 

Glioma 

GWO 28.92734 29.72694 56.3952 53.489 

MFO 29.18506 30.16053 37.6738 38.891 

FPO 31.96948 32.52526 31.9169 28.605 

PSO 32.27554 32.86587 38.50582 37.7132 

BFOA 32.84134 32.98745 33.80231 32.68401 

hBFOA-PSO 33.04264 34.25874 32.27129 30.70481 

hGAPSO-SOS 33.83699 34.90258 26.87704 26.47417 

Coronary T1Astrocytoma 

GWO 33.04206 33.5691 32.24120 27.02921 

MFO 33.66409 33.9583 30.71342 25.16091 

FPO 33.75482 33.9987 28.90347 23.18384 

PSO 33.77889 33.96724 27.23901 22.3451 

BFOA 34.00706 34.43670 25.84487 21.6054 

hBFOA-PSO 34.35888 34.97895 23.83375 21.1582 

hGAPSO-SOS 34.56214 35.96587 22.74397 20.72494 

Astrocytoma 

GWO 30.34729 31.969481 46.369 31.916 

MFO 32.54134 32.855644 27.978 26.025 

FPO 32.74866 33.042064 26.675 24.932 

PSO 34.03859 34.25874 25.65791 24.38969 

BFOA 35.00920 35.33568 20.5192 19.03322 

hBFOA-PSO 35.08465 35.45789 20.1658 18.5051 

hGAPSO-SOS 35.29112 35.65894 19.22952 17.66796 

 

 
 

Figure 10. Decompressed images obtained with seven 

algorithms of Astrocytoma brain image 

 
 

Figure 11. Decompressed images obtained with seven 

algorithms of Coronary T1 Astrocytoma brain image 
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Table 4. Comparison of WPSNR, VPSNR and Elapsed time values of brain images for various algorithms 

 

Brain Input 

Images 

Optimization 

Technique 

WPSNR in dB VPSNR in dB Elapsed time (sec) 

1-D 

histogram 

2-D 

histogram 

1-D 

histogram 

2-D 

histogram 

1-D 

histogram 

2-D 

histogram 

Meningioma 

GWO 15.6090 15.847 15.079 15.278 10.781 9.284 

MFO 15.8353 16.189 15.134 15.375 7.238 6.013 

FPO 15.9374 16.492 15.198 15.483 12.435 11.364 

PSO 16.0525 16.768 15.256  15.568 9.224 7.782 

BFOA 18.1255 18.978 16.124  16.258 7.020 5.567 

hBFOA-PSO 19.0003 20.024 17.102  17.478 57.999 49.24 

hGAPSO-SOS 19.7084 20.147 19.258  19.985 64.345 54.421 

PNET 

GWO 18.1534 18.345 15.264 15.583 16.912 14.957 

MFO 18.5318 18.675 15.459 15.954 7.173 6.023 

FPO 18.7523 18.967 15.973 16.367 17.234 15.024 

PSO 18.9432 19.198 16.247 16.756 9.805 7.643 

BFOA 19.0816 19.543 16.725 17.034 7.602 6.104 

hBFOA-PSO 20.2464 20.349 17.246 17.746 59.418 45.375 

hGAPSO-SOS 20.7398 20.986 18.027 18.958 71.348 58.426 

Metastatic 

GWO 25.6666 25.813 16.323 16.575 15.427 13.765 

MFO 25.7612 25.985 16.785 16.983 10.716 8.342 

FPO 25.9765 26.078 17.253 17.859 14.274 12.869 

PSO 26.4718 26.654 17.648 18.023 8.235 6.234 

BFOA 26.4960 26.942 17.904 18.867 9.443 7.569 

hBFOA-PSO 26.5009 26.875 18.127 18.849 48.395 36.235 

hGAPSO-SOS 26.7258 27.362 18.984 19.694 59.142 43.654 

Glioma 

GWO 16.9745 17.324 14.042 14.234 12.145 11.570 

MFO 17.6191 17.976 14.197 14.769 7.867 5.635 

FPO 18.2012 18.574 14.326 15.168 15.562 13.794 

PSO 18.7953 18.987 14.457 16.909 9.9885 6.270 

BFOA 18.9130 18.978 14.698 18.024 17.692 12.781 

hBFOA-PSO 19.1240 19.057 16.457 18.245 52.848 46.251 

hGAPSO-SOS 19.2351 19.333 19.985 19.658 71.753 63.231 

Coronary T1 

Astrocytoma 

GWO 17.6281 17.874 15.109 15.367 16.924 14.768 

MFO 17.8520 17.924 15.298 15.896 9.041 7.325 

FPO  17.905 18.016 15.567 16.638 15.835 13.573 

PSO 18.1561 18.245 16.102 18.214 10.561 7.529 

BFOA 19.9524 19.447 16.247 19.247 8.3687 5.321 

hBFOA-PSO 20.5253 20.727 16.367 22.124 58.186 51.982 

hGAPSO-SOS 20.8112 20.963 18.247 22.247 74.386 64.342 

Astrocytoma 

GWO  17.0790 17.354 16.018 16.675 21.726 20.047 

MFO  17.6321 17.860 16.249 17.028 8.054 6.958 

FPO 18.7072 18.864 16.573 17.893 16.392 14.538 

PSO 18.8089 18.947 16.957 18.608 13.634 9.527 

BFOA 19.5862 19.658 17.547 18.425 7.9109 4.632 

hBFOA-PSO 19.8229 19.919 18.654 19.962 65.194 56.036 

hGAPSO-SOS 20.1235 20.207 19.102 20.753 83.561 74.375 

 

 
 

Figure 12. Decompressed images obtained with seven 

algorithms of Glioma brain image 

 
 

Figure 13. Decompressed images obtained with seven 

algorithms of Metastatic brain image 
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Table 5. Evaluation of BPP and CR of seven algorithms for brain images 

 

Image 
Optimization 

Technique 

BPPcode CRcode 

1-D 2-D 1-D 2-D 

Meningioma 

GWO 0.2787556 0.5971753 28.69898 13.396401 

MFO 0.2686425 0.5900642 29.779412 13.557847 

FPO 0.3159341 0.5950264 25.323712 13.443581 

PSO 0.3038815 0.7379753 26.326053 10.840471 

BFOA 0.2710123 0.6313086 29.51895 12.67209 

HBFOA-PSO 0.2785975 0.6992593 28.715258 11.440678 

hGAPSO-SOS 0.2644136 0.5981274 30.252436 13.371352 

PNET 

GWO 0.4979358 0.8427457 16.066328 8.4024896 

MFO 0.5513481 0.895842 14.509888 8.9301464 

FPO 0.5596457 0.8709453 14.296814 9.1857568 

PSO 0.4998321 0.9520988 16.005375 9.1150522 

BFOA 0.537758 0.8776691 14.876579 9.4927808 

HBFOA-PSO 0.4984099 0.7341827 16.051046 10.896478 

hGAPSO-SOS 0.4331901 0.6019214 18.474372 13.292636 

Metastatic 

GWO 0.6842469 0.9438815 11.691686 8.4756404 

MFO 0.7204346 0.9636346 11.104409 8.3019023 

FPO 0.6060241 0.872634 13.198095 9.1673452 

PSO 0.6844049 0.8918914 11.688986 8.9697023 

BFOA 0.6902519 0.9440395 11.589973 8.4742216 

HBFOA-PSO 0.8124049 0.8564938 9.847306 9.3404059 

hGAPSO-SOS 0.8557365 0.8907356 9.3482158 8.9816747 

Glioma 

GWO 0.691358 0.8351605 11.571429 9.5789972 

MFO 0.7659457 0.9770667 10.444605 8.1877729 

FPO 0.5596234 0.8557345 14.293127 9.3482134 

PSO 0.5627259 0.857916 14.216512 9.3249217 

BFOA 0.7651556 1.0140444 10.45539 7.8892006 

HBFOA-PSO 0.5619358 0.9034272 14.236502 8.8551688 

hGAPSO-SOS 0.5596236 0.8842670 14.293267 9.0465673 

Coronary T1 

Astrocytoma 

GWO 0.5456593 0.5652543 14.661164 14.152921 

MFO 0.5864296 0.5508741 13.641876 14.522375 

FPO 0.4295543 0.5950232 18.626792 13.442674 

PSO 0.3318519 0.6363654 24.107143 12.571393 

BFOA 0.5897481 0.5357037 13.565113 14.933628 

HBFOA-PSO 0.5347556 0.7085827 14.960106 11.290143 

hGAPSO-SOS 0.5981890 0.5972342 13.375672 13.395672 

Astrocytoma 

GWO 0.5684148 0.7841185 14.074229 10.202539 

MFO 0.5420247 0.8209383 14.759475 9.7449471 

FPO 0.4295123 0.8624356 18.626793 9.2763452 

PSO 0.3373827 0.8267852 23.711944 9.6760321 

BFOA 0.5564049 0.5782123 14.378018 13.835747 

HBFOA-PSO 0.557037 0.5515062 14.361702 14.505731 

hGAPSO-SOS 0.611978 0.6018234 13.074367 13.294563 

 

 
 

Figure 14. Decompressed images obtained with seven 

algorithms of PNET brain image 

 

 

 

 
 

Figure 15. Decompressed images obtained with seven 

algorithms of Meningioma brain image 
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From figures, it is seen that decompressed image quality of 

the proposed hGAPSO-SOS is better than the other 

individual algorithms. 

Figure 16. Decompressed images of hGAPSO-SOS 

algorithm with 1-D and 2-D histogram: (a) Astrocytoma (b) 

Coronary (c) Glioma (d) Meningioma 

For efficiency measure of proposed algorithm hybrid 

GAPSO-SOS, the visual quality of reconstructed images has 

to be evaluated in Figure 16 a-d with Renyi entropy at five 

number of thresholds in 1-D and proposed 2-D histogram. 

From the figures, it is seen that hGAPSO-SOS visual quality 

is better for 2-D histogram as related to 1-D histogram. 

6. CONCLUSIONS

In this paper, Hybridization of Genetic Algorithm, Particle

Swarm Optimization and Symbiotic Organisms Search is 

used for decisive and efficient multilevel thresholding for 

image compression. Optimal threshold values are provided 

by maximizing the Renyi entropy using 2-D histogram which 

leads to better image thresholding. So, meaningful/useful 

clusters are possible with optimal threshold values, leads to 

better image compression. For performance evaluation, the 

proposed hGAPSO-SOS algorithm is tested on six MR brain 

images. Performance of proposed 2-D histogram thresholding 

technique is validated with performance metrics of fitness 

function, MSE, PSNR, CR, WPSNR, and, VPSNR. The 

procured result of the hGAPSO-SOS is compared with other 

optimization algorithms such as GWO, MFO, FPO, PSO, 

BFOA and hBFOA-PSO. From comparison, it is observed 

that hGAPSO-SOS algorithm provides better fitness value, 

higher PSNR, VPSNR, WPSNR values and maintain good 

quality of the reconstructed images with better CR than other 

six algorithms. From the results, it is concluded that the 

Hybridization of optimization algorithms enhances all 

performance parameters than other individual algorithms and 

also found to be better with 2-D than with the 1-D histogram. 

From results, it shows that proposed hGAPSO-SOS method 

is more reliable than GWO, MFO, FPO, PSO, BFOA and 

hBFOA-PSO and, can be efficiently used in problem of 

multilevel thresholding for medical image compression. 

REFERENCES 

[1] Pennebaker, W.B., Mitchell, J.L. (1992). JPEG: Still

Image Data Compression Standard. Springer Science &

Business Media. 

[2] Ahmed, N., Natarajan, T., Rao, K.R. (1974). Discrete

cosine transform. IEEE Transactions on Computers,

100(1): 90-93. https://doi.org/10.1109/T-C.1974.223784

[3] DeVore, R.A., Jawerth, B., Lucier, B.J. (1992). Image

compression through wavelet transform coding. IEEE

Transactions on Information Theory, 38(2): 719-746.

https://doi.org/10.1109/18.119733

[4] Acharya, T., Tsai, P.S. (2005). JPEG2000 Standard for

Image Compression: Concepts, Algorithms and VLSI

Architectures. John Wiley & Sons.

https://doi.org/10.1002/0471653748.ch6

[5] Skodras, A.N., Christopoulos, C.A., Ebrahimi, T.

(2001). JPEG2000: The upcoming still image

compression standard. Pattern Recognition Letters,

22(12): 1337-1345. https://doi.org/10.1016/S0167-

8655(01)00079-4

[6] Santa-Cruz, D., Ebrahimi, T. (2000). An analytical

study of JPEG 2000 functionalities. In Proceedings

2000 International Conference on Image Processing

(Cat. No. 00CH37101), 2: 49-52.

https://doi.org/10.1109/ICIP.2000.899222

[7] De, A., Guo, C. (2015). An adaptive vector quantization

approach for image segmentation based on SOM

network. Neurocomputing, 149: 48-58.

https://doi.org/10.1016/j.neucom.2014.02.069

[8] Linde, Y., Buzo, A., Gray, R. (1980). An algorithm for

vector quantizer design. IEEE Transactions on

Communications, 28(1): 84-95.

https://doi.org/10.1109/TCOM.1980.1094577

[9] Rajpoot, N.M., Hussain, A., Ali, U., Saleem, K.,

Qureshi, M. (2004). A novel image coding algorithm

using ant colony system vector quantization. In:

International Workshop on Systems, Signals and Image

Processing (IWSSIP 2004), Poznan, Poland, pp. 13-15.

[10] Kumar, M., Kapoor, R., Goel, T. (2010). Vector

quantization based on self-adaptive particle swarm

optimization. International Journal of Nonlinear

Sciences, 9(3): 311-319.

[11] Wang, Y., Feng, X.Y., Huang, Y.X., Pu, D.B., Zhou,

W.G., Liang, Y.C., Zhou, C.G. (2007). A novel

quantum swarm evolutionary algorithm and its

applications. Neurocomputing, 70(4-6): 633-640.

https://doi.org/10.1016/j.neucom.2006.10.001

[12] Kumari, G.V., Rao, G.S., Rao, B.P. (2021). Flower

pollination-based K-means algorithm for medical image

compression. International Journal of Advanced

Intelligence Paradigms, 18(2): 171-192.

https://doi.org/10.1504/IJAIP.2021.112903

[13] Chiranjeevi, K., Jena, U. (2017). Hybrid gravitational

search and pattern search–based image thresholding by

optimising Shannon and fuzzy entropy for image

compression. International Journal of Image and Data

Fusion, 8(3): 236-269.

https://doi.org/10.1080/19479832.2017.1338760

[14] Sheeba, K., Rahiman, M.A. (2019). Gradient based

fractal image compression using Cayley table.

Measurement, 140: 126-132.

https://doi.org/10.1016/j.measurement.2019.02.038

[15] Patel, B., Agrawal, S. (2013). Image compression

techniques using artificial neural network. International 

Journal of Advanced Research in Computer 

Engineering & Technology, 2(10): 2725-2729. 

[16] Kumari, G.V., Rao, G.S., Rao, B.P. (2019). New

1005



artificial neural network models for bio medical image 

compression: bio medical image compression. 

International Journal of Applied Metaheuristic 

Computing (IJAMC), 10(4): 91-111. 

https://doi.org/10.4018/IJAMC.2019100106 

[17] Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S.,

Zaharchuk, G., Xing, L., Pauly, J.M. (2018). Deep

generative adversarial neural networks for compressive

sensing MRI. IEEE Transactions on Medical Imaging,

38(1): 167-179.

https://doi.org/10.1109/TMI.2018.2858752

[18] Gözcü, B., Mahabadi, R.K., Li, Y.H., Ilıcak, E., Cukur,

T., Scarlett, J., Cevher, V. (2018). Learning-based

compressive MRI. IEEE Transactions on Medical

Imaging, 37(6): 1394-1406.

https://doi.org/10.1109/TMI.2018.2832540

[19] Gao, S., Xiong, Z. (2019). Deep enhancement for 3D

HDR brain image compression. In 2019 IEEE

International Conference on Image Processing (ICIP),

pp. 714-718.

https://doi.org/10.1109/ICIP.2019.8803781

[20] De Luca, A., Termini, S. (1972). A definition of a

nonprobabilistic entropy in the setting of fuzzy sets

theory. Information and Control, 20(4): 301-312.

https://doi.org/10.1016/S0019-9958(72)90199-4

[21] Tryon, R.C. (2016). Cluster analysis: correlation profile

and ortho-metric (factor) analysis for the isolation of

unities in mind and personality. Applied Mathematics,

7(15): 231-239.

[22] Sidhik, S. (2015). Comparative study of Birge–Massart

strategy and unimodal thresholding for image

compression using wavelet transform. Optik, 126(24):

5952-5955. https://doi.org/10.1016/j.ijleo.2015.08.127

[23] Adhikari, S.K., Sing, J.K., Basu, D.K., Nasipuri, M.

(2015). Conditional spatial fuzzy C-means clustering

algorithm for segmentation of MRI images. Applied

Soft Computing, 34: 758-769.

https://doi.org/10.1016/j.asoc.2015.05.038

[24] Ramakrishnan, T., Sankaragomathi, B. (2017). A

professional estimate on the computed tomography

brain tumor images using SVM-SMO for classification 

and MRG-GWO for segmentation. Pattern Recognition 

Letters, 94: 163-171. 

https://doi.org/10.1016/j.patrec.2017.03.026 

[25] Salleh, M.F.M., Soraghan, J. (2007). A new multistage

lattice vector quantization with adaptive subband

thresholding for image compression. EURASIP Journal

on Advances in Signal Processing, 2007: 1-11.

https://doi.org/10.1155/2007/92928

[26] De Albuquerque, M.P., Esquef, I.A., Mello, A.G.

(2004). Image thresholding using Tsallis entropy.

Pattern Recognition Letters, 25(9): 1059-1065.

https://doi.org/10.1016/j.patrec.2004.03.003

[27] Kumari, G.V., Rao, G.S., Rao, B.P. (2018). New

bacteria foraging and particle swarm hybrid algorithm

for medical image compression. Image Analysis &

Stereology, 37(3): 249-275.

https://doi.org/10.5566/ias.1865

[28] Ahilan, A., Manogaran, G., Raja, C., Kadry, S., Kumar,

S.N., Kumar, C.A., Murugan, N.S. (2019).

Segmentation by fractional order Darwinian particle

swarm optimization based multilevel thresholding and

improved lossless prediction based compression

algorithm for medical images. IEEE Access, 7: 89570-

89580. https://doi.org/10.1109/ACCESS.2019.2891632

[29] Hoang, T.M., Zhou, J., Fan, Y. (2020). Image

compression with encoder-decoder matched semantic

segmentation. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops

(CVPRW), pp. 619-623.

https://doi.org/10.1109/CVPRW50498.2020.00088

[30] Sarkar, S., Das, S. (2013). Multilevel image

thresholding based on 2D histogram and maximum

Tsallis entropy—a differential evolution approach.

IEEE Transactions on Image Processing, 22(12): 4788-

4797. https://doi.org/10.1109/TIP.2013.2277832

[31] Farnad, B., Jafarian, A., Baleanu, D. (2018). A new

hybrid algorithm for continuous optimization problem.

Applied Mathematical Modelling, 55: 652-673.

https://doi.org/10.1016/j.apm.2017.10.001

1006




