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Nondestructive testing in apple variety identification has become a necessary prerequisite 

for the industrialization of apple production and increased international competitiveness. 

According to the characteristics of apple images, this paper designs and implements an 

apple variety identification algorithm (ACRMV) based on multiview technology. The 

method comprises two main steps, namely, discriminatory image block selection and a 

multiview classification algorithm. In the phase of image block selection, local features that 

occur frequently in one category but seldom in other categories are selected. In the 

multiview classification stage, a robust multiview classification fusion algorithm is 

designed based on image block features generated by different descriptors for each view. 

The experimental results show that ACRMV with the strategy of multifeature fusion and 

joint training is superior to its corresponding single-view method and to other multiview 

methods. The discriminative image block selection algorithm uses image blocks with 

greater discrimination as training data to reduce the influence of redundant data. The 

proposed method makes full use of the consistency and complementarity among different 

views to achieve the purpose of merging multiple views and jointly improving recognition 

performance. 
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1. INTRODUCTION

Apples occupy an important position in the world fruit 

market and are among the most popular fruits in daily life. The 

commercialization of postharvest fruits is an important means 

to promote fruit circulation and improve fruit value. Some 

apples are relatively similar in maturity, size, color, and taste. 

The accuracy rate of evaluation and identification by 

nonprofessional personnel is not high, and it is difficult to 

identify apple varieties quickly on the postharvest processing 

assembly line [1]. Therefore, the nondestructive identification 

of apple varieties has become a prerequisite for apple 

industrialization and increased international competitiveness. 

Apple nondestructive testing (NDT) technology based on 

visible light technology has the characteristics of being fast 

and accurate [2-11]. It has developed very quickly in recent 

years and has been widely recognized in industry. 

Image-based apple variety identification can be regarded as a 

typical image classification problem. Traditional image 

classification tasks usually have the characteristics of similar 

data within classes and different data between classes. However, 

apple variety identification be a fine-grained identification 

problem [12, 13]. The similarity of data between classes in such 

problems is often greater than that of data within classes. 

Therefore, the difficulty of classification is greatly increased. A 

great deal of work has been done around the world in terms of 

data collection, network structure, cross-domain knowledge 

transfer and other aspects of addressing fine-grained 

identification problems. However, in apple identification and 

detection scenarios, there are problems such as improving apple 

variety identification performance, increasing the generalization 

ability of classification models, and enhancing learning methods. 

To solve these problems, further research on relevant 

technologies and algorithms is needed. 

According to the characteristics of apple images, this paper 

designs and implements an apple variety recognition algorithm 

(ACRMV) based on multiview technology. The method makes 

full use of the consistency and complementarity among different 

views to achieve the purpose of merging multiple views and 

jointly improving recognition performance. ACRMV takes the 

representation of images under different feature descriptors as 

the basic view representation method, in which consistency 

represents the common potential semantic information of 

different views, while complementarity ensures that different 

descriptors only focus on one aspect of the image. The 

effectiveness of the algorithm is verified through variety 

identification tests on apple data sets and extended tests on tasks 

such as dynamic texture identification and multiangle object 

identification. 

2. RELATED WORK

There are two main problems of multiview classification: 

one is representing each view, and the other is fusing the 

information of multiple views [14]. Usually, these two aspects 

influence each other, and the representation of views 

determines the fusion method. According to the granularity of 

the representation, views can be represented in various ways. 

For the image data involved in this paper, different feature 
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descriptors can be considered together as one view. In addition, 

according to the characteristics of the classification model 

itself, different components in the model, and even the model 

as a whole, can be considered to be a view. Common view 

representations include graphs, kernel matrices, class label 

matrices and classifiers. In addition, according to the stage at 

which fusion is performed, there are generally two methods of 

merging different views: early fusion and late fusion. In the 

former category, commonly used methods range from simple 

feature cascade to more complex methods such as learning to 

share a subspace to obtain unified representations under 

different views. Methods in the latter category usually use 

linear combination to obtain the final category assignment by 

voting according to the classification results of multiple views. 

The multiview classification method for apple variety 

identification used in this paper adopts a combination of early 

fusion and late fusion. The main work related to this method 

is described below. 

Kumar et al. [15] proposed a multiview clustering method 

(CRMVSC) based on spectral clustering. Given the feature 

representation matrix X ∈ ℝn×m, which contains n samples, the 

similarity matrix S ∈ ℝn×n  can be obtained according to the 

similarity function. The corresponding degree matrix is D ∈
ℝn×n, and its diagonal elements are the sum of the elements of 

each row in S. The Laplacian matrix thus obtained is 𝐿 =
D−1/2SD1/2 , where each view is represented as a Laplacian 

embedded clustering representation 𝑈 ∈ ℝ𝑛×𝑐  and c is the 

number of clustering centers. The spectral clustering method for 

a single view is as follows: 

 

𝑚𝑎𝑥 
𝑼

𝑡𝑟(𝑼𝑇𝑳𝑼), 𝑠. 𝑡. 𝑼𝑇𝑼 = 𝑰 (1) 

 

Assuming that the original data contain V views, the basic 

assumption in constructing a multiview is that these views 

should be consistent. To effectively measure the difference 

between different views, for a view v, the inner-product 

similarity matrix of its embedded representation is defined as 

𝑈(𝑣)𝑈(𝑣)𝑇
, so the similarity between any two views can be 

defined as: 

 

𝑆(𝑼(𝑣)，𝑼(𝑚)) = 𝑡𝑟(𝑼(𝑣)𝑼(𝑣)𝑇
𝑼(𝑚)𝑼(𝑚)𝑇

) (2) 

 

For multiple views, it is necessary to measure their pairwise 

similarity with Eq. (2). According to symmetry, a total of V(V-

1)/2 pairs of constraints are required. The clustering model for 

V views is defined as: 

 

𝑚𝑎𝑥
𝑼1,𝑼2,…,𝑼𝑉

∑ 𝑡𝑟(𝑼(𝑣)𝑇
𝑳𝑼(𝑣))

𝑉

𝑣=1

+ 𝜆 ∑ 𝑡𝑟(𝑼(𝑣)𝑼(𝑣)𝑇
𝑼(𝑚)𝑼(𝑚)𝑇

)
1≤ 𝑣,𝑚≤ 𝑉

𝑣≠𝑚 

 

𝑠. 𝑡. 𝑼(𝑣)𝑇
𝑼(𝑣) = 𝑰, ∀ 1 ≤ 𝑣 ≤ 𝑉 

(3) 

 

Eq. (3) is composed of two main terms: the first term is a 

simple superposition of the clustering losses of multiple views, 

and the second term is a pair constraint of any two views, where 

λ is the regular coefficient. An alternate updating strategy is 

adopted in optimizing the objective function. That is, when 

solving one U(v), the other view parameters are fixed; the initial 

value of U(v) is the result of performing a separate spectral 

clustering on a certain view, and updating each U(v) is equivalent 

to updating the following objective function: 

𝑚𝑎𝑥
𝑼(𝑣)

(𝑼(𝑣)𝑇
(𝑳 + 𝜆 ∑ 𝑼(𝑚)

0≤ 𝑚≤ 𝑉
𝑚≠𝑣 

𝑼(𝑚)𝑇
)𝑼(𝑣))

𝑠. 𝑡. 𝑼(𝑣)𝑇
𝑼(𝑣) = 𝑰.

 (4) 

 

The CRMVSC method uses the complementarity of different 

representations indirectly by normalizing the similarity of 

different view representations. Another kind of method attempts 

to directly learn the consistent representation of sample points 

under different views, which usually requires the sample points 

to be mapped into a shared subspace through a linear or 

nonlinear mapping, and the intrinsic relation of different views 

is modeled as a certain property in the space. For example, in 

canonical correlation analysis (CCA) [16] it is considered that 

although one sample has different representations under 

different views, these representations should be closely 

correlated in the shared subspace. For simplicity, it can be 

assumed that the shared subspace dimension is 1. Therefore, 

representations X and Y of the same sample under different 

views can pass through the respective mapping vectors 𝑤𝑋 and 

wY, and the target function of CCA is: 

 

𝑚𝑎𝑥 
𝒘𝑋,𝒘𝑌 

𝑐𝑜𝑣(𝒘𝑋
𝑇𝑿, 𝒘𝑌

𝑇𝒀)

√𝐷(𝒘𝑋
𝑇𝑿)√𝐷(𝒘𝑌

𝑇𝒀)
 (5) 

 

where, the cov function calculates the covariance of the two 

variables after mapping, and function D calculates the variance 

of the corresponding variables. To make the solution unique, 

and assuming that the data have been centralized, Eq. (5) can be 

written as: 

 

𝑚𝑎𝑥 
𝒘𝑋,𝒘𝑌 

𝒘𝑋
𝑇 𝑿𝒀𝑇𝒘𝑌  𝑠. 𝑡. 𝒘𝑋

𝑇 𝑿𝑿𝑇𝒘𝑋 = 1, 

𝒘𝑌
𝑇𝒀𝒀𝑇𝒘𝑌 = 1 

(6) 

 

Similar objective functions are also obtained when the 

dimension of the shared subspace is greater than 1. 

 
𝑚𝑎𝑥 

𝑾𝑋,𝑾𝑌 
𝒕𝒓(𝑾𝑋

𝑇 𝑿𝒀𝑇𝑾𝑌)  𝑠. 𝑡. 𝑾𝑋
𝑇𝑿𝑿𝑇𝑾𝑋 = 𝑰, 

𝑾𝑌
𝑇𝒀𝒀𝑇𝑾𝑌 = 𝑰, 

(7) 

 

where, WX and WY are the corresponding mapping matrices. 

When a view is characterized by a relational structure 

between samples, the fusion of multiple structures becomes the 

key to this kind of multiview learning. For example, consider 

the multiview learning method RMSC based on low-rank, 

sparse representation [17]. For V views, this method models 

every i  views with a similarity matrix S(i). To fuse the 

information of multiple views, the method obtains the common 

similarity matrix S* under multiple views. The specific objective 

function is as follows: 

 

𝑚𝑖𝑛
𝑺∗

‖𝑺∗‖ + 𝜆 ∑‖𝑬(𝑖)‖
1

𝑉

𝑣=1

  

 𝑠. 𝑡.  𝑺(𝑖) = 𝑺∗ + 𝑬(𝑖), 𝑺∗ ≥ 0, 𝑺∗𝟏 = 𝟏. 

(8) 

 

To obtain an effective fusion similarity matrix, the model first 

imposes a low-rank constraint (the first term in the objective 

function) on the fusion matrix S*; this guarantees the diagonal 

block property of the similarity matrix [18], which guarantees 

the cohesion of the same kind of data and the separability 

between different kinds of data. In addition, the model assumes 

that the similarity matrix under a single view contains a certain 

degree of sparse noise and that multiple views can supplement 
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each other with information, thus having the capability of joint 

reduction. Therefore, each S(i) and S* should have its own 

coefficient residual term, namely, E(i). This assumption is 

satisfied by the second term in Eq. (8) and the first term of the 

corresponding constraint. Other items in the constraint 

conditions must satisfy the properties that the similarity matrix 

should have, such as nonnegativity. 

The above method usually assumes that each view is 

complete, but in some scenarios, each view represents part of 

the sample information, which is one-sided and partial. For 

example, if a multiangle image of an apple is considered as a 

view, then the complete information of the apple cannot be 

obtained through each view. Therefore, the multiview intact 

space learning [19] (MISL) method can compensate for the lack 

of information due to a single view by obtaining a complete 

feature space under the joint action of multiple views. The 

objective function of this method is as follows: 

 

𝑚𝑖𝑛
𝒙,𝑾

1

𝑣𝑛
∑ ∑ 𝑙𝑜𝑔 (1 +

‖𝒛𝑖
(𝑣)

− 𝑾(𝑣)𝒙𝑖‖
2

𝑐2 )

𝑛

𝑖=1

𝑉

𝑣=1

+

𝜆1 ∑‖𝑾(𝑣)‖
2

+ 𝜆2 ∑‖𝒙𝑖‖2

𝑛

𝑖=1

𝑉

𝑣=1

 (9) 

 

where, 𝑧𝑖
(𝑣)

 is the representation of the i-th sample under the v-

th view, xi is the representation of the i -th sample in the 

complete subspace, and W(v) is the mapping matrix mapped from 

the complete subspace back to the corresponding view space. 

The matrix can also be regarded as a generation matrix for each 

view, which is responsible for extracting part of the information 

from the complete subspace; the extraction basis is the 

reconstruction error based on 2 norms between the extraction 

result (W(v)xi) and the corresponding sample point representation 

(𝑧𝑖
(𝑣)

) in a certain view. The model learns to generate a unified 

representation of the matrix and the samples at the same time, 

so in the test phase, given a multiview representation of a test 

sample, such as {z(1), z(2), …, z(V)}, the representation x under its 

corresponding complete subspace can be obtained by solving 

the following problem: 

𝑚𝑖𝑛
𝒙

1

𝑣𝑛
∑ 𝑙𝑜𝑔 (1 +

‖𝒛(𝑣) − 𝑾(𝑣)𝒙‖
2

𝑐2
)

𝑉

𝑣=1

+ 𝜆2 ∑‖𝒙𝑖‖2

𝑛

𝑖=1

 (10) 

 

Similar to the MISL method, the method based on multiview 

local alignment (MVML-LA) [20] also uses the characteristics 

of a shared subspace. The difference is that MISL takes into 

account the unified representation of different views in the same 

space. MVML-LA further studies the discrimination of unified 

representations, and its corresponding objective function is: 

 

𝑚𝑖𝑛
𝒙,𝑾

1

𝑣𝑛
∑ ∑ ‖𝒛𝑖

(𝑣)
− 𝑾(𝑣)𝒙𝑖‖

2
𝑛

𝑖=1

𝑉

𝑣=1

+ 𝜆1 ∑‖𝒙𝒙𝑖‖2

𝑛

𝑖=1

+𝐿𝐴(𝒙𝑖)𝑠. 𝑡. 𝑾(𝑣)𝑇
𝑾(𝑣) = 𝑰

 (11) 

 

The objective function is similar to Eq. (10) in terms of 

reconstruction loss, except that the original Cauchy loss is 

replaced by the mean-square error, and the original regular term 

is replaced by an orthogonal constraint to reduce the feature 

correlation of the low-dimensional xi representation 

corresponding to the data. The main difference is the local 

heteromorphism constraint LA(xi), which is defined as: 

 
𝐿𝐴(𝒙𝑖)

=
1

𝑛𝑘1
∑ ∑‖𝒙𝑖 − 𝒙𝑖𝑗‖

2

𝑘1

𝑗=1

𝑛

𝑖=1

−
𝛽

𝑛𝑘2
∑ ∑‖𝒙𝑖 − 𝒙𝑖𝑝‖

2

𝑘2

𝑝=1

𝑛

𝑖=1

 (12) 

 

The xij are neighbors belonging to the same class as xi. k 

neighbors are selected for these neighbors. Similarly, the xip 

are neighbors belonging to different classes than xi. The 

number of neighbors selected is k2. MVML-LA improves the 

separability of multiview representation in the shared space 

by means of this target item. 

Table 1 summarizes the multiview learning methods 

related to this paper among view representation and fusion 

methods. 

 

 

Table 1. Summary of multiview classification methods 

 

Algorithm View representation View fusion mode 

CRMVSC 

[15] 

According to different views, the corresponding 

similarity matrix is constructed, and each set is 

represented by Laplace embedding under the similarity 

matrix. 

By using the differences between different views, the 

distance between different views can be regularized by 

pairwise constraints, and a unified view representation can 

be obtained. 

CCA [16] 

For each view, we learn the corresponding mapping 

matrix, which can be regarded as an indirect 

representation of the corresponding view. 

By using the potential consistency between different views, 

the consistency is characterized by the maximum precedence 

of the same sample in the shared subspace under different 

views. 

RMSC 

[17] 

Similar to CRMVSC, each view is represented by a 

similarity matrix. The difference is that it directly merges 

multiple view matrices through an optimization 

algorithm. 

Using the complementarity between different views, 

according to the diagonal block and nonnegative property of 

similarity matrices, we learn the similarity matrix 

representation under a unified view. 

MISL [19] 

Each view corresponds to a generation matrix learned 

from the complete subspace, through which the data of 

different views can be represented uniformly in the 

complete space. 

Using the incompleteness of each view, the relationship 

between a single view and a unified sample point in a 

complete space is established by means of a minimum 

reconstruction. 

MVML-

LA [20] 

Similar to MISL, a map matrix is used to represent the 

relationship between each view and the shared subspace. 

The consistency between the unified representation of data 

in the shared subspace and the representation in each view is 

studied, and the discriminability of the unified 

representation is guaranteed. 
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3. MULTIVIEW CLASSIFICATION METHOD FOR 

APPLE VARIETY IDENTIFICATION 
 

Apple category recognition via the multiview classification 

method ACRMV is proposed in this paper. In view of the fine-

grained recognition characteristics of the classification 

problem, classified objects often have typical local regions, 

which can be used as the classification basis to compensate for 

the ambiguity of considering all features [21, 22]. Therefore, 

the method is divided into two main steps: discriminant image 

block selection and the multiview classification algorithm. In 

the phase of image block selection, local features that occur 

frequently in one category but seldom in other categories are 

selected. In the multiview classification stage, a robust 

multiview classification fusion algorithm is designed based on 

image block features generated by different descriptors for 

each view. The specific flow chart is shown in Figure 1. 

 

 
 

Figure 1. Framework of the proposed method. 

 

3.1 Discriminant image block selection model 

 

The discriminant evaluation of an image block is determined 

according to the co-occurrence probability of the image block in 

different categories: that is, the visual patterns represented by 

the image block are more subordinate to a certain category or 

categories. It should be noted that in some extreme cases, an 

image block may belong to only a single classification. 

Although these unique patterns have high exclusivity, 

considering that these image blocks are only learned in training 

sets, too great a degree of discrimination will reduce the 

generalization ability of the image block; therefore, flexible 

mechanisms need to be introduced to adjust the relationships 

among image blocks and multiple classes. 

The image block screening method proposed in this paper 

uses linear combination coefficients to determine the 

relationship between each image block and a certain category. 

The larger the modulus of the coefficients, the greater the 

correlation. To reduce the amount of data, the k-means 

algorithm is used for clustering each class, and then a fixed 

number of clustering centers are used to represent each class. 

Given a dataset containing L classes, each class selects 𝑐 cluster 

centers, and all cluster centers form the matrix 𝑫 ∈ ℝ𝑚×𝑐𝐿, i.e., 

the dictionary, where D=[D1, D2, …, Dc] and the Di are 

submatrices corresponding to each class. To increase the 

discrimination of each sample's coefficient in different classes, 

a group sparsity strategy [23] is introduced here. For any data 

point 𝒙𝑖 ∈ ℝ𝑚 , its group sparsity coefficient gi in multiple 

classes is: 

𝑚𝑖𝑛
𝒈𝑖

1

2
‖𝒙𝑖 − 𝑫𝒈𝑖‖ 2

2 + 𝜆 ∑‖𝒈𝑖
𝑘‖

2

𝐿

𝑘=1

 (13) 

 

The first term is an error term based on the l2 norm, gi is a 

representation coefficient to be solved, and the second term is a 

group sparsity term. Traditional sparse representation considers 

the relationships between individual samples, while group 

sparsity introduces structured grouping information on the 

representation coefficient gi. Each group coefficient 

corresponds to a class, 𝒈𝑖 = [𝒈𝑖
1, 𝒈𝑖

2, … , 𝒈𝑖
𝐿], of which 𝒈𝑖

𝑘 ∈ ℝ𝑐 

is the representation coefficient of the sample point 𝒙𝑖  on the 

clustering center Dk of class K. It can be seen that this term is 

the cumulative sum of the l2 norms of multiple group 

coefficients, similar to l2 norms, which can obtain sparse 

representation coefficients on group granularity, thus making 

the coefficients selective for different categories. 

If sample 𝒙𝑖
𝑘 is selected from the k-th class, its coefficient 𝒈𝑖

𝑘 

on Dk is usually much higher than that of other classes, which 

limits the generalization ability of gi to a great extent; i.e., the 

relationship between sample 𝒙𝑖
𝑘  and other classes cannot be 

obtained through this coefficient, so the discrimination of the 

coefficients can be adjusted by adjusting the regular coefficient 

λ in Eq. (13). Since λ applies the same penalty to all groups, to 

make the representation coefficient more flexible, the group 

coefficients of 𝒙𝑖
𝑘 and its subordinate classes and other classes 

should be treated separately. Accordingly, Eq. (13) can be 

changed to the following form: 

 

𝑚𝑖𝑛
𝒈𝑖

1

2
‖𝒙𝑖 − 𝑫𝒈𝑖‖ 2

2 + 𝜆1‖𝒈𝑖
𝑘‖

2
+

𝜆2

𝐿 − 1
∑ ‖𝒈𝑖

𝑗
‖

2

𝐿

𝑗=1,𝑗≠𝑘

 (14) 

 

After obtaining gi, the discriminant score of each sample can 

be obtained according to the coefficient. First, the probability 

that the sample xi belongs to the category ck=k is obtained 

through the softmax function and is calculated as: 

 

𝑃(𝑐𝑖 = 𝑘|𝒙𝒊) =
𝑒𝑥𝑝 (‖𝒈𝑖

𝑘‖
2

)

∑ 𝑒𝑥𝑝 (‖𝒈𝑖
𝑗
‖

2
)𝐿

𝑗

 (15) 

 

On this basis, by calculating the value of the information 

entropy corresponding to the probability distribution, we find 

that the smaller the value is, the higher the discriminant score 

dscore(xi), which is recorded as: 

 

𝑑𝑠𝑐𝑜𝑟𝑒(𝒙𝑖) =
1

− ∑ 𝑃(𝑐𝑗 = 𝑘|𝒙𝒊) 𝑙𝑜𝑔 (𝑃(𝑐𝑗 = 𝑘|𝒙𝒊))𝐿
𝑗=1

 (16) 

 

When selecting image blocks according to this score, a 

greedy algorithm strategy is adopted, and pL image blocks with 

the largest number p from each class are added to the candidate 

image block set one at a time. At the same time, to ensure the 

diversity of the image blocks in the set, the class center matrix 

D is reconstructed in the original image blocks excluding the 

candidate set after each selection, thus preparing for the next 

selection. 

 

3.2 Optimization of the image block selection model 

 

In this paper, an alternative direction multiplier method [24] 

(ADMM) is adopted. According to this method, an auxiliary 
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variable ti is first introduced to decouple the variable gi in Eq. 

(13), and the corresponding target formula becomes: 

 

𝑚𝑖𝑛
𝒕𝒊,𝒈𝑖

1

2
‖𝒙𝑖 − 𝑫𝒕𝑖‖ 2

2 + 𝜆1‖𝒈𝑖
𝑘‖

2
 

+
𝜆2

𝐿 − 1
∑ ‖𝒈𝑖

𝑗
‖

2

𝐿

𝑗=1,𝑗≠𝑘

 

𝑠. 𝑡. 𝒕𝑖 = 𝒈𝑖 

(17) 

 

Given the multiplier β, the corresponding Lagrangian 

function is: 

 

ℒ =
1

2
‖𝒙𝑖 − 𝑫𝒕𝑖‖2

2 + 𝜆1‖𝒈𝑖
𝑘‖

2

+
𝜆2

𝐿 − 1
∑ ‖𝒈𝑖

𝑗
‖

2

𝐿

𝑗=1,𝑗≠𝑘

 

+〈𝜷, 𝒕𝑖 − 𝒈𝑖〉 +
𝜇

2
‖𝒕𝑖 − 𝒈𝑖‖2

2 

(18) 

 

where, 〈,〉 is the inner-product calculation function. The 

variables ti and gi need to be updated alternately in the ADMM 

until convergence. Updating ti is equivalent to the subproblem 

being solved. 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝒕𝑖

‖𝒙𝑖 − 𝑫𝒕𝑖‖2
2 +

𝜇

2
‖𝒕𝑖 − 𝒈𝑖 +

𝜷

𝜇
‖

2

2

 (19) 

 

For the above differentiable convex function, the solution of 

the extreme point is obtained directly by the partial derivative of 

the variable ti; then: 

 

−𝑫𝑇𝒙𝑖
𝑘 + 𝑫𝑇𝑫𝒕𝑖 + 𝜇 (𝒕𝑖 − 𝒈𝑖 +

𝜷

𝜇
) = 0 (20) 

 

This can be rearranged as: 

 

𝒕𝑖 = (𝑫𝑇𝑫 + 𝜇𝑰)−1(𝑫𝑇𝒙𝑖
𝑘 + 𝜇𝒈𝑖 − 𝜷) (21) 

 

In addition, for the variable gi, the corresponding subproblem 

is: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝒈𝑖

𝜆1‖𝒈𝑖
𝑘‖

2
+

𝜆2

𝐿 − 1
∑ ‖𝒈𝑖

𝑗
‖

2

𝐿

𝑗=1,𝑗≠𝑘

 

+
𝜇

2
‖𝒈𝑖 − (𝒕𝑖 +

𝜷

𝜇
)‖

2

2

 

(22) 

 

According to the literature [25], the above problem has a 

closed-form solution in the form of: 

 

𝒈𝑖
𝑗

=  
(𝒕𝑖 +

𝜷
𝜇

)
𝑗

 

‖(𝒕𝑖 +
𝜷
𝜇

)
𝑗

‖
2

𝑚𝑎𝑥 (‖(𝒕𝑖 +
𝜷

𝜇
)

𝑗

‖
2

−
𝜆2

(𝐿 − 1)𝜇
, 0) (23) 

 

Because the calculation of 𝒈𝑖
𝑘 is similar to that of 𝒈𝑖

𝑗
, only 

one item λ2/(L-1) in Eq. (22) needs to be replaced by λ1. The 

overall optimization algorithm is shown in algorithm 1. 

 

Algorithm 1: Use the ADMM to find the minimum value of the 

objective function (1) 

Input: the k-th sample xi of the i-th class, multiplier β, cluster 

center matrix D, μmax=103, parameters λ1 and λ2.  

Output: group sparse representation coefficient gi 

1. Initialization ti=β=0, μ=0.1, ρ=1.1 

2. while convergence condition is not reached do 

3. Update the group sparsity coefficient gi using Eq. (23) 

4. Update the separation variable ti using Eq. (21) 

5. Update the multipliers using the Eq. β=β+μ(ti-gi) 

6. Use the formula ρ=min(μρ, μmax). 

7. Check whether the conditions converge, and continue 

iteration if not 

8. end while 

The convergence condition in step 7 of algorithm 1 is defined 

as whether the modulus of the respective variation in variables 

gi and ti is less than the preset value in two consecutive iterations. 

If it is less than the preset value, this indicates that the optimizer 

has approached the extreme point and the iteration can end. 

 

3.3 Multiview classification model 

 

In the classification method proposed in this paper, the image 

block features under each feature descriptor are represented as 

one view. To fuse the features of different views, a two-stage 

fusion strategy is adopted. In the first stage, ridge regression is 

used to determine the features used to align different views. In 

the second stage, these features are mapped into a semantic 

space by learning a common mapping matrix. Given the feature 

representation matrix {𝑿𝑣}𝑣=1
𝑛  under V views, 𝑿(𝑣) ∈ ℝ𝑚𝑣×𝑛 

indicates that the v-th view contains n sample points, and the 

number of features per sample point is mv. In addition, given that 

𝒀 ∈ ℝ𝑛×𝐿  is a known class marking matrix and that yij=1 

indicates that the i-th point belongs to the j-th class (otherwise it 

is 0), the corresponding multiview classification model is: 

 

𝑚𝑖𝑛
𝒁(𝑣),𝑾

∑‖𝑿(𝑣) − 𝑫(𝑣)𝒁(𝑣)‖
2

2
+ 𝜆1‖𝒁(𝑣)‖

2

2
𝑊

𝑣=1

 

+𝜆2 (‖𝑾𝑇𝒁(𝑣) − 𝒀𝑇‖
2

2
+ 𝜆3‖𝑾(𝑣)‖

2

2
) 

𝑠. 𝑡. ‖𝒛𝑖
(𝑣)

‖
2

= 1 ∀ 𝑖 = 1 … 𝑛 

(24) 

 

where, 𝒁(𝑣) ∈ ℝ𝑐𝐿×𝑛 is the representation coefficient of the V-

th view under the dictionary D(v), 𝑾 ∈ ℝ𝑐𝐿×𝐿  is the shared 

mapping matrix, and Z(v) is changed to fit the scale-like matrix 

Y. In addition, due to the simultaneous optimization of Z(v) and 

W in the objective function, to increase the stability of the 

system, a normalization constraint on each column 𝒛𝑖
𝑣 of Z(v) is 

introduced. 

 

3.4 Optimization of the multiview classification algorithm 

 

The optimization of problem (24) can still use an alternate 

updating strategy similar to that of problem (17). Since each 

view is independent of the others when solving the feature 

representation in the first stage of the model, the following v 

subproblem models can be solved in sequence: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝒁(𝑣)

∑‖𝑿(𝑣) − 𝑫(𝑣)𝒁(𝑣)‖
2

2
+ 𝜆1‖𝒁(𝑣)‖

2

2
𝑊

𝑣=1

+ 𝜆2‖𝑾𝑻𝒁(𝑣) − 𝒀𝑇‖
2

2
 

𝑠. 𝑡. ‖𝒛𝑖
𝑣‖2 = 1 ∀ 𝑖 = 1 … 𝑛 

(25) 
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With the alternating optimization strategy, the objective 

function value is not used to optimize the constraint of module 

1 when solving Z(v), but rather the postprocessing method is used. 

See algorithm 3.2 for the specific process. When Z(v) is updated 

for the first time, it can be assumed that W is a zero matrix; then, 

the solution of problem (25) is: 

 

𝒁(𝑣) = (𝑫(𝑣)𝑇
𝑫(𝑣) + 𝜆1𝑰)−1𝑫(𝑣)𝑇

𝑿(𝑣) (26) 

 

Since W already has a specific value in future updates, the 

corresponding update rule is: 

 

𝒁(𝑣) = (𝑫(𝑣)𝑇
𝑫(𝑣) + 𝜆1𝑰 + 𝜆2𝑾𝑾𝑇)−1 (𝑫(𝑣)𝑇

𝑿(𝑣)

+ 𝜆2𝑾𝒀𝑇) 
(27) 

 

Similarly, solving the mapping matrix W common to multiple 

views has the following subproblems: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑾

∑ 𝜆2 (‖𝒁(𝑣)𝑇
𝑾 − 𝒀‖

2

2
+ 𝜆3‖𝑾‖2

2)

𝑉

𝑣=1

 (28) 

 

For the partial derivative of W, the corresponding closed-

form solution is obtained as follows: 

 

𝑾 = (∑ 𝜆2𝒁(𝒗)𝒁(𝑣)𝑇
+ 𝑉𝜆3𝑰

𝑉

𝑣=1

)

−1

(∑ 𝜆2

𝑉

𝑣=1

𝒁(𝒗)𝒀) (29) 

 

The complete solution process is shown in algorithm 2. 

Algorithm 2: Use the ADMM to solve the minimum value of 

the objective function (24) 

Input: cluster center matrix D(v) corresponding to V views, 

input data X(v), parameters λ1, λ2, λ3. 

Output: feature representation Z(v) under V views and the class 

mapping matrix W for multiple views. 

1. initialize W as a zero matrix 

2. while convergence condition is not reached do 

3. update each representation matrix Z(v) using Eq. (27), 

v=1, …, V 

4. perform the operation 𝑧𝑖
(𝑣)

=
𝑧𝑖

(𝑣)

‖𝑧
𝑖
(𝑣)

‖
 for each column 

of data 𝑧𝑖
(𝑣)

 in Z(v) to satisfy the constraint of module 

1 

5. update the class mapping matrix w using Eq. (29) 

6. check whether the convergence condition is met, and 

continue iteration if not 

7. end while 

The convergence judgment in step 6 of algorithm 2 is similar 

to that in algorithm 1; both judge whether the numerical change 

in the solution variable is less than a certain threshold in two 

consecutive iterations. 

 

3.5 Classification 

 

In actual classification, according to Eq. (17), the multiview 

representation Z(v) of the image block is first determined using 

the following objective function: 

 

𝑚𝑖𝑛
𝒁(𝑣),

∑ (‖𝑿(𝑣) − 𝑫(𝑣)𝒁(𝑣)‖
2

2
+ 𝜆1‖𝒁(𝑣)‖)

𝑉

𝑣=1

𝑠. 𝑡.  ‖𝒛𝑖
𝑣‖2 = 1 ∀ 𝑖 = 1 … 𝑛.

 (30) 

Then, the prediction scale matrix Y(v) under each view is 

determined using the following formula: 

 

𝒀(𝑣) = 𝒁(𝑣)𝑇
𝑾 (31) 

 

Last, the final category attribution matrix Yall is determined 

by voting according to the Y(v) of multiple views. 

 

𝒀𝑎𝑙𝑙 =
1

𝑉
∑ 𝒀(𝑣)

𝑉

𝑣=1

 (32) 

 

 

4. VALIDATION OF ALGORITHM EFFECTIVENESS 

 

To verify the effectiveness of the algorithm, three views are 

established according to histogram of oriented gradient (HOG), 

local binary pattern (LBP) and scale-invariant feature transform 

(SIFT) feature descriptors, and the classification accuracy is 

tested on typical apple data sets. In addition, the applicability of 

the algorithm is verified by experimental results on the other 

three auxiliary databases. The comparison method uses the 

CCA, MISL and MVML-LA methods in this paper. These 

methods are all used to learn a consistent representation of the 

data under multiple views. To ensure the fairness of comparison, 

the same ridge regression classifier used in ACRMV is used for 

these representations. Additionally, to verify the 

complementarity between different view features, single-view 

classification methods based on the above three features are 

tested; they are named ACRMV-H, ACRMV-L and ACRMV-

S. 

 

4.1 Classification results and analysis 

 

4.1.1 Results and analysis of apple variety identification 

In this paper, combined with an app developed for apple 

variety identification and quality detection, the built-in camera 

of a smart phone (iPhone 7 and Huawei Mate 20 Pro) is used as 

the main equipment for image acquisition. Fresh apples were 

selected for the experiment; the varieties were Guoguang, Fuji, 

Wang Lin, Jonagold and Dounan, and they were picked from 

apple orchards located in Shunping, Hebei Province; Yantai, 

Shandong Province; Yuncheng, Shanxi Province; and Dali, 

Shanxi Province. For apple variety identification, Fuji, 

Guoguang, Wang Lin, Jonagold and Dounan were all selected 

as test objects. In actual use, 80% of the data set was randomly 

selected for training, and the remaining 20% was used for 

testing. In this way, a total of four groups of data were 

constructed, corresponding to fold1 through fold4. 

One bag of apples of each of the Guoguang, Fuji, Wang Lin, 

Jonagold and Dounan varieties was picked from the orchard. 

Before the experiment, 100 apples of different shapes and sizes, 

for a total of 500 apples, were selected as test samples and 

marked with category markers. After preprocessing the 

collected image data, the samples were randomly divided into 

400 training sets and 100 verification sets. The results are shown 

in Table 2. 

Using hand-held devices (such as mobile phones) to take 

multiangle shots around the apples in a natural-light 

environment, as shown in Figure 2, 50 images of each apple 

from different angles were retained, and each image was 

uniformly scaled to 512×512. 

 

290



 

 
 

Figure 2. Multiangle images of an apple 

 

The classification results on typical apple data sets are shown 

in Table 3. Through analyzing the experimental results, we can 

make two observations. 

First, as expected, ACRMV achieved the best results due to 

the combination of feature representation and classification 

training. The ACRMV method based on multiviews is superior 

to the other three single-view methods because it integrates the 

information of multiple views. 

Second, CCA only considers the correlation between 

different views and performs worse than the other methods.  

The MVML-LA results are better than those of MISL on 

different data sets, which shows the effectiveness of 

considering the local structure. In addition, in the four tests for 

the different subsets of the training data, the four methods are 

seen to have similar advantages and disadvantages, which 

shows the consistency of the different methods. 

 

Table 2. Statistical table for apple variety identification 

 
Varieties Sample set Correction set Validation set 

Guoguang 100 80 20 

Fuji 100 80 20 

Wang Lin 100 80 20 

Jonagold 100 80 20 

Dounan 100 80 20 

 

Table 3. Classification results for the apples 

 
Algorithm Fold1 Fold2 Fold3 Fold4 Average 

CCA 86.14 87.01 87.24 88.57 87.24 
MISL 87.04 88.12 88.92 89.28 88.34 

MVML-LA 87.53 89.01 88.61 89.51 88.67 
ACRMV-H 87.34 87.51 87.93 89.28 88.02 

ACRMV-L 87.64 87.85 87.82 89.11 88.11 

ACRMV-S 88.01 88.57 88.34 90.15 88.77 

ACRMV 89.23 90.56 90.12 91.33. 89.97 

 

4.1.2 Dynamic texture classification and multiobject angle 

recognition 

To further verify the effectiveness of the algorithm, in 

addition to the apple data set, three data sets are tested. The 

details are given below. 

The dynamic texture refers to a continuous sequence of 

images that contains some static patterns in the time domain. 

The reason this kind of data is selected is that when classifying 

apples using red-green-blue (RGB) images, a large part of the 

surface texture of the apples plays a role. In the process of 

apple quality recognition, images from multiple angles 

provide a richer basis for quality recognition, and their data 

structures are similar to dynamic textures. Therefore, two 

common dynamic texture libraries, DynTex [26] and 

DynTex++ [27], are selected. DynTex contains three sub-

datasets: DynTex-alpha contains 3 classes of 60 texture 

sequences, DynTex-beta contains 10 classes of 162 texture 

sequences, and DynTex-gamma contains 10 classes of 275 

texture sequences. DynTex++ contains 36 classes, each with 

100 texture sequences. A specific example is shown in Figure 

3. For each sequence, subsequences with a length of 8 frames 

are constructed every 2 frames. LBP-TOP is used as the 

feature descriptor for each subsequence. Five texture 

sequences are selected as the training set for each class of the 

DynTex data set, and the rest constitute the test set. For 

DynTex++, half of the sequences of each class are selected as 

training sets and the rest as test sets. 

The classification results are shown in Table 4. 

Apple variety identification can be summed up as an object 

identification task, so two object data sets are selected to assist 

algorithm testing. Both object databases contain multiangle 

pictures of an object. ETH-80 [28] consists of 8 objects, and 

each object contains 10 subclasses. The ratio of training and 

testing for each object is 1:1. The RGB-D [29] dataset contains 

51 categories of objects. Each category of objects has more 

than 3 groups of photos. During training, 3 groups are 

randomly selected, and the rest constitute the test set. RGB-D 

also contains depth information, but only RGB information is 

used here. A specific example is shown in Figure 4. 

The dynamic texture recognition and object recognition 

tasks performed on the other two types of auxiliary data sets 

are shown in Tables 4 and 5. By analyzing the experimental 

results, we can see that in the two auxiliary classification tasks 

of dynamic texture classification and object recognition, the 

test results are similar to those on the apple data sets. 

ACRMV's strategy of multifeature fusion and joint training is 

superior to its corresponding single-view method and to the 

other multiview methods. 

 

 
 

Figure 3. Examples of dynamic textures. 

 

 
(a) ETH-80 

 
(b) RGB-D 

 

Figure 4. Examples of multiview objects 
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Table 4. Classification results of dynamic texture classification 

 

Algorithm Alpha Beta Gamma Dyntex++ 

CCA 83.01±6.48 80.14±4.74 80.25±4.14 88.40±0.32 

MISL 84.01±6.16 80.55±4.39 80.31±3.83 87.12±0.49 

MVML-LA 85.91±5.82 81.03±3.74 81.04±3.85 88.85±0.35 

ACRMV-H 82.17±6.41 80.12±3.66 77.93±4.50 88.37±0.71 

ACRMV-L 82.30±5.65 79.67±4.04 77.81±3.91 88.25±0.66 

ACRMV-S 85.21±6.03 80.91±3.93 79.84±4.04 89.74±0.47 

ACRMV 88.37±5.99 82.19±4.02 83.14±3.67 91.87±0.27 

 

Table 5. Classification results of object categorization 

 

Algorithm ETH RGB-D 

CCA 89.17±4.94 78.23±3.55 

MISL 89.67±4.82 78.90±3.08 

MVML-LA 90.07±5.61 79.11±3.27 

ACRMV-H 88.25±5.06 79.09±2.65 

ACRMV-L 88.77±4.58 78.82±2.98 

ACRMV-S 90.25±4.02 79.65±2.15 

ACRMV 91.24±3.83 81.29±2.24 

 

4.2 The effect of iterations on performance 

 

When optimizing the ACRMV algorithm in this paper, the 

feature representation and classifier weights are optimized by 

an alternating update strategy. As the number of iterations 

increases, the monitoring information not only affects the 

classifier learning but also indirectly guides the feature 

representation. To verify the influence of the number of 

iterations on performance, the change in the accuracy of 

ACRMV as the number of iterations increases is shown in 

Figure 5, and the following two trends can be seen: 

First, with the increase in the number of iterations, both the 

single-view method and multiview method show improved 

accuracy. This is due to the combination of feature learning 

and classifier learning in ACRMV. Supervision information 

transmitted from the classification module can effectively 

improve feature learning. On the other hand, a highly 

discriminatory feature representation optimizes classifier 

learning. 

Second, after approximately 15 iterations, the accuracy 

tends to be stable, which shows that the solution optimization 

algorithm can converge quickly. In addition, ACRMV with the 

multiview method has a slower convergence speed than the 

other three single-view methods, which shows that the 

information exchange between multiple views affects the 

convergence of the model to some extent, but it is also this 

sharing of information that makes the ACRMV result better 

than that of any single-view method. ACRMV achieves a good 

balance between convergence speed and accuracy. 

 

 
(a) Fold1                                                                      (b) Fold2 

 
(c) Fold3                                                                           (d) Fold4 

 
Figure 5. The variation in accuracy with the number of iterations on the apple dataset 
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Similar to the classification accuracy analysis in section 

3.2.1, the accuracy change and the convergence of the 

algorithm are still verified on four dynamic-texture data sets, 

and the relevant results are shown in Figure 6. Similar to the 

test results on the apple data set, ACRMV achieves the best 

results while balancing the convergence rate. Meanwhile, the 

SIFT feature view is still better than the LBP and HOG feature 

views, and the three feature views complement each other. 

Finally, a comparative experiment with the same setup as 

above was carried out on two object data sets, and the results 

are shown in Figure 7. 

 

 
(a) Alpha                                                                          (b) Beta 

 
(c) Gamma                                                                    (d) Dyntex++ 

 

Figure 6. The variation in the accuracy of dynamic-texture data sets with the number of iterations 

 

 
(a) ETH                                                                        (b) RGB-D 

 

Figure 7. The variation in the accuracy of multiangle object data sets with the number of iterations 

 

 
 

Figure 8. Efficiency of the discriminant block selection algorithm 
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(a) Fold1                                                                  (b) Fold2 

 
(c) Fold3                                                                 (d) Fold4 

   

Figure 9. Result of three sets of multiview methods for discriminant image blocks 

 

4.3 Validity of discriminant image block selection 

 

One of the main reasons for the effectiveness of ACRMV is 

that it adopts a discriminant image block selection algorithm, 

which uses image blocks with higher discrimination as 

training data to reduce the impact of redundant data. To verify 

the effectiveness of this algorithm, the effect of the selection 

module is tested on 7 data sets individually. Figure 8 shows 

the relevant results. For all 7 data sets, the results when using 

the image block selection step are better than the results when 

this step is not performed. 

 

4.4 Universality of discriminant image block selection 

 

In addition, to further verify the generality of the image 

block selection step, an experiment is performed that combines 

this step with other multiview classification methods, such as 

CCA, MISL and MVML-LA. Figure 9 shows the comparison 

results of three multiview methods on the apple data set. The 

accuracy rate of the three methods is improved after the 

application of the sample selection module. Even CCA, which 

has weak performance among the three methods, after being 

combined with the module, shows a performance 

improvement result equivalent to that of the original MISL and 

MVML-LA methods. 

 

 

5. CONCLUSIONS 

 

In this paper, an apple category recognition method based 

on multiple views is proposed, which adopts the strategies of 

discrimination block selection and multiview fusion. The 

purpose of selecting the discrimination block is to remove 

redundant image areas by selecting representative image sub-

blocks. In the multiview fusion step, shared subspace learning 

and classifier learning are integrated to take full advantage of 

feature representation and supervision information, thus 

achieving better results in apple variety identification and 

other tasks. 
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