
1. INTRODUCTION

A plenty of classifiers had already been proposed but none 

of them deals with exceptions. Theories are formed by 

observing examples, the phenomenon being called 

‘Superarticulacy’ [1] and there would certainly be instances 

not abiding by the theories. These had not been dealt with in 

machine learning till date. The challenge was to differentiate 

between an exception and a noise. The improvement in the 

performance of the classifier when exceptions are considered, 

however, totally depends on the data sets. But in a real life 

scenario, exceptions are better not to be ignored. The proposed 

methodology also includes features like n-fold cross-

validation, exclusion of inefficient rules, ordering the rules by 

weighted voting and inclusion of a default rule. This 

methodology has been applied on three popular classifiers 

C4.5, PRISM and RISE. These are old algorithms but can 

perform pretty well with small training sets whereas a few 

state-of-the-art classifiers like Random Forest [2], Xgboost [3] 

etc. fail to perform well without extensive training. C4.5 [4, 5] 

was proposed by J. Ross Quinlan which, from the training set, 

forms a decision tree. Decision trees come up with amazing 

outputs but are not easy to understand, work with, or to be 

manipulated. PRISM was proposed by Jazdia Cendrowska [6] 

which produces rule sets which are more comprehensible than 

a tree. The RISE algorithm was proposed by Pedro Domingos 

[7] which keeps on generalizing instances until a are in rule is

obtained. The rule sets formed and their representation the

most intelligible form amongst the three algorithms dealt with.

2. BRIEF REVIEW OF THE CLASSIFIERS

The book C4.5 was proposed by Quinlan [4, 5]. It can be 

seen as a descendant of the ID3 algorithm [8] which induces 

decision tree/ rules from a given training set. In ID3, Gain 

criterion was used and it gave descent results, but a strong bias 

could be seen in favor of the tests with many results. Hence to 

normalize the biased behavior of ID3, Gain ratio was 

introduced. Gain ratio helps to identify the attribute which 

should be considered first as a node in the tree in this algorithm. 

The attribute contributing the highest Gain ratio is chosen and 

made a node from which branches propagate to join the 

attribute which has the next best Gain ratio and so on. 

Let ‘S’ be the training data set with ‘n’ quantity of outcomes 

having S1, S2, S3, ….. Sn as subsets. If T be a set of examples, 

let freq(Ci, T) represent the number of cases from T which 

belongs to the class Ci and | T | denotes the number of examples 

in the set T. The probability of selecting one instance from set 

‘T’ and considering Cj to be its class is
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When applied to the training instances S, info(S) measures 

the mean of the total amount of information required for 

predicting the class of an instance in S. It can also be seen as 

the Entropy of the set T. Suppose ‘S’ has been partitioned 

according to the ‘n’ outcomes of a test case ‘X’. The weighted 

sum over the subsets gives the expected information 
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Therefore, the gain quantity is given by 
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This Gain criteria was used in ID3, but C4.5 uses gain ratio 

which is: 
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Here a new term was introduced known as split_info which 

is given by: 
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The attribute for which the Gain Ratio is maximum, is 

selected as the node from which the tree propagates further. 

Then similar calculation is performed with the left over 

attributes and the one with the highest Gain Ratio is selected 

as the next node. The above mentioned process is followed 

until and unless all the leaves are individual classes themselves. 

The basic C4.5 algorithm is given below: 

 

Algorithm 1: The C4.5 algorithm 

1: Tree = {} 

2: if E is pure OR other stopping criteria met then 

3:     terminate 

4: end if 

5: for all features f   E do 

6:    calculate information-theoretic criteria if we split on a 

7: end for 

8: fbest  Best attribute according to above computed criteria 

9: Tree = Create a decision node that tests fbest in the root 

10: Ev= Induced sub-datasets from E based on fbest 

11: for all Ev do 

12:    Treev = C4.5(Ev) 

13: Attach Treev to the corresponding branch of Tree 

14: end for 

15: return Tree 

 

C4.5 is hugely applied for data classification in various 

domains and a few improvements had been proposed in 

Efficient C4.5 [9] and C5.0. 

PRISM was proposed by Cendrowska [6] and like C4.5, it 

also evolved ID3. ID3 produced decision trees and those were 

not very comprehensible. In PRISM a branch could be 

considered as an attribute-value pair. The relevant relation 

between an attribute-value pair and the specific classification 

is considered in PRISM. The attribute-value pair which 

contains maximum information is chosen as one term of one 

rule for a particular classification. Now the subset of the 

training set which has the attribute-value pair is considered and 

again another attribute-value pair which contains the 

maximum information is searched and it goes on until the 

subset contains only one class. A conjunct of all the attribute-

value pairs chosen resulting to one class becomes a rule. If the 

training data constitutes examples resulting in more than one 

class, then for each classification, n. The basic PRISM 

algorithm is as follows: 

 

Algorithm 2: The PRISM algorithm 

1: for all attribute-value pair x do 

2: compute the probability of occurrence, p(nx), of the 

classification x 

3: end for 

Ensure: select the x for which p(nx) is highest and create a 

subset of the training data including all the instances which 

contain the selected x 

4: repeat Steps 1 and 2 for this subset 

5: until the subset contains only instances of the certain class 

Ensure: all the instances, covered by such rule from the 

training set, are removed 

6: repeat Steps 1-4 

7: until all instances of class n are removed 

 

After the induction of a rule, the training set is considered 

without those instances which are completely covered by the 

rule and the same procedure is repeated to induce a collection 

of rules concluding to the same class. After the induction of all 

the rules resulting in one specific class, the training data is 

reinstated to its inceptive state and the algorithm is employed 

again. Because the classifications are considered individually, 

the order of their representation is insignificant. When no other 

instance is left uncovered, the algorithm terminates. 

Instance-based learning [10] and Rule induction [11, 12] are 

two different empirical approaches vastly used in machine 

learning having their own constraints. RISE (Rule Induction 

from the Set of Exemplars) amalgamates features of both the 

approaches to overcome some of the constraints and hence 

called a multi-strategy learning method [7]. The algorithm 

chooses an instance from the training data and assumes it as a 

rule and tries to generalize it. It is done by generalizing each 

antecedent by assigning it the value “*” which means “any" 

and is same as dropping the antecedent. For each such 

generalization the algorithm finds out the heuristic value h(.). 

The Heuristic value of a generalized individual example is 

given by: 

 

( ) ( ) ( ) ( )1 . .h r p r S n r= − −
             

(6)   

 

where, r represents the rule, p(r) stands for the number of 

instances covered by the rule whose consequences are 

identical to the rule's, S represents the sample size, and 

[0;1] is the noise coefficient of tolerance [7]. The sum of 

the heuristic values of all the rules in the rule set is considered 

as the heuristic value of the rule set and it is represented by 

H(.). The reason why  is introduced is that in noisier domains, 

rules are meant to cover a higher proportion of negative 

instances. Whereas in domains with negligible noise this 

proportion is negligible too, hence  is considered to be 0. The 

generalization with the highest h(.) is made a rule. Similarly, 

the next instance is selected and checked whether it is covered 

by the rule already formed. If it is not covered, the 

generalization process will start again. The one with the 

highest. h(:) will be made a rule similarly. These steps will be 

carried out repeatedly until all the instances are covered. 

A test example is classified by RISE by matching it with the 

rules in the rule set. Whenever more than one match is found, 
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the conflict is resolved by weighted voting. Test examples 

with no matches at all are classified by the default rule. The 

default rule is nothing but all the antecedents generalized with 

the class which is found most in the training data set. Further 

modifications to the classical RISE (also known as the RISE 

system 1.0) had been made and reported such as The RISE 2.0 

System, Unifying Instance-Based and Rule-Based Induction 

[13], Using partitioning to speed up specific-to-general rule 

induction [14] and SUNRISE [15] for performance 

enhancement of the RISE Algorithm. 

 

Algorithm 3: The RISE algorithm 

1: procedure RISE (T be the training set) 

2:    Let R be T (R be rule set). 

3:    Calculate H(R). 

4:    Repeat 

5:       For each rule in R, 

6: Let r be the current version of the rule, 

7:  For each one of the r's antecedents A, 

8:  Try generalising A, and 

9:  And calculate resulting H(R'). 

10:  Select the A whose generalisation results in 

maximum value for H(R') 

11:  If H(R')   H(R), 

12:  Then generalise A, 

13: If r is identical to another rule in R, 

14: Then remove r from R. 

15: Replace H(R) by max. H(R'), 

16:    Until no increase in H is obtained. 

17:    Return R. 

18: end procedure 

 

 

3. PROPOSED METHODOLOGY 

 

The methodology involves features like re-sampling, 100-

fold cross-validation, inclusion of the exceptions at the 

beginning of the rule set, exclusion of inefficient rules, 

ordering of rules beforehand using weighted voting and 

inclusion of a default rule at the end of the rule set. These 

features are discussed as follows. 

 

3.1 Re-sampling and cross-validation 

 

The process initiates with a data set as the input. Data is re-

sampled and n-fold cross-validation [16, 17] is performed 

where n = 100, hence resulting in 100 sample datasets and 100 

respective sample test sets. 100 separate rule sets from 100 

sample datasets are formed by deployment of each of the 3 

algorithms viz. C4.5, PRISM and RISE respectively. Then the 

rest of the methodology is performed. By using the respective 

rule sets, classes are predicted for each instance in all the 100 

sample test sets.  

The accuracy of classification (the ratio of the number of 

correct classifications to the total number of instances in the 

test set) and the standard deviation are calculated for each of 

the 100 cases. The whole procedure is repeated for 5 times. 

Hence for each data set classified by any one of the three 

algorithms, there will be 500 (100*5) different accuracies and 

standard deviations. The average of the accuracies and the 

respective standard deviations are considered in this paper. 

 

 

 

3.2 Exclusion of inefficient rules 

 

Instead of correctly classifying, the rules generated may 

misclassify more often. The threshold is taken 50 % for an 

individual rule. At first rule sets are formed. Then the number 

of correct classifications and misclassifications for a particular 

rule is calculated. If the later exceeds the former for a 

particular rule, that rule is eliminated from the rule set. 

Exclusion of these rules in the primary stage of the 

classification procedure helps to avoid unnecessary 

computational efforts. 

 

3.3 Detection and addition of exceptions to the rule set 

 

In this section a concept of exceptions in the training sets is 

introduced. These exceptions are extracted from the training 

set and used as rules so that the exceptions in the test set are 

not misclassified. 

 

3.3.1 Exceptions 

Rule generation by the inducers/ classifiers is done 

depending upon the training set. There may be instances in the 

training set itself, which may contradict a rule in the rule set. 

That means the class obtained by the rule which covers the 

instance does not match with the actual class. This can be seen 

as a misclassification. So that particular instance in the training 

set is either a noise or an exception. Now if it conflicts with 

some other instances, then it is considered as a noise or else 

considered as an exception. 

 

3.3.2 Example 

For further clarity, an example is shown below. Let the 

training set be as follows as shown in Table 1. Let the rule be: 

*, 2, *, 1, 1 and let the test set be identical to the training set. 

Now, trying to classify, the following is obtained which is 

shown in Table 2. The instances which are hit by the rule but 

not correctly classified are shown in Table 3. Among these two 

instances, the second one is contradicting with the fourth 

instance of the training set. Henceforth, it is considered as a 

noise. The first one is considered as an exception. 
 

Table 1. Training example 

 
A B C D Class 

3 1 2 2 1 

3 2 1 1 2 

3 2 3 1 1 

3 2 3 1 1 

3 2 3 1 2 

2 2 1 1 1 

 

Table 2. Test example covered by rules 

 
A B C D Class hit/miss Classification status 

3 1 2 2 1 miss nil 

3 2 1 1 2 hit wrong 

3 2 3 1 1 hit right 

3 2 3 1 1 hit right 

3 2 3 1 2 hit wrong 

2 2 1 1 1 hit right 

 

Table 3. Misclassified instances 

 

A B C D Class 

3 2 1 1 2 

3 2 3 1 2 
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3.4 Ordering with respect to specificity 

 

In this section we are proposing a cost efficient yet well 

performing (in terms of accuracy) combination method. Here 

after generating a pool of rules as the end result of the actions 

documented in former sections, we order them according to 

their specificity. The less the number of generalized attributes 

in a rule is, the more specific the rule becomes. Hence the 

exceptions remain in the first cluster, the second cluster 

comprises of rules with only one of the attributes generalized 

and so on. 

When the system is fetched with an unlabeled test instance 

it first tries to find a match in the cluster of exceptions. If a 

match is found (in the cluster comprised of exceptions, if a 

match is found it will be the only one) the class of the rule is 

given as the class of the test instance and the search process 

terminates. If no matches are found in the first cluster the 

system tries to find a match in the second cluster and so on. It 

helps to avoid conflicts between rules of different specificity 

and due to the fact that specific rules are given priority, the 

chances of a test case being misclassified are reduced. Still 

there remain chances of conflict between rules of same 

specificity. Such cases are taken care of by the use of weighted 

voting. 

 

3.5 Inclusion of a default rule 

 

Instances which remain uncovered by the rules are not 

assigned any classes, contribute to the misclassification count. 

This reduces the accuracy of prediction. To address this issue 

many known and popular classifiers had already included a 

default rule for better results. In this work we have also 

successfully reduced the number of misclassifications by 

adding a default rule. The default rule assigns the most 

occurrent class to the test sample irrespective of the values of 

the attributes. For example, if the most occurrent class in a data 

set be 1, and the number of attributes be 4, then the default rule 

would look like *, *, *, *, 1. 

 

 

4. DATASETS 

 

In this paper, 20 real life data sets, obtained from UCI data 

repository for machine learning are used to understand 

whether the proposed methodology helps popular algorithms 

like C4.5, PRISM and RISE to increase the accuracy in class 

prediction or not. Different domains (medical, biological, 

marketing etc.) have contributed to the data sets. All the data 

sets vary in size. The one having minimum attributes (Zoology) 

contains 101 examples and the one having maximum attributes 

(Hypothyroid) contains 3162 examples. The number of 

attributes in each data set also reflects variety, the Iris data set 

having the minimum (4 attributes) and the Annealing data set 

having the maximum (38 attributes). Amongst these 20 data 

sets, as many as 11 data sets (Annealing, Breast cancer, 

Cleveland, etc.) contain attribute(s) with missing values. In 

Table 4 information about the data sets used, is shown. “Exs.”, 

“Att.”, “Class”, “Missing” columns in the table stores the 

number of training instances, the number of features, the 

number of classes and the information of whether it contains 

any missing valued attributes or not respectively for each data 

set. 

 

 

Table 4. Data sets used in experimental evaluation 

 

Data set Exs. Att. Class Missing 

Annealing 798 38 5 Yes 

Breast cancer 286 9 2 Yes 

Cleveland 272 13 5 Yes 

Credit 690 15 2 N/A 

Echocardio 132 12 3 Yes 

Ecoli 336 8 8 No 

German 201 25 7 Yes 

Glass 214 9 7 No 

Hdva 200 13 5 Yes 

Horse colic 300 22 2 Yes 

Hypothyroid 3162 25 2 N/A 

Iris 150 4 3 No 

Liver disorder 345 6 2 No 

Lymphography 148 18 4 No 

Pima diabetes 768 8 2 Yes 

Primary tumor 339 17 20 Yes 

Tae 151 5 3 No 

Voting 435 16 2 Yes 

Wisconsin 699 9 2 Yes 

Zoology 101 16 7 No 

 

 

5. RESULTS AND DISCUSSION 

 

OE2-C4.5, OE2-PRISM and OE2-RISE all yielded better 

accuracy in class prediction than their respective conventional 

versions for most of the data sets considered for empirical 

evaluation. Table 5 constitutes the average accuracy and the 

standard deviations obtained by OE2-C4.5, OE2-PRISM, OE2-

RISE and the best of C4.5, PRISM and RISE using 

conventional methodology for 20 real life data sets, taken from 

the UCI data repository for machine learning. For 1 data set 

(Credit), OE2-C4.5, OE2-PRISM and OE2-RISE all fail to 

perform better than the best of the conventional versions of the 

algorithms and for 1 data set (Hypothyroid), accuracy obtained 

by the best of OE2-C4.5, OE2-PRISM and OE2-RISE happens 

to be equal to that obtained by the best of the conventional 

versions of the algorithms. Out of 20 data sets, for 13 data sets 

all the three proposed algorithms have outperformed the best 

of conventional versions of the algorithms. However, it still 

cannot be concluded that the algorithms using proposed 

methodology has significantly outperformed the best of 

algorithms using conventional one. Henceforth, Friedman test 

[18, 19] is performed. For all the training sets the 

methodologies are ranked individually, the one with the 

highest accuracy being ranked 1, the next highest being ranked 

2 and so on, and for a tie. For all the algorithms, the average 

of ranks is calculated which are 3.425 for the best of 

conventional algorithms, 1.8 for OE2-C4.5, 2.55 for OE2-

PRISM and 2.225 for OE2-RISE. 

The Friedman statistic is then calculated and it is given by 

[19]: 

 

( )

( )
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112

1 4
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 +
= − 

+   
                    (8) 

 

where, the number of data sets is represented by N, the number 

of methods / algorithms is represented by k and
2

j

j

R is the 

sum of the squares of the average ranks of the individual 

methods / algorithms. The value of The Friedman statistic is 

found to be 17.085 in this particular scenario. 
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A more useful statistic could be derived from the Friedman 

statistic which is given by [20]: 
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                               (9) 

 

It is distributed according to the F-distribution with (k - 1) 

and (k - 1)(N - 1)degrees of freedom. The value obtained, in 

this case is 7.56 rounded off to two decimal places. As the 

number of methods is 4 and the number of data sets is 20 we 

can say FF is distributed according to the F distribution with (4 

- 1) = 3 and (4 - 1)(20 - 1) =57 degrees of freedom. Hence the 

critical value of F(3, 57) for   = 0.05 is 2.77 rounded off to 

two decimal places which is less than FF , so we reject the null-

hypothesis of the algorithms performing with no significant 

differences. 

 

Table 5. Data sets used in experimental evaluation 

 

Data Set 
Best of conventional 

acc.  s.d 
Algorithm 

OE2C4.5 

acc  s.d 

OE2PRISM 

acc  s.d 

OE2RISE 

acc  s.d 

Annealing 97.40  1.61 RISE 99.27  0.87 98.85  1.25 98.92  1.00 

Breast cancer 72.71  7.29 RISE 77.17  7.38 75.33  7.86 77.51  6.61 

Cleveland 50.04  5.70 C4.5 58.31  8.64 59.05  7.81 57.75  8.96 

Credit 86.09  4.31 RISE 86.00  3.10 55.51  5.42 86.00  3.10 

Echocardio 65.99  11.69 RISE 67.02  12.42 65.02  10.54 70.29  11.54 

Ecoli 81.26  4.71 RISE 81.18  6.64 42.56  8.19 83.32  6.46 

German 71.92  1.44 C4.5 75.38  4.20 75.08  4.40 72.32  4.11 

Glass 72.86  7.36 RISE 78.99  9.16 78.23  7.91 81.57  7.28 

Hdva 31.50  13.24 PRISM 35.10  9.35 36.30  8.23 36.30  9.84 

Horse colic 82.00  3.01 RISE 86.13  6.34 84.53  7.27 84.20  6.56 

Hypothyroid 99.20  0.39 C4.5 99.20  0.44 95.26  1.19 98.92  0.43 

Iris 96.65  3.35 C4.5 97.73  4.13 97.60  4.57 98.67  3.77 

Liver disorder 67.36  7.22 RISE 75.38  6.42 75.38  6.28 74.97  6.59 

Lymphography 81.44  9.30 C4.5 84.18  8.96 82.96  9.40 81.77  9.77 

Pima diabetes 74.47  6.02 C4.5 76.98  4.53 76.65  4.74 76.36  5.44 

Primary tumor 41.42  7.25 C4.5 50.62  8.60 48.55  7.74 48.97  8.28 

Tae 53.63  15.2 RISE 64.07  11.54 22.37  8.01 66.88  10.65 

Voting 95.39  3.09 C4.5 96.00  3.33 96.23  3.16 95.09  3.45 

Wisconsin 94.20  2.10 C4.5 96.91  2.17 97.08  1.74 97.08  2.12 

Zoology 90.80  5.11 C4.5 95.84  6.32 92.11  9.54 88.44  10.47 

 

The Nemenyi test [19] is done then for pairwise 

comparisons. The critical valueis 2.569 for comparing 4 

methods considering  = 0.05 and the corresponding CD 

(critical difference) is found to be 1.05 rounded off to two 

decimal places using [19, 20]. 
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(10)   

 

The difference between the average rank of OE2-C4.5 and 

the best of the conventional algorithms is found to be 1.625 

which is greater than the obtained CD so we can affirm that 

OE2-C4.5 is significantly outperforming the conventional 

versions of all the 3 algorithms. Similarly, we can conclude the 

same for OE2-RISE as the difference is 1.2 in this case. 

Although OE2-PRISM has outperformed its conventional 

version it can be inferred that it fails to perform better than the 

best of all conventional versions significantly as the difference 

here is 0.875. 

 

 

6. CONCLUSION 

 

In this work, a methodology is proposed to classify (predict 

classes from the attribute values) with better accuracy using 

C4.5, PRISM and RISE algorithms. It is observed that it yields 

better accuracy than the classical versions of C4.5, PRISM and 

RISE for all the 19 data sets amongst 20, except for Credit data 

set. And for Hypothyroid data set the accuracy for the best of 

both the methodologies are equal. Performing Friedman test 

and Nemenyi test it is clearly visible that OE2-C4.5 and OE2-

RISE performs better than the conventional versions of C4.5, 

PRISM and RISE significantly. OE2-PRISM performs better 

than the classical PRISM, but fails to outperform the 

conventional versions of all the three algorithms significantly. 

Conventional PRISM, for the data sets considered, actually 

failed to outperform conventional C4.5 and RISE. Hence the 

performance of OE2-PRISM was not very impressive. 

However, the proposed methodology helped the individual 

classifiers to perform better and would be useful for similar 

weak learners individually or in an ensemble. 
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