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In the era of the big data, the accurate prediction of real-time traffic flow is essential to making 

rational decisions on travel time, cost and route. To forecast traffic flow accurately, this paper 

firstly analyzes the features of traffic data, and proves that the traffic data collected from an 

overpass are self-similar. For simplicity, the long-term correlation (LTC) time series of the 

traffic data were decomposed into short-term correlation (STC) product functions (PFs) 

through local mean decomposition (LMD). On this basis, a traffic flow prediction model was 

developed based on the generalized autoregressive conditional heteroskedasticity (GARCH) 

model. Simulation results show that our model was more accurate in predicting traffic flow 

than the original GARCH and the autoregressive integrated moving average (ARIMA) model. 

Therefore, this research provides a suitable tool for the prediction of traffic flow. 
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1. INTRODUCTION

Traffic big data contains a huge amount of information, 

which needs to be mined effectively according to the demand. 

The effective processing of traffic big data can effectively 

improve traffic operation efficiency, reduce traffic congestion 

time, promote intelligent traffic management, and reduce time 

cost and capital cost. 

The prediction of traffic flow is essential to making rational 

decisions on travel time, cost and route. There are many 

models to predict the traffic flow. Each of them has its 

strengths and defects. The most popular traffic flow prediction 

models are based on statistical theories, including time series 

model [1] and Kalman filter model [2-3]. 

The time series model was first adopted by Ahmed et al. to 

predict traffic flow in 1982 [4]. The model was improved by 

Ghosh et al. to forecast seasonable traffic flow [5]. The 

improved time series model can project changing traffic flow 

more accurately than the original model. For Kalman filter 

model, Yang et al. [6] designed a multi-step traffic flow 

prediction method based on this model, and proved that the 

method has high prediction accuracy. Muruganantham et al. 

[7] improved the Kalman filter model to optimize the

parameters of dynamic traffic flow prediction model in an

accurate and robust manner.

The traffic flow prediction models are often coupled with 

nonlinear theories [8-10], such as wavelet analysis, fractal 

theory, chaos theory and catastrophe theory. For example, 

Kumar et al. [11] processed traffic data through local mean 

decomposition (LMD), and then predicted the traffic flow by 

the autoregressive integrated moving average (ARIMA) 

model. Jin et al. [12] combined the Kalman filter and Gaussian 

process-based hybrid model into a traffic flow prediction 

model, which inherits the real-time performance of the 

Kalman filter and the high accuracy of the hybrid model. 

The prediction of traffic flow can also be improved by state-

of-the-art technologies like the support vector machine (SVM) 

[13] and neural networks (NNs). Among them, the SVM can

predict trends and generalize solutions accurately, offering a 

desirable tool to process high-dimensional small samples. 

Based on the SVM, Huan et al. [14] designed an improved 

prediction model, which can forecast traffic flow accurately 

online. Yao et al. [15] proposed a dynamic traffic flow 

prediction model based on an NN.  Guo et al. [16] improved 

the prediction accuracy of the traditional NN model, using the 

origin-destination (OD) matrix. 

The rapid development of big data technology [17] further 

promotes the prediction of traffic flow. For instance, Wu et al. 

[18] mined the traffic data and used the time series model to

predict the real-time traffic flow. Lv et al. [19] put forward a

big data traffic prediction model based on deep learning

algorithm. Using these traditional time series models to predict

traffic flow, it is needed to estimate the volatility firstly.

Generalized autoregressive conditional heteroskedasticity

(GARCH) solves the problem caused by the second hypothesis

(constant variance) of time series variables, it can improve the

prediction accuracy greatly.

With the aid of big data technology, this paper presents a 

traffic flow prediction model based on the LMD and GARCH 

model, and verifies the feasibility of our model through 

simulation. 

2. FEATURES OF TRAFFIC DATA

In a general sense, the traffic flow means the flows of 

pedestrians and vehicles in the road network, both of which 

move like fluid on the macroscale. In this paper, this term 

specifically refers to the flow of vehicles. The traffic data 

mainly comes from four sources: human, vehicle, road and 

environment. 

Human-based traffic data are either static or dynamic, 

depending on the motion state of the human (e.g. drivers, 

pedestrians and traffic managers). With the elapse of time, the 

traffic data continue to accumulate as more and more humans 

enter the road network. Similarly, vehicle-based traffic data 
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could be static or dynamic, and expand with the growing 

number of vehicles entering the road network. Road-based 

traffic data change with the real-time road condition. Over the 

time, this type of traffic data will also increase in volume. 

Environment-based traffic data may be static or dynamic, and 

mainly result from the climate and geographical environment. 

To sum up, the traffic data from all sources have big data 

features. However, it is very challenging to integrate, store, 

process or mine a huge amount of traffic data. To disclose the 

features of traffic data, the key lies in identifying the change 

law of traffic flow. In real-world scenarios, the traffic flow is 

very complicated: the traffic is stochastic and uncertain under 

the combined effects of multiple factors, the traffic flow 

changes greatly from place to place and from time to time, and 

the relationship between speed and density is dynamically 

changing. All of these are typical features of time series. 

Time series is essentially a series of values of a quantity 

obtained at successive times, often with equal intervals 

between them. It reflects the changes of the object in the 

observation period. A time series 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛  is an 

ordered set of n values, where 1,2,…, n are the serial number 

of moments. Unlike ordinary data, the data in time series are 

time-dependent. The data of the next moment depend on those 

of the previous moment. A random process X = {𝑋𝑡 , 𝑡 =
1,2, … , 𝐾} is a stationary random process, Its autocorrelation 

function can be expressed as 𝜌𝑘~𝑘𝛿𝑀1(𝑘), 𝑘 → ∞, 0 < 𝛿 < 1, 

where 𝑀1(𝑘)  is slowly changed function, if the 

autocorrelation function 𝜌𝑘
(𝑚)

of the stack sequence 

𝑋𝑚 generated by stacking the random process and the 

autocorrelation function 𝜌𝑘  of the original process 

satisfies: 𝜌𝑘
(𝑚)

= 𝜌𝑘 , 𝑚 = 1,2, … , 𝐾 , then, it is called a self-

similar process. Traffic data has self-similarity, and time series 

model is suitable for analyzing self-similar process. Hence, 

this paper decides to adopt time series model for big data 

analysis on traffic flow. 

 

 

3. MODEL CONSTRUCTION 

 

3.1 LMD-based data analysis  

 

This subsection verifies the self-similarity of traffic flow, 

which is the basis for the prediction model. The concept of 

self-similarity is explained as follows: 

Let 𝑋 = {𝑋𝑡 , 𝑡 = 1,2,3, … , 𝐾}  be a stationary stochastic 

process and 𝜗𝑘~𝑘𝛽𝑀1(𝑘), 𝑘 → ∞ (0 < 𝛽 < 1)  be the 

autocorrelation function of this process, where 𝑀1 is a slowly 

changing function. Then, the stochastic process is superposed 

with its autocorrelation function, forming a new series 𝑋(𝑚). 

If the autocorrelation function 𝜗𝑘
(𝑚)

 of the new series satisfies 

𝜗𝑘
(𝑚)

= 𝜗𝑘 , 𝑚 = 1,2,3, . . 𝑘 , then the original process must 

have self-similarity. The self-similarity can be measured by 

the Hurst exponent H. A process is self-similar if the H value 

falls in [0.5, 1].  

The data used in this paper are from the measured data of 

rapid traffic flow in four big cities in China. The specific 

experimental data are the measured data of four typical cities 

in seven elevated and fast road sections in 2018, with a total of 

more than 300 hours of traffic data in 50 days. After a series 

of filtering and processing, the time interval is 2s, and finally 

221330 groups of data are obtained. The data consists of 16 

sample databases, including time, city, location, weather 

conditions, average speed, data volume, road features and 

other detailed information. For convenience, 1,000 sets were 

intercepted from the collected data, and processed into a time 

series of traffic flow (Figure 1). 

 

 
 

Figure 1. Time series of original traffic data 

 

In this paper, the H value is estimated through wavelet 

analysis. First, the wavelet coefficients were obtained through 

discrete wavelet transform (DWT) of the time series of traffic 

data. Then, the spectrum of all intervals was logarithmically 

represented on the coordinate axes. After that, the least squares 

(LS) method was employed to fit a curve with slope ∆  of 

0.0725. The H value was derived as 0.521 to ∆= 2𝐻 − 1. The 

result obviously belongs to the interval [0.5, 1], indicating the 

self-similarity of the traffic data. 

Since a self-similar process must have long-term correlation 

(LTC), it is necessary to create an LTC model to predict the 

traffic flow based on the self-similar traffic data. To reduce the 

complexity, the LTC traffic data should be decomposed into 

short-term correlation (STC) traffic data. Therefore, the LMD 

algorithm was introduced to decompose the time series of 

traffic data into several STC product functions (PFs). The 

procedure of the LMD is explained below. 

First, the mean values 𝑚𝑖of all adjacent local extremums of 

the original signal 𝑥(𝑡) are connected by a straight line, and 

then smoothed to obtain the mean function 𝑚11(𝑡). Then, the 

envelope estimation function 𝑓11(𝑡) is obtained by the same 

method. Next, 𝑚11(𝑡) is separated from the original signal 

𝑥(𝑡) to demodulate ℎ11(𝑡) by 𝑠11(𝑡) = ℎ11(𝑡) 𝑓11(𝑡)⁄ . These 

steps are repeated n times for 𝑠11(𝑡) until 𝑠1𝑛(𝑡) becomes a 

pure frequency modulated signal. The termination condition 

of the iterative process can be defined as: 

 

lim
𝑛→∞

𝑓1𝑛(𝑡) = 1                                     (1) 

 

The envelope signal can be obtained by multiplying the 

envelope functions: 

 

𝑓1(𝑡) = ∏ 𝑓1𝑢(𝑡)𝑣
𝑢=1                                 (2) 

 

Then, the first PF of 𝑥(𝑡)  is obtained as 𝑃𝐹1(𝑡) =
𝑓1(𝑡)𝑠1𝑢(𝑡), and the first PF separated from 𝑥(𝑡) is taken as 

the new signal 𝑤1(𝑡). The above process is repeated until the 

termination condition is realized. 

Finally, the original signal 𝑥(𝑡) can be expressed as: 

 

𝑥(𝑡) = ∑ 𝑃𝐹𝑢(𝑡) + 𝑤𝑘(𝑡)𝑘
𝑢=1                         (3) 

 

Here, the original traffic data 𝑥(𝑡) are subjected to the LMD 

through simulation. The termination condition was set as 1 −
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Δ ≤ 𝑓1𝑛(𝑡) ≤ 1 +  , where Δ = 10−3 . The first PF 𝑃𝐹1(𝑡) 

was obtained after the termination condition was realized after 

a few iterations (Figure 1). Then, the second and third PFs 

𝑃𝐹2(𝑡)  and 𝑃𝐹3(𝑡)  and the new signal 𝑤(𝑡)  were collected 

through three more decompositions (Figure 2). 

 

 
 

Figure 2. The PF1(t) obtained through the LMD 

 

 
 

Figure 3. The 𝑤(𝑡) obtained through the LMD 

 

It can be seen that form Figure 3, the 𝑤(𝑡)  curve only 

oscillates slightly, and is close to the theoretical monotonic 

curve. The slight oscillations have no impact on the 

decomposition result. This means the LMD has achieved 

desirable effects. In other words, the LMD can convert LTC 

series into multiple STC PFs. 

 

3.2 Garch-based prediction 

 

Based on the STC traffic data obtained by the LMD, the 

author developed a traffic flow prediction in the light of the 

GARCH model. As shown in Figure 4, the prediction process 

of the model includes the following steps. 

Step 1. Preprocess traffic data 𝑆(𝑡) into a time series 𝑥(𝑡).  

First, the time interval m was determined, and the duration 

t of original traffic data was divided evenly into 𝜇  (𝜇 =
[𝑡 𝑚⁄ ])  time intervals. Then, the time series 

𝑥(𝑡): 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝜇(𝑡) was constructed from the traffic 

data in each interval. 

Step 2. Decompose the time series  𝑥(𝑡).  

The time series  𝑥(𝑡) was decomposed through the LMD 

into several PFs. The first PF was separated from the time 

series to obtain a new signal 𝑤1(𝑡). This process was repeated 

k times until 𝑤𝑘(𝑡) became a monotonic function:  

 

{

𝑤1(𝑡) = 𝑥(𝑡) − 𝑃𝐹1(𝑡)

𝑤2(𝑡) = 𝑤1(𝑡) − 𝑃𝐹2(𝑡)
…

𝑤𝑘(𝑡) = 𝑤𝑘−1(𝑡) − 𝑃𝐹𝑘(𝑡)

                     (4) 

 

Step 3. Construct the traffic flow prediction model based on 

the GARCH model. 

Step 4. Determine the order of GARCH (r, s) by the Akaike 

information criterion (AIC) [20], and estimate the unknown 

parameters iteratively with the maximum likelihood function. 

 

 
 

Figure 4. The prediction process of our model 
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Step 5. Detect if the residual sequence {휀𝑡}  of 𝑃𝐹1(𝑡) , 

𝑃𝐹2(𝑡), 𝑃𝐹3(𝑡),…𝑃𝐹𝑛(𝑡), 𝑤(𝑡) has white noise. If not, go to 

the next step; otherwise, jump to Step 7. 

Step 6. Fit the residual sequence with autoregressive model, 

and go to Step 3. 

Step 7. Predict the traffic flow with the GARCH model. 

Step 8. Add up the predicted components into the final 

prediction of traffic flow. 

 

 

4. SIMULATION AND RESULTS ANALYSIS 

 

The experimental data in this paper is the measured data of 

a typical city, which can basically represent the flow 

characteristics of urban traffic flow and reflect the main factors 

affecting traffic flow. Therefore, using the data set for the 

training samples of the prediction algorithm can better train 

the algorithm model, it has more practical significance for the 

prediction results. 

 

4.1 Simulation process 

 

The first 1,000 sets of collected traffic data were used to 

train our model, and the remaining data were compared with 

the prediction results of the model. As mentioned before, the 

self-similarity test and the LMD of the original data have been 

completed. Thus, this section only needs to obtain the PFs 

through the LMD and predict the traffic flow by the GARCH 

model.   

Before prediction, the author tested if the residual sequence 

of each PF is heteroscedastic through Portmanteau Q-test and 

Lagrange multiplier (LM) test. The test results of 𝑃𝐹1(𝑡) are 

recorded in Table 1 below. 

As shown in Table 1, both test results indicate that residual 

sequence of 𝑃𝐹1(𝑡) had conditional heteroscedasticity before 

the 12th order. Similarly, the residual sequences of the other 

PFs were proved to be heteroscedastic. Hence, the GARCH 

model is suitable for predicting the traffic flow. The prediction 

results are compared with the actual data as Figure 5. 

It can be seen from Figure 5 that the prediction results only 

had slight deviations from the actual data, revealing the 

accuracy of our model. To evaluate the prediction results more 

objectively, the root means square error (RMSE) and relative 

root mean square error (RRMSE) were taken as the evaluation 

criteria: 

 

Table 1. Heteroscedasticity of the residual sequence of 𝑃𝐹1(𝑡) 

 
Order 1 2 3 4 5 6 7 8 9 10 11 12 

Q 45.98 66.07 88.72 97.82 101.85 103.81 106.77 107.17 107.19 107.28 107.51 107.64 

p>Q <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

LM 45.11 45.92 51.78 52.59 52.30 53.01 53.17 54.37 54.37 54.82 54.85 54.88 

p>LM <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 

 
 

Figure 5. The prediction results of the GARCH model 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥(𝑡) − 𝑥′(𝑡))2𝑁

𝑡=1                    (5) 

 

𝑅𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (

𝑥(𝑡)−𝑥′(𝑡)

𝑥(𝑡)
)2𝑁

𝑡=1                         (6) 

 

where, N is the number of predicted traffic data sets; 𝑥′(𝑡) is 

the predicted traffic flow at the t-th moment; 𝑥(𝑡) is the actual 

traffic flow at the t-th moment. The RMSE and RRMSE of 

each PF are listed in Table 2. 

 

Table 2. The RMSE and RRMSE of Each PF 

 
 𝑃𝐹1(𝑡) 𝑃𝐹2(𝑡) 𝑃𝐹3(𝑡) 𝑤(𝑡) 

RMSE 7.58× 102 6.33× 102 4.01× 102 1.12× 102 

RRMSE 11.823 7.592 5.891 5.149 

 

As shown in Table 2, both the RMSE and RRMSE declined 

with the increase in the order of the PF, an evidence of the 

gradually improving prediction accuracy. In addition, 𝑃𝐹1 had 

the largest RMSE and RRMSE among all PFs, i.e. the lowest 

prediction accuracy. Thus, the accuracy of our model can be 

further enhanced by improving the prediction accuracy of 𝑃𝐹1. 

This calls for detailed analysis on the signal features of this PF. 

In the GARCH model, the regression function cannot 

extract all the relevant information from the residual sequence, 

if the latter is autocorrelated rather than completely stochastic. 

In this case, the GARCH model should be improved by fitting 

the residual sequence with the autoregressive model.  

According to the Durbin–Watson (DW) test results on the 

improved GARCH model, the value of p<DW was less than 

0.0001 when testing the autocorrelation of the 5th order delay 

of 𝑃𝐹1’s residual sequence. This means the residual sequence 

of 𝑃𝐹1  has significant positive correlation. Therefore, the 

improved model is suitable for traffic flow prediction. The 

predicted results are shown in Figure 6 below. 
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Figure 6. The prediction results of improved GARCH model 

 

As shown in Figure 6, the improved GARCH model 

predicted burst traffic well with an RMSE of 6.69× 102 and 

an RRMSE of 8.138. The prediction accuracy was obviously 

higher than that of the original GARCH model. 

 

4.2 Comparative Analysis 

 

The final prediction of the traffic flow 𝑥′(𝑡) was obtained 

by adding up the predicted values of the PFs. Then, the 

predicted results of our model (improved GARCH) were 

compared with those of the GARCH model, the ARIMA 

model and the improved ARIMA [20-21] (Figures 7 and 8, 

Table 3). 

Figures 7 and 8 show that our model outperformed the 

GARCH and the ARIMA in the prediction of traffic flow. The 

data in Table 3 demonstrate that the prediction accuracy of our 

model was higher than the two contrastive models. Overall, 

the results fully manifest the feasibility of our model for traffic 

flow prediction. 

 

 
 

Figure 7. Comparison between our model and the GARCH model 

 

 
 

Figure 8. Comparison between our model and the ARIMA model 

 

Table 3. Comparison Between Our Model, GARCH Model, 

ARIMA and IMPROVED ARIMA Model 

 
 RMSE RRMSE 

Our model 4.38× 102 0.332 

GARCH model 6.11× 102 0.347 

ARIMA model 6.25× 102 0.387 

Improved ARIMA 

model 
6.01× 102 0.341 

 

 

5. CONCLUSIONS 

 

In this paper, the traffic data collected from four big cities 

in China are proved to be self-similar through the analysis of 

traffic flow features. Thus, the traffic flow should be 

forecasted with a model with self-similarity. To simplify the 

model and enhance prediction accuracy, the LTC time series 

of traffic data were decomposed into STC PFs through the 

LMD. On this basis, a traffic prediction model was developed 

based on the LMD and the GARCH model. Then, the proposed 

model was compared with the original GARCH model, 

ARIMA model and improved ARIMA model through 

simulation. The comparison results showed that our model 

outperformed the contrastive models in prediction accuracy. 

Thus, our model improved the prediction accuracy of traffic 

flow greatly. With the continuous research and development 

of big data and flow prediction algorithm, the accuracy of 
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prediction algorithm needs to be further improved in view of 

the diversity of traffic flow data and the change of practical 

application scenarios, it will be our research focus in the future. 
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