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Nowadays, the design of multichannel recording systems for neural signals used as an 

irreplaceable tool in the storage and analysis of neural signals for the diagnosis and treatment 

of various cardiovascular diseases. In order to increase the information received and thus 

reduce the risk of using these sorts of systems, designers try to use more electrodes or channels 

in this systems, but if the number of channels increases the new constraint is added to these 

systems which is stores a vast amount of data, and makes a wireless transport of information 

impossible. So it causes an increase in the number of channels in signal recording systems are 

severely restricted. The purpose of this study is to create a new structure for the analog 

processors to we do not only transfer the stored spikes completely to the system output but also 

reduce the amount of information which need to transmit. This new method consists of two 

separate compressive sampling blocks and spike detecting which is implanting together. 
Through this study, it was found that by using this method, we can increase the channel of 

neural signal recording system without any limitation, So The findings of this research 

significantly decrease the risk of using neural signal recording systems for biomedical 

applications. 
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1. INTRODUCTION

THE Brain Machine Interface is the case of many neural 

signals analyzes since 1970, which divides it into EEG, MEG, 

neural recording, ECoG, fMRI, and NIRS based on the method 

of storing signals. Among the above methods, implantable 

systems of neural signal recording are one of the most 

important parts of the BMI that have the best performance for 

understanding brain function [1]. The typical multichannel 

neural signal recording system is designed as follows. [2] 

Figure 1. Typical multi-channel neural recording system 

Generally, in the designing of the neural signals recording 

system, researchers care about the design of the above blocks 

such as LNA, Filters, and ADC. In order to increase the 

received data and so reducing the risk of using these types of 

systems, designers every day try to use more electrodes or 

channels in the neural signal recording system. For example, 

the largest number of designed channels is 11011, which 

transmitted the collected data via wire [2]. However, this kind 

of research indicates the importance of increasing the number 

of channels for the neural signal recording system.  

But if the number of channels increases, in addition to past 

constraints, such as power consumption, noise, and size, a new 

limitation is added to these systems which are a large amount 

of data stored, so make it impossible to transmit data in 

wireless. Therefore the number of channels in neural signal 

recording systems will severely be restricted. Also, by 

increasing the complexity and the size of the information 

collected, we need to combine and process the collected data, 

which makes the neural signal processor as an important part 

of the neural signal recording systems. Neural signals 

processing achieved in both digital and analog forms and each 

of them holds its own disadvantages and advantages. Our goal 

is to provide a simple, easy-to-implement and low-cost system, 

therefore, we can use the analog signal processing system as 

shown in Figure 2. 

Figure 2. The location of the analog and digital processor in 

the neural signal recording system 

In this systems for transferring stored data, designers need 

to reduce the number of extracted data, in such a way the 

quality of the original signal is not reduced. To solve this 

problem, two general solutions suggested. 

1- Spike Detection

2- Signal Compression
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In this article, we used both of the above methods to process 

stored signals and reduce the data sent. 

The remainder of this paper is organized as follows: Section 

2 introduces Spike detecting and how we designed our spike 

detector, Section 3 describes Signal compression method and 

in Section 4 demonstrates how we used this methods to make 

new way for analog processing. 

 

 

2. SPIKE DETECTING 
 

There is still no final agreement between neurology 

researchers on how to decode intra-brain information. One 

theory suggests that information coding performed by the 

action Potential signal frequencies [3-4]. Another theory 

suggests that the action potential timing determines 

information in the neural signals [4-5]. Regardless of which of 

the above two theories is correct, there is no doubt that the 

essential part of all the bioelectric signals is the Action 

Potential (AP). 

Spike detection circuits designed with different algorithms. 

In most of the designs, Spike detected first, and the detector 

circuit displays the pulse as a spike detection in the output. The 

output of this type of Spike detector shown in Figure 3 [6-8]. 

In fact, in this way, a great deal of unnecessary information is 

eliminated, but the problem is that the use of this method 

results in the loss of some crucial information. Using this 

technique is only valuable for researchers who need to detect 

the spike and the time the spike accrued, with the output only 

pulsed. But for some specific diseases, as well as when all the 

data in the neural signal is required to process, this method will 

not work. 

 
 

Figure 3. The blue diagram shows the stored signal, and the 

red diagram shows the output of the Spike detection circuit 

 

 
 

Figure 4. Schematic spike detector circuit with spike output 

in the technology of 180 nm 

To solve the above problem, we have proposed a solution 

for the Spike detection circuit which is spike detector depict, 

Spike itself, instead of the pulse. In this method, the output is 

spikes rather than pulses. By using this method, not only a 

large part of the surplus information is removed but also all of 

the saved signals sent to the output, so no vital information 

removed from our stored signal. For this purpose, in Figure 4, 

a comparator and capacitor switches have been used. In our 

design, we used 180nm technology. 

The output of our spike detection circuit is not a pulse, and 

all stored spikes transmitted to the output. In Figure 5, the 

output of the above circuit shown. 

 

 
 

Figure 5. The blue diagram is the stored signal and the red 

diagram shows the output of the Spike detection circuit, 

which are Spikes according to the use of the capacitor 

switches 

 

Table 1. Reduced data sent in both pulse type and spike type 

spike detection methods 

 

Spike detection Percentage of data reduction 

Pulse type 75 % 

Spike type 35 % 

 

Table 1 illustrate the percentages of data reduction in each 

of the two methods. 

As shown in Table 1, the amount of data reduction in Pulse 

Type method is far more than the Spike Type method. 

However, as we mentioned before, due to the Pulse Type 

method limitation, which cannot transmit some critical part of 

the stored signal, so reliability in this method is low. And the 

compressive sampling circuit after the Spike detection circuit 

with pulse output is not suitable. But using the Spike Type 

method not only we can transmit all vital information of the 

stored signal, it also has the ability to reduce the amount of 

data by compressing it. 

 

 

3. SIGNAL COMPRESSION 

 

The traditional method of recovering signals and images 

from measured data is based on the Shannon- Nyquist 

sampling theory, according to this method, the minimum 

number of samples which is required for sampling to recover 

the main signal without missing is twice the maximum 

frequency of the main signal. 

This theory is the foundation of most of the existing 

technology equipment, including analog-to-digital converters, 

medical imaging devices, or electronics equipment. The 
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Compression Sampling (CS) theory which also referred to as 

"Compressive Sensing" is basically a new method to provide 

data collection and replace the Shannon method. 

This theory claims that a sparse signal can recover with a 

number of samples much fewer than Nyquist rate. In this 

method first, we compress received neural signals by using 

mathematical equation. And at the end of the process, we can 

recover signals by using reconstruction algorithms. So, all the 

necessary information of the neural signals can be obtained. 

This improvement led to the higher approval of this method in 

recent studies [9-10].  

In fact, the theory of CS in order to obtain a vector of 

samples y ɛ Rn , for each sparse signal x ɛ Rm, is a sparse 

transformation matrix Ψ ε Rm, m, and the random matrix Φ ε 

Rn, m  is employed. In mathematical terms:  

 

𝑦𝑛∗1 =  𝛷𝑛∗𝑚𝑥𝑚∗1 =  𝛷𝑛∗𝑚𝛹𝑚∗𝑚𝜃𝑚∗1 =  𝐴𝑛∗𝑚 𝜃𝑚∗1    (1)  

 

That 𝜃 =  𝑥 𝛹−1 is sparse represent of x. Assuming that the 

signal x, -K is sparse, x is a vector with the maximum k non-

zero array. We seem to face the lower-order equation for 

recovering the vector x and y, because the number of equations 

(n) is less than the number of variations (m). Therefore, there 

will be the endless answer .but with the initial knowledge 

about the sparsity of the signal in many cases, it can be 

possible to get some answers [11]. 

Compressive sampling is one of the new methods for 

compression of signals, which has a good potential for 

compression of neural signals [12, 13]. The only condition for 

using this method is the sparsity of the primary signal, 

meaning that most of the information in the signal is dispersed 

in discrete sections of the signal waveform, although the 

neural signals are Sparse, and there is no problem with using 

this method for compressing neural signals. 

Figure 6 describes how this method works [14]. We initially 

translate the signal to the sparse state using the matrix Φ, then 

we compress our main signal using the (Sensing matrix) 

compression random matrix Ψ [12, 15]. And after the 

transition of the signal, our main signal is recovered [16, 17]. 

 
 

Figure 6. Function of compression sampling technique 

 

Some examples of using this technique in analog circuits is 

Random Convulsion [18], Random Filters [19] and 

Compressive multiplexers [20]. 

We used Figure 7 structure to design analog compressive 

sampling. 

 

 
 

Figure 7. The system used to compress the analog signal 

using the compression sampling technique 

 

In this structure, the signal is first modulated randomly by 

r(t). This system is consists of a random number generator 

(PC), mixer, accumulator and sampler, although the sampler 

used here does not need sampling according to the Nyquist rate. 

In fact, the advantage of this method is the use of sampling at 

a much lower rate than the Nyquist rate. 

 

 
 

Figure 8. Comparison of power consumption of compressive 

sampling and sampling at Nyquist rate 

 

In order to check the power consumption of the compressive 

sampling systems and use of ADCs at the Nyquist rate, we 
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compare their energy consumption in Figure 8. For Nyquist 

rate sampling, the measured power consumption is the power 

consumption of the analog to digital converter, but in the case 

of using compressive sampling method, there is also a mixer 

in addition to the analog-to-digital converter. This value is 

measured for a time period of one second and the 64-channel 

signal recording system [18]. 

As you can see, with using the compressive sampling 

systems, the total power consumption of analog to digital 

converters and mixers can reduce power consumption by 75 %. 

The above results also indicate the suitability of using analog 

circuits, for designing compressive sampler. 

 

 

4. ANALOG PROCESSOR 

  

In fact, the designed analog processor combines the use of 

Spike Detection with Spike Output mode and Compressive 

Sampling Circuits method. There is a trade-off between 

increasing complexity of the system and reducing the power 

consumption. 

The block diagram of our designed neural signals recording 

system is as follows. 

 

 
 

Figure 9. Neural signal recording block diagram using spike 

detection and compressive sampling 

 

In fact, 3 intermediate blocks, including the Spike Detection 

Block, Compressive Sampling and the Analog to Digital 

Converter, are called Analog to Information Converters. The 

designed analog processor system reduce about 40 % of 

amount of data in the Spike detection block, and reduce about 

75% of the data in the compressive sampling block, which in 

total, using the combination of the two methods, reduces about 

85% of the sent data, which respectably the power 

consumption of our system will be reduced. 

By comparing the various methods of analog processing and 

reducing the data provided by them in Table 2, we find that in 

the method used in this paper, however, the use of two 

methods simultaneously to reduce data complicates the system, 

but it reduces the sent data up to 15 %, which is very 

remarkable. 

 

Table 2. The percentage of data reduction range by using 

different data reduction techniques 

 

Data reduction technique Data Reduction 

Pulse type - spike detection 75% - 80% 

Spike type – spike detection 35% - 45% 

Compressive sampling 50% - 85% 

This project method 85% - 90% 

 

 

5. CONCLUSIONS 

 

In this paper, a new method for the analog processing of 

data proposed for neural signal recording systems, which is a 

combination of spike detection techniques and compressive 

sampling. And we compared it with the verity of data 

reduction techniques. Our method is to reduce about 85% of 

the sent data, but vital data that is essential for the neural signal 

recording system, completely transmitted. 

The risk of using our method is significantly lower for use 

in biomedical applications. This data reduction in the first 

stage will reduce the power consumption and will also allow 

to the multiplication of the number of channels of the neural 

signal recording system. 

In the next step there is two important way to continue this 

research the first one is improving compressing sampling 

algorithm to optimize this method and also we could research 

about the efficiency of this method for different number of 

electrodes.  
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