

A Novel Incremental Learning Algorithm Based on Incremental Vector Support Machina and

Incremental Neural Network Learn++

Aida Chefrour1,2*, Labiba Souici-Meslati1, Iness Difi2, Nesrine Bakkouche2

1 LISCO Laboratory, Computer Science Department, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria
2 Computer Science Department, Mohamed Cherif Messaadia University, Souk Ahras 41000, Algeria

Corresponding Author Email: aida.chefrour@univ-soukahras.dz

https://doi.org/10.18280/ria.330303

ABSTRACT

Received: 5 March 2019

Accepted: 4 June 2019

 Incremental learning refers to the learning of new information iteratively without having to

fully retain the classifier. However, a single classifier cannot realize incremental learning if

the classification problem is too complex and scalable. To solve the problem, this paper
combines the incremental support vector machine (ISVM) and the incremental neural network

Learn++ into a novel incremental learning algorithm called the ISVM-Learn++. The two

incremental classifiers were merged by parallel combination and weighted sum combination.

The proposed algorithm was tested on three datasets, namely, three databases Ionosphere,

Haberman's Survival, and Blood Transfusion Service Center. The results show that the ISVM-

Learn ++ achieved a learning rate of 98 %, better than that of traditional incremental learning

algorithms. The research findings shed new light on incremental supervised machine learning.

Keywords:

parallel multiple classifiers, supervised

machine learning, ISVM-Learn++, weak

learning

1. INTRODUCTION

Most of the developed techniques for classification are

based on the supervised learning paradigm which aims to

make a decision from a training set of labeled examples

available from the beginning of the training phase. If the

examples given for the system are not representative of the

problem to be modeled, its answer will not be reliable because

the learning module of this system will not be able to provide

a model generalizing the reality. Or such a dataset is not

always available, it would then be necessary for the system to

be able to use and learn the new data that it will have later on

to improve its performance without forgetting the data already

learned, incremental learning (IL). An incremental learning

algorithm meet the following criteria [1-2]: (1) it should be

able to learn additional information from new data (plasticity);

(2) it should not require access to the original data, used to

train the existing classifier; (3) it should preserve previously

acquire knowledge (it should not suffer from a significant loss

of originally learned knowledge (stability); (4) it should be

able to accommodate new classes that may be introduced with

new data. Thus, an incremental learning system can learn

additional information from new data without having access to

previously available data and without requiring any relearning

of the system on the old and the new training data. It is a type

of training; we can say that a supervised or unsupervised

learning algorithm can be incremental or not incremental.

Traditionally, for the design of such a computer system in the

field of pattern recognition in general, we propose several

classifiers, we test and evaluate their experimental

performance to choose the best. However, it was noted that the

use of classifiers individually provides information or

opinions that could be complementary. Hence the emergence

of the idea of combining classifiers which is considered as an

effective tool to have great performance without increasing the

complexity of the existing classification techniques [3]. It is

suitable for applications requiring high classification

accuracy.

Many scholars have explored incremental learning using

combining classifiers. For example, Polikar et al. [4] propose

Learn++, an incremental learning algorithm based on the well

known AdaBoost, which uses multiple classifiers to allow the

system to learn incrementally. This algorithm works on the

concept of using many classifiers that are weak learners to give

a good precision of classification. A weak learner is a classifier

that will classify the data with an accuracy of 50 %. The weak

learners are trained on a separate subset of the training data

and then the classifiers are fused using a weighted majority

vote combination technique. The weights for the weighted

majority vote are chosen using the performance of the

classifiers on the entire training dataset. Some modified

versions, such as Learn++.MT [5] using Dynamic Weighted

Voting (DWV) and Learn++.NC [6] using Dynamically

Weighted Consult and Vote (DW-CAV), is proposed to

address this issue. Wen and Lu [7] propose a novel incremental

learning algorithm ILbyCC that uses the Averaged Bayes rule

to combine classifiers. ILbyCC can not only preserve the

knowledge learned before but also can learn new knowledge

from newly added data and further new knowledge from newly

introduced classes. The proposed algorithm trains a support

vector machine that can output posterior probability

information once an incremental batch training data is

acquired. The outputs of all the resulting support vector

machines are simply combined by averaging.

Classifier combining is a useful method for machine

learning [3] which includes ensemble learning, modular

learning, and meta-learning. Many researchers have applied

classifier combining techniques to incremental learning and

many algorithms based on classifier combining have been

proposed. In this study, we have made the following

contributions:

• The choice to investigate incremental learning through

Revue d'Intelligence Artificielle
Vol. 33, No. 3, June, 2019, pp. 181-188

Journal homepage: http://iieta.org/journals/ria

181

Support Vector Machines (SVM) and Artificial Neural

Networks (ANN).

• The proposal of a combination system ISVM-Learn++ of

two classifiers: the incremental SVM of [8] and the

incremental neural network Learn ++ of [4] for the

classification of a large number of training examples, in

order to have the interest of the two concepts of

combination and incremental in the classification.

• The selection of the parallel combination type and the

weighted sum combination method to merge the two

incremental classifiers.

The remainder of this paper is organized as follows: the

theoretical background is given in Section 2 Section 3

describes, in details, our contribution to ISVM-LEARN++.

The conducted experimentations and the obtained results are

presented in section 4. Finally, we draw some conclusions and

show ongoing research aspects in Section 5.

2. THEORETICAL BACKGROUND

2.1 Problematic of the parallel combination

In our study, we have used the method of the parallel

combination of classifiers which would submit the same

characteristics to both classifiers and combine the results using

a variety of methods, such as logistic regression and Borda

Count, weighted sum... [9]. Each of the inducers is invoked

independently, and their results are then combined by a

combiner. The majority of combination architectures in the

literature belong to this category.

The problem with the parallel combination of classifiers

may occur as follows [10]: given a set of K classifiers each it

decides independently on a form to recognize, how to develop

a single final response from the K results provided. This

problem of the parallel combination requires first to remind

what generally means "Classifier" as part of the combination

then examine the criteria to be taken into account to categorize

the different methods of combination presented in the

literature (as shown in Figure 1).

Classifier 2

Classifier 1

Classifier

combining

Pattern

to
identify

Classifier n

Decision

..................

..................

..................

..................

..................

..................

..................

..................

.................

Figure 1. The parallel combination of classifiers

2.2 Output types of combined classifiers

The way to categorize classifier combination is by the

outputs of the classifiers used in the combination. Three types

of classifier outputs are usually considered [11]:

• Type I (abstract level): this is the lowest level since

a classifier provides the least amount of information

on this level. Classifier output is merely a single class

label or an unordered set of candidate classes (Eq.

(1)).

() / ?ej x Ci i m= = (1)

• Type II (rank level): classifier output on the rank

level is an ordered sequence of candidate classes, the

so-called n-best list. The candidate class at the first

position is the most likely class, while the class

positioned at the end of the list is the most unlikely.

Note that there are no confidence values attached to

the class labels on the rank level. Only their position

in the n-best list indicates their relative likelihood (Eq.

(2)).

() 1, 2, , ej x rj rj rjm= (2)

where, rj, i is the rank assigned to a class (i) by the classifier

(j).

• Type III (measurement level): In addition to the

ordered n-best lists of candidate classes on the rank

level, classifier output on the measurement level has

confidence values assigned to each entry of the n-best

list. These confidences, or scores, can be arbitrary

real numbers, depending on the classification

architecture used. The measurement level contains,

therefore, most information among all three output

levels (Eq. (3)).

() 1, 2, , ej x Mj Mj Mjm= (3)

where, Mji is the measure assigned to a class (i) by the

classifier (j).

3. THE PROPOSED ISVM-LEARN++CLUSTERING

ALGORITHM

To overcome the limitations of the high complexity and the

no scale with the size of the very large datasets of the

individual classifier, we have developed in this paper ISVM-

LEARN++: A combination of two incremental supervised

algorithms: incremental SVM and Learn++ (incremental

neural network).

The proposed ISVM-LEARN++ consists of four

subsystems (as shown in figure 2), which are batch datasets;

Incremental SVM of [8]; the Learn ++ of [4] and the ISVM-

Learn ++ Combination Module. The two main reasons for

combining classifiers are efficiency and accuracy [12].

This section introduces a framework for using dynamic

weighting ensembles to effectively learn new batches of data

appearing over time without the need for retraining. There are

two phases in the proposed algorithm (see Figure 2).
The first phase is to train an ensemble of incremental

classifiers based on each batch of the input data when a new

batch of data becomes available, a new ensemble of basic

classifiers is built solely on it so that the new information can

be effectively extracted, without interfering with existing

classifiers. Another advantage is that the training process has

much better flexibility than the retraining strategy. The second

phase is to combine the outputs from individual incremental

classifiers; the weighted sum method is used to combine all the

incremental classifiers.

182

Learn++

Incremental

SVM

Classifier

combining 1

1st batch

data

Learn++

Incremental

SVM n-th batch

data Classifier

combining n

...........................

...........................

...........................

...........................

...........................

..........................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

..............

Classifier

combining

.................

.................

.................

.................

.................

.................

.................

.................

.................

........

Figure 2. The proposed architecture of ISVM-LEARN++

The main idea behind this method is to build an extra model

upon each basic classifier based on its training results (whether

a training sample is classified correctly or not). By doing so,

this new model is able to estimate the accuracy or the

competency of the classifier for each new sample.

Special features of our combination are:

• The combination scheme will be parallel;

• no interaction exists between classifiers;

• classifiers are fixed and do not change;

• classifiers use the same input data;

• the database is divided into batches.

In what follows, we describe in details the main subsystems

of ISVM-LEARN++:

3.1 Classifiers choice

The choice of classifiers is a difficult task; it has pushed

researchers to develop methods to help designers. The simplest

and most used method belongs to the static selection

(Overproduce and choose), which consists of generating

different classifiers based on the methods of creating sets and

then choosing the group of classifiers whose output can then

be combined and the combination produces the best result. In

a simpler way, the main idea of this method is to produce a

large initial set of candidate classifiers, then select a subset that

is considered most valuable to achieve optimal performance.

To do this, the process follows two cycles:

• Build the set of starting classifiers (overproduction);

• choose the most interesting subassembly.

We built a set of classifiers: Learn ++, ISVM from

Cauwenberghs and Poggio, SVM from Diehl and

Cauwenberghs [13] and ITI (Incremental Tree Inducer) of

Utgoff [14]. We tested this dataset before doing the

combination on a chosen database and we found that

incremental SVM Cauwenberghs and Poggio and Learn ++

give optimal performance over leftovers.

3.2 Incremental SVM learning of Cauwenberghs and

Poggio

Cauwenberghs and Poggio [8] propose an on-line, recursive

algorithm for learning an SVM. Initially, a new example is

added to the training database. If this is rated by the SVM then

no change will be made. Otherwise, an update is necessary by

making modifications to the Lagrange multipliers while

respecting the conditions of Karush Kuhn Tucker (KKT).

The training dataset is partitioned into three groups:

• The group of well-ranked examples D (interior points)

located within the decision boundary;

• the group of support vectors S located on the decision

boundary;

• the group of error vectors U contains the external

points located outside the decision boundary.

After having initialized the optimal hyperplane of the model

at the beginning of the classification, the objective is to adapt,

sequentially, this hyperplane according to the evolution of the

model over the sequence. When updating the decision

boundary, examples from these three groups (D, S, U) may

change state (when adding new data). A LOO (Leave One Out)

decremental learning procedure is executed to delete old data.

The basic idea is to adapt to the decision boundary to adding

the new example to the solution and then removing those too

old keeping the conditions of KKT satisfied.

Algorithm:

Let F be the training dataset and H (x) the separating

function is reduced to a linear combination of the kernel

function on the training data. The Lagrange multipliers are

obtained by minimizing the convex quadratic objective

function under the constraints (Eq. (4)):

Minimizes

w =
1

2
∑ ∑ j = 1nn
i=1 αiαjk(xi, xj) − ∑ αi + b∑ yiαi

n
i=1

n
i=1 (4)

1st order conditions on the W gradient lead to the following

KKT conditions

() () , gi j k xi xj b H xi= + = (5)

()

()

1

0 0;

0

0 ; 1 0
s

j

H xi i

H xi

w
i C j

b

=

 =

=

 = − =

 (6)

() 0 ;H xi if C = {C is the regularization parameter}

− 0 i C : support vectors (set S);

- i C = : the vectors errors (set U);

- 0i = : well-ordered vectors (set D);

- gi : quantity of the partial derivatives.∂

3.2.1 Incremental learning procedure

When the new example xc is added to the set of support

points S, the decision function is adapted and updated

iteratively, that is to say, that its parameters αj, b are updated

and recalculated so that iterative and incremental. At each

iteration, gc = Hc (xc) is recalculated until gc = Hc (xc) = 0

while keeping the KKT conditions satisfied. We must then

define the incrementation steps Δgi (with i = 1, ..., d), Δαi (with

i = 1, ..., s) and Δb. To use the Lagrangian in solving

constrained optimization equations, the Jacobian matrix Q is

used.

The incremental learning procedure summary of a new

example xc:

183

Initialization αc to zero

If gc> 0, add xc to D. update G (GS + 1 ← GC
S), End.

If gc = 0, add xc to S, update the parameters αj, b, R and

G, End.

If gc <0, add xc to U, as long as gc <0 do αc = αc + Δb

Calculate β

Calculate Δb, then b = b + βb

For each xj∈S, calculate Δαj, then αj = αj + Δαj

For each xj∈D, calculate Δgi, then gi = gi + Δgi

Check if an example of the support is found inside the

hyperplane (αj ≤0).

If yes, Remove it from S and add it to D, and update all

the parameters.

Repeat until gc = 0

3.2.2 Decremental learning procedure

Incremental learning is the way to learn little by little, as

data arrive. In contrast, the decremental learning is unlearning,

to gradually forget knowledge from the oldest learning data

[15]. The procedure for deleting old data is complementary to

the procedure of adding new data. When an example xr is

removed from S, gr will be removed from G and z (set of

parameters {b, αr}) will be updated decremental and the

decision function Hk will be adjusted up to that xr is outside

(αr≤0). The matrix R is updated by removing from the matrix

Q the column r + 1 and the line r + 1 (corresponding xr to

which was removed). When an example xr is removed from D,

the only G is updated by removing it gr.

Decremental learning procedure summary of an old

example xr:

If gr = 0, remove xr from F, and remove gr from G (G ←

G-gr), End.

If gr = 0, remove xr from S, and therefore from F.

As long as αr> 0 do αr = αr + Δα

Calculate Δb, then b = b + Δb

For each xj∈S,

Calculate Δαj, then αj = αj-Δαj

For each xj∈F, calculate Δg i, then gi = gi - Δgi

Check if an inside example xi∈D is outside the deciding

boundary (Gi≤0). If yes, discontinue the deletion procedure,

and apply the procedure add-on xi, so that the procedure of

forgetting can be restored until αr = 0.

3.3 Learn++

Learn ++ [4-16] is an incremental learning algorithm of a

neural network inspired by the AdaBoost algorithm [17]. It is

based on the principle of a combination of weak classifiers to

make a decision. The system will train several classifiers on

several subsets of the learning set. The difficulties of this

algorithm lie in the creation of the training subsets and the

combination of these classifiers. The idea of Learn ++ is to

modify the distribution of the elements in the training subset

in order to reinforce the presence of the most difficult elements

to classify according to the errors of the weak classifier

generated. This procedure is then repeated with a different set

of data from the same learning base and new classifiers are

generated. The output will be the combination of the outputs

of the classifiers using the majority vote. The weak classifiers

are classifiers that provide a rough estimate of a decision rule

because they must be very fast to generate.

The pseudo-code of Learn++

Input: For each database drawn from Dk {k=1,2,……..,k}

Sequence of m training examples

S=[(x1,y1),(x2,y2),……(xm,ym)]

Weak learning algorithm WeakLearn

Integer Tk, specifying the number of iterations.

Do for k=1,2,…... k

Initialize w1(i) = D(i) = 1/m ∀i unless where is prior

knowledge to select otherwise.

 Do for t=1,2,….Tk :

1. Set Dt = wt /Ʃt=1 wt(i) so that Dt is a distribution.

2. Randomly choose training TRt and testing TEt subsets

according to Dt .

3. Call WeakLearn, providing in with TRt

4. Get back a hypothesis ht : X→Y, and calculate the error of

ht :ɛt = Ʃ i :ht(xi)≠yi Dt (i) on St = TRt +TEt

If ɛ t> ½ then t = t −1, discard ht and go to step 2. Otherwise,

compute normalized error as βt = ɛt / (1- ɛt).

2. Call weighted majority, obtain the composite hypothesis Ht

= arg max y∈Y ∑t :ht(x)=y log(1/βt) and compute the

composite error: Et = Ʃ i :Ht(xi)≠yi Dt (i)= Ʃi=1 D(i)[|Ht

(xi)≠yi|]

If Et > 1/2 then t=t-1 discard Ht and go to step 2.

Set 𝛽𝑡 =
𝐸𝑡

1−𝐸𝑡
 (normalized composite error), and update the

weights of the instances:

 𝑤𝑡+1(𝑖) = 𝑤𝑡(𝑖) ×
{𝐵𝑡 , 𝑠𝑖 𝐻𝑡(𝑥𝑖) = 𝑦𝑖}
 1, Otherwise

 =𝑤𝑡(𝑖) × 𝐵𝑡
1−[|𝐻𝑡(𝑥𝑖)≠𝑦𝑖|]

3. Call weighted majority on combined hypotheses Ht and

Output the final hypothesis:

𝐻𝑓𝑖𝑛𝑎𝑙 = argmax
𝑦∈𝑌

∑ ∑ log |(1 𝛽𝑡
⁄

𝑡:𝐻𝑡(𝑥)=𝑦

𝐾

𝑘=1

)

3.4 Combination module

The combination choice module or the decision function

plays a very important role in the design of a Multi Classifiers

System (MCS) [18-19]. The output of the MCS reflects the

decision of the whole set using, for example, the Bayesian

method, the weighted sum.... The combination mechanism

will be more effective when the classifiers exhibit different

behaviors.

The combination method we have adopted for our system is

the weighted sum method which is defined in the previous

chapter as a generalization of the Borda Count method [20] in

which the ranks assigned by a classifier are weighted by a

coefficient indicating the importance given to this one. It

consists in weighting the sum of the ranks according to the

credibility or the confidence granted to the classifier.

In our system, each of the two classifiers presented above

gives a result xki corresponding to the output class (k = 1..2)

corresponds to the number of the classifier,

i correspond to the number of the class for each database.

To apply the weighted sum, we used weighting to represent

the notion of trust given to the classifier. This degree of

confidence is known a priori in the training phase and in the

test phase, for that we consider that:

Let x1i, x2i be the outputs associated with class i for each

classifier.

Let dc1, dc2, dc3 be the degrees of confidence of each of

184

the classifiers determined by the recognition rate during the

test phase.

The weighted sum method is then applied (see Eq. (7)):

1 1 2 2

1 2

X i dc X i dcXi
dc dc

+
=

+

 (7)

This formula is applied for all outputs obtained by each

classifier and for all database packages.

4. EXPERIMENTS AND RESULTS

In order to evaluate the performance of ISVM-LEARN++

algorithm, experiments are conducted on three data sets from

UCI repository (refer Table 1): Haberman's Survival, Blood

Transfusion Service Center and Ionosphere.

Table 1. Description of UCI databases

Dataset N°. of

instances

N°. of

attributes

Attributes

type

Missing

values

Haberman's

Survival
306 3 Integer No

Blood

Transfusion

Service

Center

748 5 Real No

Ionosphère 351 34
Integer

and real
No

Performance is evaluated in terms of recognition rate and

classification error rate [21].

Recognition rate (see Eq. (8)) is what we usually mean when

we use the term accuracy. It is the ratio of a number of correct

predictions to the total number of input samples.

 𝑅𝑒 𝑐 𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 (8)

Classification error rate (see Eq. (9))

Success: instance’s class is predicted correctly (True

Positives (TP) / Negatives (TN))

Error: instance’s class is predicted incorrectly (False

Positives (FP) /Negatives (FN))

Classification error rate (Eq. (9)): the proportion of

instances misclassified over the whole set of instances

𝐸𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9)

We have divided each ionosphere database into batches and

we have introduced to each classifier a batch … The database

is divided into 2 batches for training and the 3rd for testing.

We choose sigma = 0.25 fixed, the parameter C = 10:

Table 2 summarizes the results obtained by running

incremental SVM and Learn ++ on the three databases.

For the test phase, we took 1/3 of each database; the

recognition rates of each class with respect to each classifier

after the combination are mentioned in Table 3.

Figure 3. Classification by incremental SVM training dataset

1, C = 10, Sigma = 0:25, TB1 = 1-117, Vectors Errors = 42,

recognition rate = 58 %

Figure 4. Classification by incremental SVM training dataset

2, C = 10, Sigma = 0.25, TB2 = 118- 234, Vectors Errors =

41, recognition rate = 59 %

Figure 5. Classification by incremental SVM testing dataset

C = 10, Sigma = 0:25, TB = 235- 351, Vectors Errors = 17,

recognition rate = 68 %

185

Table 2. The recognition rate of training datasets

Dataset

Incremental SVM Learn++

C (regularization

parameter)
Sigma

Vectors

errors

Recognition

rate (%)

T (N° of

iterations)

Error

rate (%)

Recognition

rate (%)

ionosphere_training1

(1_117)
10 0.25 42 58 3 28.53 71.47

ionosphere _ training2

(118_234)
10 0.25 41 59 3 16.38 83.62

Transfusion- training1

(1_88)
10 0.25 32 68 3

50.20

49.80

Transfusion- training2

(89_176)
10 0.25 20 80 3

38.43

61.57

Haberman- training1

(1_102)
10 0.25 20 80 3 21.67 78.33

Haberman_ training2

(103_204)
10 0.25 13 87 3 14.67 85.33

Table 3. The recognition rate of test datasets

Data set

Incremental SVM Learn++

C (regularization

parameter)
Sigma

Vectors

errors

Rate recognition

(%)

T (N° of

iterations)

Error

rate (%)

Recognition

rate (%)

ionosphere _test

(235_351)
10 0.25 17 83 3 9.32 90.68

Transfusion_test

(177_264)
10 0.25 22 78 3 26.67 73.33

Haberman_test

(205_306)
10 0.25 20 80 3 43.33 56.67

Table 4. Initial results of combination

Data set

Incremental SVM Learn++
Combination

(X)
Vectors

errors

Recognition

rate
Class 1 Class 2

Rate

error

Recognition

rate
Class 1 Class 2

Ionosphere test

235_351
17 0.83 44 56 0.0932 0.9068 23 94 0.93

Transfusion test

177_264
22 0.78 66 0 0.2667 0.73 17 71

0.87

Haberman test

205_306
20 0.80 1 81 0.4333 0.57 20 82 0.88

Results interpretation:

We remark that the number of error vectors is large in

Figure 3 = 42, as well as the margin increases, so the

performance decreases = 58 %, even Figure 4, the performance

is almost equal to 59 %, it is the same for the 1st training batch.

If we look at the third case (Figure 5), we find that the number

of error vectors is 17, the margin is small, the performance is

not better (68 %). So the best case is the third, we observe the

number of errors equal to 32 % that is to say we agreed to have

misclassified points.

Combination results:

After having seen the results of the two individual

classifiers, we combined the two in parallel using a weighted

sum combination, we took the degrees of confidence of each

of the classifiers the recognition rate during the test phase,

applying the formula (7) on the Ionosphere database, and we

obtain the following results:

Let x1i, x2i be the outputs associated with class i for each

classifier that take the values given in Table 4.

Let dc1, dc2, dc3 be the confidence levels of each of the

following values: 0.83-0.78-0.80-0.9068-0.70-0.57:

The weighted sum method is then applied:

Xi =
(X1i×dc1+X2i×dc2)

(dc1+dc2)
 (10)

We calculated the outputs for each classifier and for each

database; we obtained the following results (see Table 4):

Weighted Sum1 = ((0.83 * (44/117) + 0.83 * (56/117)) +

((0.9068 * (23/117) + 0.9068 * (94/117)))) / ((0.83 + 0.9068))

= 0.93

The performance obtained after combining the two

classifiers on the 1st database is: 93% and 7% rejection.

Weighted Sum2 = ((0.78 * (66/88) + 0.78 * (0/88)) + ((0.73

* (17/88) + 0.73 * (71/88)))) / ((0.78 + 0.73)) = 0.87

The performance obtained after the combination of the two

classifiers on the 2nd database is: 87% and 13% rejection.

Weighted Sum3 = ((0.8 * (1/102) + 0.8 * (81/102)) + ((0.57

* (20/102) + 0.57 * (82/102)))) / ((0.8 + 0.57)) = 0.88

The performance obtained after the combination of the two

classifiers on the 3rd database is: 88% and 12% rejection.

According to our proposed architecture (Fig.2), the final

decision is the combination of the classifier combinations, so

we will apply the weighted sum on the previous results (X of

Table 5).

186

Table 5. Final combination results

Data set

Classifiers combination

(ISVM-Learn++)

X Class1 Class2

Ionosphere test 235_351 0.93 67 150

Transfusion test 177_264 0.87 83 71

Haberman test 205_306 0.88 21 163

Final combination results 0.98

Class1: Class1 of the first classifier + Class1 of the second

classifier

Final weighted sum =

(

(0.93 ∗(
67

217
)+ 0.93∗(

150

217
))+(0.87 ∗(

83

154
)+ 0.87 ∗(

71

154
))

+(0.88∗(
21

184
)+0.88∗(

163

184
))

(0.93+0.87+0.88)

)

= 0.98

The performance obtained after the combination of the two

classifiers on the 3rd database is 98 % and 2 % rejection.

The performance results of individual classifiers and multi-

classifiers are summarized in Table 6.

Table 6. Final combination performance results

Classifiers
Recognition

rate(%)

Incremental SVM and Learn++ (First BDD) 93

Incremental SVM and Learn++ (Second BDD) 87

Incremental SVM andt Learn++ (ThirdBDD) 88

ISVM-Learn++ 98

The recognition rate has been increased with the

combination of 5 % compared to the best classifier and by

11 % compared to the average of the three combinations, it can

be deduced that with the use of the combination of classifiers

we benefit from the powers individual classifiers, each in his

specialty space for a higher recognition rate.

5. CONCLUSIONS AND PERSPECTIVES

The ultimate goal of our work is the combination of

incremental classifiers ISVM-Learn ++ involving several

incremental classifiers to take advantage of their performance

and increase the recognition rate, so we tried to vary the

classifiers by choosing them of a different nature. For this

purpose, a committee of two incremental classifiers was

studied, namely the incremental SVM of Cauwenberghs et al.

and Learn ++.

To evaluate our classifiers and their combination on

diversified data, three databases were used from UCI

(University California Irvine) repository: Ionosphere,

Haberman's Survival and Blood Transfusion Service Center

repository.

Each of the two incremental classifiers was developed

separately with part of the training dataset, and their respective

parameters were therefore released. We then tested each of

them on the same basis of validation, then we applied the

combination, the 98 % rate of good recognition reinforces the

fact that the combination gives better performance than any

other classifier taken individually.

In the future, we can analyze the complexity of the proposed

algorithm for evolving machine learning and we can

investigate several other combinations methods of different

incremental classifiers, for comparison purposes. For example,

it is possible to integrate an incremental classifier based on the

ITI decision trees, for example, in the combination and try to

benefit from the ITI power shown in recent work. We also plan

to compare between the combination of ILbyCC classifiers

and our proposed ISVM-Learn ++ classifier.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for their

very constructive remarks and suggestions.

REFERENCES

[1] Almaksour, A. (2011). Incremental learning of evolving

fuzzy inference systems: Application to handwritten

gesture recognition. Ph.D. thesis, INSA, Rennes.

[2] Chefrour, A. (2019). Incremental supervised learning:

algorithms and applications in pattern recognition.

Evolutionary Intelligence, 12(2): 97-112.

https://doi.org/10.1007/s12065-019-00203-y

[3] Ianakie, K., Govindaraju, V. (2002). Architecture for

classifier combination using entropy measures. In

International Workshop on Multiple Classifier Systems,

pp. 340-350. https://doi.org/10.1007/3-540-45014-9_33

[4] Polikar, R., Upda, L., Upda, S.S., Honavar, V. (2001).

Learn++: An incremental learning algorithm for

supervised neural networks. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 31(4): 497-508.

https://doi.org/10.1109/5326.983933

[5] Muhlbaier, M., Topalis, A., Polikar, R. (2004). Learn++.

MT: A new approach to incremental learning. In

International Workshop on Multiple Classifier Systems

Springer, Berlin, Heidelberg, pp. 52-61.

https://doi.org/10.1007/978-3-540-25966-4_5

[6] Muhlbaier, M.D., Topalis, A., Polikar, R. (2009).

Learn++. NC: Combining ensemble of classifiers with

dynamically weighted consult-and-vote for efficient

incremental learning of new classes. IEEE Transactions

on Neural Networks, 20(1): 52-168.

https://doi.org/10.1109/TNN.2008.2008326

[7] Wen, Y.M., Lu, B.L. (2007). Incremental learning of

support vector machines by classifier combining. In

Pacific-Asia Conference on Knowledge Discovery and

Data Mining Springer, Berlin, Heidelberg, pp. 904-911.

https://doi.org/10.1007/978-3-540-71701-0_101

[8] Cauwenberghs, G., Poggio, T. (2001). Incremental and

decremental support vector machine learning. In

Advances in Neural Information Processing Systems, pp.

409-415.

[9] Bahler, D., Navarro, L. (2000). Methods for combining

heterogeneous sets of classifiers. In 17th Natl. Conf. on

Artificial Intelligence (AAAI), Workshop on New

Research Problems for Machine Learning.

[10] Ponti Jr., M.P. (2011). Combining classifiers: from the

creation of ensembles to the decision fusion. In 2011 24th

SIBGRAPI Conference on Graphics, Patterns, and

Images Tutorials, pp. 1-10.

https://doi.org/10.1109/SIBGRAPI-T.2011.9

[11] Tulyakov, S., Jaeger, S., Govindaraju, V., Doermann, D.

(2008). Review of classifier combination methods. In

187

https://doi.org/10.1109/5326.983933

Machine Learning in Document Analysis and

Recognition Springer, Berlin, Heidelberg, pp. 361-386.

https://doi.org/10.1007/978-3-540-76280-5_14

[12] Kittler, J., Hatef, M., Duin, R.P., Matas, J. (1998). On

combining classifiers. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(3): 226-239.

https://doi.org/10.1109/34.667881

[13] Diehl, C.P., Cauwenberghs, G. (2003). SVM incremental

learning, adaptation and optimization. In Neural

Networks, Proceedings of the International Joint

Conference on IEEE, pp. 2685-2690.

https://doi.org/10.1109/IJCNN.2003.1223991

[14] Utgoff, P.E. (1994). An improved algorithm for

incremental induction of decision trees. In Proceeding of

the 11th International Conference on Machine Learning,

New Brunswick, NJ, Morgan Kauffmqan, pp. 318-325.

https://doi.org/10.1016/B978-1-55860-335-6.50046-5

[15] Bouillon, M., Anquetil, E., Almaksour, A. (2013).

Decremental learning of evolving fuzzy inference

systems: application to handwritten gesture recognition.

In International Workshop on Machine Learning and

Data Mining in Pattern Recognition Springer, Berlin,

Heidelberg, pp. 115-129. https://doi.org/10.1007/978-3-

642-39712-7_9

[16] Patel, A.J., Patel, J.S. (2013). Ensemble systems and

incremental learning. In 2013 International Conference

on Intelligent Systems and Signal Processing (ISSP), pp.

365-368. https://doi.org/10.1109/ISSP.2013.6526936

[17] Zhao, Q.L., Jiang, Y.H., Xu, M. (2010). Incremental

learning by heterogeneous bagging ensemble. In

International Conference on Advanced Data Mining and

Applications, pp. 1-12. https://doi.org/10.1007/978-3-

642-17313-4_1

[18] Ranawana, R., Palade, V. (2006). Multi-classifier

systems: Review and a roadmap for developers.

International Journal of Hybrid Intelligent Systems, 3(1):

35-61. https://doi.org/10.3233/HIS-2006-3104

[19] Dahmouni, A., Aharrane, N., El Moutaouakil, K., Satori,

K. (2017). Multi-classifiers face recognition system

using LBPP face representation. International journal of

Innovative Computing Information and Control, 13(5):

1721-1733.

[20] Koffi, C. (2015). Exploring a generalized partial Borda

count voting system. Senior Projects Spring 2015.

[21] Abbas, E.I., Safi, M.E., Rijab, K.S. (2017). Face

recognition rate using different classifier methods based

on PCA. In 2017 International Conference on Current

Research in Computer Science and Information

Technology (ICCIT), pp. 37-40.

https://doi.org/10.1109/CRCSIT.2017.7965559

188

https://doi.org/10.1016/B978-1-55860-335-6.50046-5
https://doi.org/10.1007/978-3-642-39712-7_9
https://doi.org/10.1007/978-3-642-39712-7_9
https://doi.org/10.1109/ISSP.2013.6526936
https://doi.org/10.1109/CRCSIT.2017.7965559

