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 For the last several decades, Human Activity Recognition (HAR) has been an intriguing 

topic in the domain of artificial intelligence research, since it has applications in many areas, 

such as image and signal processing. Generally, every recognition system can be either an 

end-to-end system or including two phases: feature extraction and classification. In order to 

create an optimal HAR system that offers a better quality of classification prediction, in this 

paper we propose a new approach within two-phase recognition system paradigm. 

Probabilistic generative models, known as Deep Belief Networks (DBNs), are introduced. 

These DBNs comprise a series of Restricted Boltzmann Machines (RBMs) and are 

responsible for data reconstruction, feature construction and classification. We tested our 

approach on the KTH and UIUC human action datasets. The results obtained are very 

promising, with the recognition accuracy outperforming the recent state-of-the-art. 
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1. INTRODUCTION 

 

Recognition and understanding of human actions have 

become a subject of broad and current interest in the field of 

computer vision and image processing. It has found 

applications in many areas, such as: video surveillance [1], 

human-machine interaction [2] and video indexing [3]. The 

aim of a HAR system is to identify the simple actions of 

everyday life (e.g. running, walking, jumping, etc.) from 

videos. Each of these actions, carried out by a single person 

within a specified period of time, can be represented by a 

simple motion model. 

Modeling action methods can be divided into two categories: 

spatio-temporal methods and sequential methods. Spatio-

temporal approaches model the human action in the form of a 

3D volume in a spatio-temporal dimension or as a set of 

characteristics extracted from the 3D volume. Resulting 

volumes from an image concatenation along the time axis are 

compared to measure their similarities. On the other hand, 

sequential approaches consider an action as a sequence of 

particular observations. More precisely, they represent a 

human action as a sequence of feature vectors extracted from 

the images and proceed to minimize the ones that are close to 

each other in terms of specific distance. 

Indeed, such a video-based HAR system is composed of two 

elementary steps: The first one is the feature extraction from 

the video input frames. The second is the classification, which 

consists of categorizing the actions from video sequences 

using the vector of primitives extracted in the first step. 

However, video-based HAR systems that use deep learning 

(DL) are receiving significant attention thanks to their ability 

to learn deep structures. Essentially, the DL technique is an 

extension of artificial neural networks that makes use of 

hierarchically organized layers for feature classification from 

non-linear data processing. Techniques based on DL 

outperform many conventional approaches to image 

processing and computer vision. DL methods show much 

promise in satisfying the requirements of HARs in two ways: 

First, there is the potential to discover features that are related 

to human body movement. This is convenient for manipulating 

complex human activities for the purpose of recognition. 

Second, performance can be improved beyond that of 

traditional recognition methods. 

Deep Belief Networks (DBN) is a DL technique that has 

been proposed by Hinton [4]. DBN uses Restricted Boltzmann 

Machines in learning and classification. The reduced learning 

time allows DBNs to avoid the local minimum problem. Thus, 

in this paper, we present a new DBN-based HAR system 

which is able to extract features from video and classify that 

input data. DBNs have been employed in the literature for 

speech recognition [5], digit recognition [6], etc. 

This paper is organized as follows: we briefly present, in 

section 2, some HAR techniques. In section 3, we describe our 

proposed approach and its details. Our experimental set up, 

performance analysis and discussions are detailed in section 4. 

Finally, a conclusion and future works are given is section 5. 

 

 

2. RELATED WORKS 
 

Many methods of HAR are proposed in the literature. Each 

one employs a specific technique for the two previously 

mentioned steps. In this context, we organize this section into 

two parts: in the first one, we present works that use 

handcrafted features. In their 2008 study, Laptev et al. [7] 

report a method for video classification that builds upon local 

space-time feature extraction and multichannel non-linear 

SVMs for classification. This method was applied to the 

standard KTH human action dataset and achieved a 91.8% 

accuracy rate. Klaser et al. [8] introduced a local descriptor for 
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video sequences. The proposed descriptor is based upon 

histograms of oriented 3D spatio-temporal gradients. In order 

to compute 3D gradients for arbitrary scales, the authors first 

developed a memory efficient algorithm that relies upon 

integral videos. Then, they proposed a generic 3D orientation 

quantization which is based upon regular polyhedrons. Finally, 

they performed an in-depth evaluation of all descriptor 

parameters and optimized them for HAR. Their descriptor was 

applied to various human action datasets: ((KTH 91.4%), 

Weizmann (84.3%) and Hollywood (24.7%)). 

Huang et al. [9] used a Histogram of Oriented Gradients 

feature to address HAR. This feature was applied to a Spatio-

Temporal Interested Points, detected by Harris 3D on a Motion 

History Image. The classification step was developed using 

Artificial Neural Networks. The authors chose the KTH 

dataset for the training data and the MSR action dataset II for 

the testing data, obtaining 64.06% accuracy rate. 

In the second part, we present works that employ deep 

learning technique. Ali and Wang [10] have proposed a human 

action modeling method based upon a two-dimensional 

wavelet and watermark embedding. The authors made use of 

DBN and the Discrete Cosine Transform technique for data 

learning and feature extraction. They employed the SVM 

classifier in the classification step. The authors tested their 

approach on the KTH dataset and obtained an accuracy rate 

exceeding 94.3%. Zhang et al. [11] presented a modified DBN 

model, which is composed of a conditional RBM to recognize 

human interactions in real-time. Conditional RBMs generate 

temporal information from human actions by determining 

joint positions. The authors demonstrated the robustness of 

their approach, as they achieved recognition accuracy on the 

MIT and MSR Action 3D datasets of 98.08% and 98.88%, 

respectively. Geng and Song [12] proposed a human 

recognition method based upon Convolutional Neural 

Networks (CNN), where a pre-training strategy making use of 

a convolutional auto-encoder has been introduced to reduce 

the high computational cost of training that has been provided 

by the CNN model. In the classification step, the authors used 

the SVM classifier to achieve a recognition rate of 92.49 % on 

the KTH dataset. 

Recent studies have shown how CNN models could be 

applied to HAR. Ijjina and Chalavadi [13] introduced a genetic 

algorithm to provide an optimal initiation of CNN 

ponderations as the training step. A gradient descent algorithm 

was used to train the CNN classifier on the UCF50 dataset. 

The authors demonstrated the efficiency of their approach with 

recognition accuracy equal to 99.98%. Ji et al. [14] proposed 

a 3D CNN architecture to create a HAR system. The 3D CNN 

model detects a set of features from both spatial and temporal 

dimensions by carrying out 3D convolutions, thereby 

capturing and encoding the motion information in multiple 

adjacent frames. The authors developed a model which 

generates multiple channels of information from the input 

frames, and the final feature representation is achieved by 

combining information from all channels. 

Ke et al. [15] have also proposed deep neural network 

architecture. The authors introduce a new approach for 3D 

HAR with skeleton sequences derived from 3D trajectories of 

human skeleton joints. They have suggested a method which 

comprises several stages. First, each skeleton sequence is 

transformed into three video clips. Each clip consists of 

several frames for spatial and temporal feature learning 

employing CNN. Specifically, for each channel of the 3D 

coordinates, the authors transformed the sequence into a video 

clip using grayscale images, which show spatial and structural 

information of the articulations. Those frames are provided for 

deep CNN to learn high-level features. Next, the CNN features 

of the three clips at the same time-step are concatenated into a 

feature vector. Each one represents the temporal information 

of the entire skeleton sequence and the particular spatial 

relationship of the joints. In the last stage, the authors use a 

Multi-Task Learning Network to jointly process the feature 

vectors of all time-steps in parallel for action recognition. 

Finally, Uddin and Zia [16] have proposed a DBN-based 

HAR model using the 3D Body Joint Motion Features where 

recognition of human actions depends upon the magnitude and 

direction of body joints extracted from depth videos. A human 

body silhouette is determined from the coordinates of each 

articulation introduced in the input frames. This proposed 

HAR method demonstrated superior performance with the 

MSRC-12 dataset (97.93%), the MSRDailyActivity3D dataset 

(91.56%), and a specific dataset containing six human actions 

(96.97%). 

 

 

3. PROPOSED APPROACH 
 

The proposed approach aims to improve the accuracy of 

human activity classification by employing a new DBN-based 

HAR method. As a first step, we segment the video sequences 

from the human activity dataset into frames. Next, we convert 

the result into binary frames and we carry out a set of 

morphological filtering operations on the new frames in order 

to enhance their quality. Following this, we transform the new 

frames into a binary vector in order to create an input matrix 

that contains the training data and the testing data, as well as 

their labels. This matrix represents the input data for our DBN 

architecture, as shown in Figure 1. In the final step, we train 

the DBN classifier with the training data matrix and extract the 

classification result. 

For the binarization step, we utilized two techniques, 

depending on how the background lighting compared to the 

object in the frame. The thresholding algorithm was employed 

where the object was clearer compared to the background, or 

vice versa. On the other hand, the background detection 

algorithm was used for the frames that are characterized by 

similar degrees of illumination for the object and the 

background. Then, we applied some morphological filters 

such as erosion, dilation, etc. for eliminating binary frame 

noise as well as finishing. From each binary frame, a binary 

vector was created such that the number of vector columns is 

the product of the number of columns and the number of lines 

(i.e. the original frame size). As each binary vector takes a line 

in the matrix, this yields a matrix in which each line represents 

a binary frame (see Figure 1). 

 

 
 

Figure 1. Framework of the proposed method 
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3.1 Deep belief networks 

 

Recently, a large amount of research has been carried out 

on the subject of deep learning. The aim of this research is to 

determine the means by which unsupervised learning can be 

used to represent input data in more abstract ways. Input data 

represented in such ways can be applied to numerous tasks, 

including classification and regression. Standard neural 

networks were intended to learn those deep representations. 

However, deep neural networks (i.e. neural networks that have 

many hidden layers) are difficult to train using gradient 

descent [17]. The DBN solved this problem by adding an 

unsupervised pre-training phase to a greedy layer. This 

unsupervised pre-training builds a representation from which 

it is possible to do successful supervised learning by fine-

tuning the resulting weights using gradient descent learning [5, 

17]. Stated differently, the unsupervised stage sets the network 

weights closer to a good solution than random initialization, 

avoiding local minima when we use a supervised gradient 

descent. The DBN is an ANN architecture that is used to create 

generative graphics models, which was first introduced by 

Hinton [1]. The DBN is a type of deep neural network 

composed of multiple layers of stochastic and latent variables 

which are connected to each other, but not between units 

within each layer (see Figure 2). The DBN model can generate 

probabilistic, binary and Gaussian data. The first of the DBN’s 

two parts includes reconstruction layers, which are responsible 

for converting the input data into an abstract representation. 

The second part is formed by layers that transform this abstract 

representation into classification labels for the purpose of class 

prediction. 

 

 
 

Figure 2. Schematic representation of a DBN model 

 

The DBN model can be considered, from Hinton’s 

perspective [4], as an amalgam of simple learning modules, 

each of which is an RBM. The RBM contains a layer of visible 

units that represents the data input and a layer of hidden units 

representing features that capture higher-order correlations in 

the data. This also leads to a fast training procedure, an 

unsupervised layer-by-layer, where contrastive divergence is 

applied to each sub-network in turn, starting from the lowest 

pair of layers (the lowest visible layer being a training set). The 

most important property of DBNs is the layer-by-layer 

technique for learning the top-down, generative weights that 

determines how the variables in a single layer depend on the 

variables in the higher layer. The crucial idea behind DBNs is 

that their weights (W), learned by a RBM, define the prior 

distribution over visible vectors and ponderations p(v|h,W) as 

well as the prior distribution over hidden vectors p(h|W). The 

probability of generating a visible vector can be written as: 

 

( ) ( ) ( )| | ,= h
p h W p v h Wp v  (1) 

 

After determining W, where W is the matrix of 

symmetrically weighted connections between the visible layer 

and the hidden layer, we preserve p(v|h,W) and replace p(h|W) 

with a better model of the aggregated posterior distribution 

over hidden vectors (i.e. the non-factorial distribution 

produced by averaging the factorial posterior distributions 

produced by the individual data vectors). A better model is 

obtained by treating the hidden activity vectors produced from 

the training data as the training data for the next learning 

module. The values of the latent variables in each layer, after 

learning, can be deduced by a single bottom-to-top pass that 

begins with a data vector observed in the lower layer and uses 

the generative weights in the reverse direction. DBNs are 

competitive with respect to five essential points: 

− They can be fine-tuned as neural networks. 

− They have diverse non-linear hidden layers. 

− They are generatively pre-trained. 

− They can act as a non-linear dimensionality reduction 

method for input features vectors. 

− The network teacher is another sensory input. 

DBNs exist in two possible forms: the auto-encoder DBN 

and the classifier DBN. 

An auto-encoder DBN is a simple three-layer neural 

network where the output units are directly connected to the 

input units. Generally, the number of hidden units is much less 

than the number of visible units. The auto-encoding process is 

divided into two steps: the encoding (compression) of an input 

vector to adjust in a smaller representation, and the 

reconstruction (decoding). The training task consists of 

minimizing an error or a reconstruction (i.e. finding the most 

efficient compact representation for the input data). A DBN 

auto-encoder [18] is a model comprising auto-encoder RBMs 

that permit creation of a generative model for extracting 

features from the encrypted data. Usually, the data vector is 

saved in the last hidden layer. In addition, the auto-encoders 

are a general class of algorithms used to compress 

representations of input data. 

A classifier DBN, which we are interested in this work, is 

used in learning and supervised classification. The recognition 

process takes advantage of the architecture of the latter to give 

exact classification results, such that the first layer of the DBN, 

which is the visible layer, represents the input data vector, the 

hidden layers show the primitive detectors, or reconstructors, 

from the visible layer data, and the last layer of the DBN is the 

SoftMax layer, containing the classification labels. As such, 

the classifier DBN architecture requires that the last RBM be 

discriminative to ensure that the output data is labeled 

correctly. 

The choice of DBN architecture is an important factor in 

ensuring robust HAR systems. As such, our DBN-based HAR 

method utilises an architecture that comprises a classifier DBN, 

which, in turn, is composed of three RBMs, two generative 

RBMs for the training stage and feature extraction as well as a 

discriminative RBM to classify the data input vector. The last 

layer is a SoftMax regression which is used for obtaining the 

output from the hidden layer. The structure of the DBN is 

shown in Figure 3. The entire process of DBN-based HAR 

consists of three major steps: training, fine-tuning and 
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classification. For the DBN training, a bottom-up layer-wise 

unsupervised learning method is applied for feature learning, 

such as the raw data stream flows from the visible layer to the 

H3 hidden layer in layer-by-layer process. Then, a coarse 

network is built. Following this, a top-down supervised 

learning method, a contrastive version of Wake-Sleep, is 

utilised to fine-tune weights for the whole network. Finally, 

we use the SoftMax regression to classify an input normalized 

trajectory image and output the result. SoftMax regression is a 

generalization of logistic regression that is used for multi-class 

classification. In contrast, logistic regression can only be 

employed in binary classification. 

 

 
 

Figure 3. Schematic representation of a DBN model 

 

3.2 Restricted Boltzmann machine 

 

The RBMs are stochastic and probabilistic neural networks 

that can be used in unsupervised modes. According to Hinton 

[19], they are useful algorithms for size reduction, 

classification, regression, collaborative filtering and feature-

based learning. The RBMs are elementary sub-networks 

comprising the DBM which are composed of two layers: a 

visible layer and a hidden layer with binary units. The two 

layers are connected and there are no connections within a 

layer. RBMs can be used to find the inherent relation between 

the binary data, whose energy function is defined as follows: 

 

( ) ( ) ( ) ( )
1 1 1 1

, ;
= = = =

= − − −  
I J I I

ij i j i i j j

i j i i

E v h w v h a v b h  (2) 

 

where, ωij is the connection weight between hidden unit hj and 

visible unit vi, ai and bj are the bias terms. I and J are the 

numbers of visible and hidden units, respectively. θ is the 

model parameter. The joint probability distributions over 

visible and hidden units are defined in terms of the energy 

function: 

 

( )( )−
=

exp
p(

E v
v,

,
h; )

Z

h;



 (3) 

 

where, ( ) ( )( )= =h,v
Z Z exp E v,h;   is a partition 

function. The marginal probability of a visible unit of 

Booleans is the sum over all possible hidden layer 

configurations: 

 

( )( )−
=

h

exp
p

E v,h
( ; )

;
v
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 (4) 

Since the RBM has the shape of a bipartite graph. The 

visible units and the hidden units are mutually independent, 

and there are no connections between the same layer units. 

Hence, the conditional probability can be written as: 
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=
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j 1
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where, ( )( )= + −( x ) 1 1 exp x . The weights update required 

to perform gradient descent in the log-likelihood can be 

obtained as follows:  

 

( ) ( )( )= −ij i j i jdata mod el
v h v h   (7) 

 

where, ε is the learning rate in both training set and model. The 

learning rule for polarization parameters is given by: 

 

( ) ( )( )= −i i idata mod el
a v v   (8) 

 

( ) ( )( )= −j j jdata mod el
b h h   (9) 

 

 

4. EXPERIMENTS 

 

To evaluate the proposed approach properly, we applied it 

on two different datasets. Different classification and 

evaluation criteria were used. And the results obtained were 

compared and discussed taking into account the recent 

introduced techniques. 

 

4.1 Datasets 

 

4.1.1 KTH dataset 

KTH dataset [20] is the most commonly used dataset in 

HAR systems. It contains six human actions: boxing, 

handclapping, handwaving, jogging, running and walking. 

These actions are performed by 25 people under four different 

scenarios (outside, outside with variation of scale, outside with 

different clothes and inside). As such, in total, the KTH 

database encompasses 600 video sequences shot on 

homogeneous backgrounds with a static camera. These 

sequences are stored in AVI format and they have been 

reduced to a spatial resolution of 160×120 pixels for each 

frame. Figure 4 shows an example of images detected from the 

KTH dataset. Our proposed method makes use of binary data 

for the DBN architecture. Preprocessing consists of converting 

the input data into binary data. We start by segmenting each 

video sequence into grayscale frames. Then, we transform 

each frame into a binary one. Following this, we apply a 

morphological filter to each frame in order to enhance its 

quality. The size of all frames is then standardized to 95×55 

pixels. In this way, we change each frame into a binary vector 

so as to create an input matrix that contains the training data 

and the testing data, as well as the labels.
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Figure 4. Image samples from KTH dataset 

 

4.1.2 UIUC dataset 

UIUC dataset [21] contains fourteen human actions: 

walking, running, waving, raise-one-hand, jumping, jumping 

jacks, clapping, jump-from-situp, stretching out, turning, 

sitting-to-standing, crawling, standing-to-sitting and pushing 

up. These actions are distributed across three sections: the first 

contains 271 image sequences, the second consists of 191 

image sequences and the third includes 70 image sequences. 

Figure 5 shows image samples from the UIUC dataset. 

 

 
 

Figure 5. Image samples from UIUC dataset 

 

This dataset allows us to avoid the first preprocessing steps, 

such as segmentation of video sequences and binarization, 

because the foreground masks have already been prepared. To 

improve the quality of the foreground masks, we apply a 

morphological filter and fix the size of all images at 75×105 

pixels. 

 

4.2 Tests and results 

 

We tested our proposed method on Matlab R2016b and used 

the DeeBNET Toolbox [18]. All experiments were run on a 

64-bit Windows 10 PC with an Intel Core i7- 6500 CPU, 8 GB 

of RAM and an NVIDIA GeForce 920MX (2GB) graphics 

card. For the KTH dataset, we used 18 video sequences from 

different scenarios for the training data and 12 video sequences 

from different scenarios for the testing data. However, for the 

UIUC dataset, we tested the DBN architecture with 10 human 

actions (running, waving, walking, clapping, jumping, 

jumping jacks, stretching out, turning, raise-one-hand and 

sitting-to-standing). Hence, we used 30 image sequences for 

the training data and 20 image sequences for the testing data. 

4.2.1 Training parameters 

For each dataset, a DBN model was built. In Table 1, the 

training parameters for each dataset are shown. We choose the 

5% most relevant frames from the training set. 7409 frames for 

the KTH dataset and 2228 for UIUC dataset.  

For the test step, we randomly chose 10% from the test data 

corresponding to 70180 frames for the KTH dataset and 26400 

for UIUC dataset. In fact, for the KTH dataset we tested 7018 

frames and 2640 for the UIUC dataset. These tests were 

conducted 5 times randomly to cross-correlate the results 

obtained, leading to an average accuracy varying with ± 0.03%. 

 

Table 1. Training parameters of the DBN model for each 

dataset 

 
Training parameter KTH UIUC 

Number of supervised epochs 30 30 

Number of visible layers 1 1 

Number of units in visible layer 5225 7875 

Number of hidden layers 3 3 

Output units 6 10 

Supervised learning rate 0.01 0.1 

Number of iterations 2200 2500 

 

4.2.2 Classification results 

The confusion matrices in Figures 6 and 7 provide the 

classification results of the proposed method for the KTH and 

UIUC datasets respectively. The diagonal values depict the 

correctly predicted samples and the off-diagonal values 

represent the miss-classified samples. After applying the back-

propagation algorithm, we found that our approach resulted in 

fewer errors and offered higher accuracy for all of the human 

action classes in both datasets. On average, our DBN-based 

HAR method reached a recognition rate of 94.83% for KTH 

and 96% for UIUC. 

Analysis of the confusion matrices revealed that the 

classification rates are high for all of the classes, except for 

jogging and running in KTH dataset. These two human actions 

exhibit similarity when examining single frames from the 

video. To better differentiate between them, we would have to 

take motion into consideration, which cannot be considered by 

the proposed DBN-based HAR. For each class, we computed 

the evaluation metrics True positive (Tp), True negative (Tn), 

False positive (Fp) and False negative (Fn).  
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Figure 6. Confusion matrix of the proposed method on the 

KTH dataset 

 

 
 

Figure 7. Confusion matrix of the proposed method on the 

UIUC dataset 

 

The performance of the HAR system has been measured 

using the following evaluation metrics: Accuracy (Acc), 

Precision (Pr), Sensitivity (Sn) and Specificity (Sp) rates are 

deducted according to the following equations: 
 

+
=

+ + +

Tp Tn
Acc

Tp Tn Fp Fn
 (10) 

 

=
+

Tp
Pr

Tp Fp
 (11) 

 

=
+

Tp
Sn

Tp Fn
 (12) 

 

=
+

Tn
Sp

Tn Fp
 (13) 

 

Table 2. Classification results for KTH dataset 

 
Class TP TN FP FN Pr (%) Sn (%) Sp (%) Acc (%) 

Boxing 1 4.69 0 0 100 100 100 100 

Handclapping 0.98 4.71 0.03 0.02 97.03 98 99.37 99.13 

Handwaving 0.97 4.72 0.02 0.03 97.97 97 99.58 99.13 

Jogging 0.89 4.8 0.12 0.11 88.11 89 97.56 96.11 

Running 0.87 4.82 0.08 0.13 91.57 87 98.38 96.44 

Walking 0.98 4.71 0.06 0.02 94.23 98 98.74 98.61 

Total 5.69 5.69 0.31 0.31 94.83 94.83 94.83 94.83 

 

Table 3. Classification results for UIUC dataset 

 

Class TP TN FP FN 
Pr 

(%) 

Sn 

(%) 

Sp 

(%) 

Acc 

(%) 

Clapping 0.96 8.64 0.01 0.04 90.56 96 98.85 98.56 

Jump 0.93 8.67 0.08 0.07 92.08 93 99.08 98.64 

Jump-Jack 0.96 8.64 0.09 0.04 91.42 96 98.97 98.66 

Raise-1-Hand 0.96 8.64 0.03 0.04 96.96 96 99.65 99.27 

Running 0.98 8.62 0.03 0.02 97.03 98 99.65 99.48 

Sitting-to-

standing 
0.94 8.66 0 0.06 100 94 100 99.37 

Streching-out 0.95 8.65 0.01 0.05 98.99 95 99.88 99.37 

Turning 0.97 8.63 0.02 0.03 97.97 97 99.77 99.48 

Walking 0.97 8.63 0.02 0.03 97.97 97 99.77 99.48 

Waving 0.98 8.62 0.02 0.02 98 98 99.77 99.58 

Total 9.6 9.6 0.4 0.4 96 96 96 96 

 

Tables 2 and 3 above show the obtained performances for 

KTH and UIUC datasets respectively. 

 

4.3 Comparison with existing deep learning methods 
 

To evaluate our proposed method, we compared the 

obtained classification results with several methods of the 

state-of-the-art using deep learning methods and using the 

same datasets. Considering the KTH, our method with an 

average accuracy equal to 94.83% outperforms Ali and Wang 

method [10] (94.3%), Geng and Song method [12] (92.49%), 

Baccouche et al. method [22] (91.04%) and Ji et al. method 

[14] (90.2%). For UIUC dataset, with an average accuracy 

equal 96%, we obtained also better results compared to 

Chalamala and Kumar method [23] (80%). 

Table 4 summarizes the classification accuracy of our 

method and the recent methods from the state-of-art using 

deep learning. 

 

Table 4. Performance comparison of the proposed method 

with recent deep learning methods 

 

Method  
Acc (%) 

KTH UIUC 

Proposed method  94.83 96 

Ali and Wang [10] 94.30 ― 

Geng and Song [12] 92.49 ― 

Ji et al. [14] 91.04 ― 

Baccouche et al. [22] 90.20 ― 

Chalamala and Kumar [23] ― 80 

 

4.4 Computational complexity 

 

The creation of a robust and efficient recognition system 

takes two main considerations into account. The first is the 

quality of classification and identification (i.e. the correct 

prediction rate). The second is the execution time, with the aim 

of carrying out the classification in real-time. The method 

introduced in this paper uses a DBN classifier with a back-

propagation algorithm, which can be parallelized. We 

employed a Deep Learn Toolbox GPU-based DBN 

implementation to train our DBN classifier, which led to a 

reduction in training time. We executed various tests with 

different numbers of iterations and different numbers of 

epochs. We observed optimal results at 30 epochs for the KTH 

dataset and 20 epochs for the UIUC dataset. The DBN 

classifiers rapid training period reduces its computational 

complexity and, thus, allows it to be used in HAR. 
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5. CONCLUSION AND FUTURE WORKS 

 

In this paper, we proposed a new method for human action 

recognition using a deep learning technique inspired from a 

DBN classifier model. The proposed DBN architecture is 

composed of three RBMs, two of them are generative and are 

used for the training stage and feature extraction. The third one 

is a discriminative RBM to classify the data input vector. The 

last layer is a SoftMax regression which is used to obtain the 

output from the hidden layer.  

To assess the proposed method, we performed experiments 

for human action recognition on two popular and challenging 

datasets: KTH and UIUC. Indeed, the training of the network 

was performed on 5% of the most relevant frames from each 

dataset. While for the test step, we randomly chose 10% from 

the test data. The experimental results prove that the proposed 

method outperforms the recent state-of-the-art HAR methods. 

In fact, the obtained accuracy reached around 95% and 96% 

for KTH and UIUC datasets respectively.  

Future works will focus on two important points: The 

implementation of a DBN model with unsupervised 

classification data, and the inclusion of the motion capture data 

to highlight the temporal information in HAR systems by 

considering the movement tracking task. 
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