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 The dynamical fluctuations in the Heart Rate Variability (HRV) signals show structures at 

multiple time scales revealing that complexity of the autonomic nervous system control of 

the heart is multiscale and hierarchical. Multiscale Entropy (MSE) and its variant Composite 

MSE (CMSE) were proposed to quantify the complexity at multiple time scales, however, 

these measures failed to quantify complexity accurately for short duration signals at large 

temporal scales. To address the downsides of MSE and CMSE, Multiscale Permutation 

Entropy (MPE) and Improved MPE (IMPE) were proposed. The preliminary results reveal 

that MPE and IMPE were able to distinguish healthy and pathological subjects, however, 

further studies are needed to investigate the robustness of these measures. In this study, we 

investigate the robustness of scale based PE measures in terms of dynamical information, 

induction of undefined entropy estimates for short duration signals and to classify HRV 

signals under different physiological and pathological conditions. The results were 

compared with SE, PE, MSE and CMSE. The MPE and IMPE along with MSE and CMSE 

provided accurate dynamical information. The results revealed that MPE and IMPE resolved 

the issue of inducing undefined entropy estimates and are robust in classifying healthy and 

different pathological subjects. 
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1. INTRODUCTION 

 

Cardiovascular problems are one of the major causes of 

mortality across the globe. In 2008, approximately 17.3 

million people died due to cardiovascular diseases [1]. 

According to the World Health Organization (WHO), 30 

percent of total global deaths are due to cardiovascular 

diseases irrespective of geographical boundaries [2]. 

Therefore, it is very important to identify heart abnormalities 

at early stages for timely intervention and rehabilitation. 

Extraction of physiological and clinical information hidden 

in biological signals, such as heart rate, respiratory rate, and 

stride intervals is an important and fascinating field of research 

[3-7]. Non-invasive assessment of the physiological 

parameters of a subject enables us to study the physiology and 

pathophysiology of the investigated system with minimum 

interference and inconvenience. Electrocardiogram (ECG) is a 

non-invasive tool that is helpful in continuously monitoring 

the electrical activity of the heart. Heart Rate Variability 

(HRV) analysis is performed to study the variations of inter-

beat intervals over time which provides important information 

about the autonomic control of heart [8]. The inter-beat 

interval (RR-interval) is the time between two consecutive R-

peaks of the ECG signal and its reciprocal is called heart rate. 

HRV reflects the balancing act of sympathetic and 

parasympathetic branches of the autonomic nervous system to 

control heart rate. Reduced HRV has been associated with 

aging and cardiovascular diseases [9]. 

The underlying mechanism of most of the biological 

systems is non-linear due to their aperiodic, eccentric, and 

irregular behavior [3]. The traditional linear times series 

analysis techniques do not provide appropriate information 

about the dynamics of physiological systems. With the advent 

of non-linear dynamical analysis, many researchers have 

attempted to find the non-linear behavior of the biological 

systems [3-7]. Extensive scientific efforts have been made for 

understanding the physiology and pathophysiology of the 

cardiovascular system. The concept of entropy, first used to 

measure the disorder of molecules in the field of 

thermodynamics, is commonly used to understand the 

physiological systems. A decrease in entropy of the signals 

received from a system represents the loss of structural and 

functional complexity, which is a generic feature of aging and 

pathology [5, 10]. During the last three decades, several 

entropy-based techniques have been developed by the 

researchers [11-13]. 

The complex biological systems exhibit structures at 

multiple time scales and they function in a dynamic 

environment. The traditional approaches measure complexity 

at a single time scale and fail to account for multiple temporal 

scales inherent in the output signals of these systems [10, 14]. 

In 2002, Costa et al. proposed Multiscale Entropy (MSE), to 
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represent heart rate dynamics at multiple time scales [10]. 

Since then, the concept of MSE has become a prevailing 

method that has been used in diverse fields including 

biomedical signal processing [10, 15, 16], electro-seismic time 

series [17], and financial time series [18].  

The MSE algorithm relies on the computation of sample 

entropy [10, 15, 16] of the coarse-grained time series over a 

sequence of scale factors. The coarse-graining procedure 

reduces the length of the time series at a scale factor resulting 

in decreased reliability of entropy estimates or increased 

probability of undefined entropy values. Wu et al. [19] 

proposed Composite MSE (CMSE) to address the reliability 

issue of MSE for short duration time series or at large temporal 

scales. In the CMSE algorithm, the sample entropies of all 

coarse-grained time series at a scale factor 𝜏 are calculated and 

the CMSE value is defined as the average of 𝜏 sample entropy 

values [19]. The CMSE provided more reliable entropy 

estimates but the probability of getting undefined entropy 

values is increased compared to the MSE. The idea of 

calculating entropy based on permutation patterns has received 

considerable attention during the last decade, especially for 

understanding the dynamics of complex physiological systems. 

Permutation Entropy (PE) takes the temporal order of the 

values into account which makes it computationally efficient 

and robust method to estimate the complexity of time series 

[13]. Aziz and Arif [20] proposed Multiscale Permutation 

Entropy (MPE) to improve the classification ability of PE for 

quantifying the heart rate dynamics. Azami and Escudero [21] 

proposed Improved Multiscale Permutation Entropy (IMPE) 

by incorporating the scaling procedure of [19] with PE [16] to 

increase the stability of MPE.  

Awan et al. [14] proposed Multiscale Normalized Corrected 

Shannon Entropy (MNCSE) to study the dynamics of interbeat 

interval time series of healthy and diseased subjects. They 

compared the results of MNCSE with traditional MSE and 

found that MNCSE is more reliable and stable than MSE. Isler 

et al. [22] proposed an automatic system using multistage 

classifiers for diagnosing CHF using short term HRV analysis 

and obtained an accuracy of 98.8%. For the detection and 

prediction of 5-minute pre-shock data of CHF, Au-Yeung et 

al. [23] applied SVM and RF machine learning classifiers and 

found an accuracy of 81.0% using both classifiers. Sharma et 

al. [24] employed a time-frequency based method for detecting 

the presence of Coronary Artery Disease (CAD). They used 

the extracted features to classify normal ECG beats and CAD 

using random forest and J48 classifiers and found an accuracy 

of 99.93%. Li et al. [25] proposed a novel approach for the 

classification of normal and CHF subjects using a combination 

of Convolutional Neural Network (CNN) and Distance 

Distribution Matrix (DDM). They used three CNN models 

(DenseNet, AlexNet, and SE-Inception-v4), and DDM for the 

computation of three entropy measures i.e. Fuzzy Global 

Measure Entropy (FuzzyGMEn), Fuzzy Local Measure 

Entropy (FuzzyLMEn), and Sample Entropy (SampEn). They 

found an accuracy of 81.85% using FuzzyGMEn combined 

with the SE-Inception-v4 model. The studies [22-25] were 

either conducted for short duration signals or did not 

investigate the dynamical characteristics of HRV signals. 

Furthermore these measures did not investigate issue of 

induction of undefined entropy estimates. 

In the present study, at first scale based PE measures, MPE 

and IMPE, are used to investigate the dynamics of real-world 

datasets of Normal Sinus Rhythm (NSR) and Congestive 

Heart Failure (CHF) subjects. Next we investigate the 

robustness of MPE and IMPE to resolve the issue of induction 

of undefined entropy estimates for short duration signals and 

to classify HRV signals under different physiological and 

pathological conditions. The results of MPE and IMPE are 

compared with scale based SE measures: MSE and CMSE, for 

distinguishing healthy and pathological groups as well as to 

address the problem of undefined entropy estimates. Secondly, 

scale based PE (PE, MPE, and IMPE) and scale based SE (SE, 

MSE, CMSE) measures are used to extract featrues from 

interbeat interval time series data to classify the healthy and 

diseased subjects. Four different machine learning algorithms 

(Support Vector Machine (SVM) [26] with the linear and 

radial kernel (termed as SVM-L and SVM-R respectively), 

Random Forest (RF) [27], and k-Nearest Neighbour (kNN) 

[28]) are employed on features extracted using scale based PE 

and SE measures. The results demonstrated that multiscale 

based features especially MPE and IMPE are more appropriate 

in classifying healthy and diseased subjects as well as young 

and elderly subjects as compared to single scale based features.  

 

 

2. MATERIAL AND METHODS 

 

In this section, datasets and techniques used in this study are 

described. 

 

2.1 Datasets 

 

The data used in the study comprises of 72 NSR and 44 CHF 

subjects, which were taken from publicly available databases 

from Physionet [29]. There were 35 male and 37 female 

subjects in the NSR group having 54.6 ± 16.2 (mean ± std) 

years age. The CHF group comprises of 29 male and 15 female 

subjects having age 55.5 ± 11.4 years. The NSR data is further 

divided into young and elderly groups to study the changes in 

the dynamics of heart rate signals with aging. The young group 

consists of 26 subjects having ages less than 50 years and 

elderly subjects composes of 46 subjects having ages greater 

than 50 years. 

The CHF subjects can be categorized into four different 

groups according to the New York Heart Association (NYHA) 

functional classification system [30]. The classification of the 

NYHA system is based on the quality of life of patients and 

symptoms of everyday activity. For class I, there is no 

restriction in physical activity whereas for class II there is a 

very small restriction in physical activity. According to the 

NHYA system the class I and II are mild classes. In class III 

subjects, the severity of the disease is moderate and there is a 

distinct restriction in physical activity. The subjects in class IV 

are CHF subjects and are unable to move physically and 

belong to severe disease category. To study the dynamical 

changes with disease severity, the CHF subjects are divided 

into two categories. The CHF subjects with lesser disease 

severity comprises of 12 subjects and belong to NYHA classes 

I and II while CHF subjects with high disease severity 

comprises of 32 subjects which belong to NYHA class III and 

IV.  

 

2.2 Permutation Entropy (PE) 

 

The PE of an arbitrary time series is a complexity measure 

based on the analysis of permutation patterns of the adjacent 

values [13]. Embedding theorem indicates that any arbitrary 

time series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}  can be traced on to m 
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dimensional space with vectors 𝑋𝑖 = {𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+(𝑚−1)𝜏}, 

where m is embedding dimension and 𝜏 is the time delay. The 

patterns of evolution are represented by the components of 

each vector arranged in ascending order. So the symbolic 

sequence of the vectors will be the m! i.e., the probable 

permutations of 𝑚 divergent symbols. The relative frequency 

of each permutation pattern 𝜋  at time delay τ can be 

determined using the relation 

 

𝑃𝐼 =
#{𝑡|0≤𝑡≤𝜏 – 𝑚,(𝑥𝑡+1,….,𝑥𝑡+𝑚) ℎ𝑎𝑠 𝑡𝑦𝑝𝑒 𝜋}

𝜏−𝑚+1
  (1) 

 

The PE of order m≥2 then can be computed using the 

formula 

 

PE = − ∑ 𝑃𝐼𝑙𝑜𝑔 𝑃𝐼   (2) 

 

The 𝑃𝐸  represents the information contained in a time 

series data when 𝑚 consecutive values of that time series are 

compared. 

 

2.3 Multiscale Permutation Entropy (MPE) 

 

The computation of MPE [20] is based on the construction 

of the coarse-grained time series using the procedure 

developed by Costa et al. [15] detailed in Figure 1. The 

following procedure is used for the computation of MPE.  

Step l: For a distinct time series {𝑡𝑖: 𝑖 = 1,2. . . 𝑁}, a set of 

time series using coarse-grained method is created by 

averaging the data values within non-coinciding frames of 

increasing length  𝐿 . To construct a coarse-grained time 

sequence following equation is used. 

 

𝐴 =
1

𝐿
∑ 𝑡𝑖

𝑚𝐿
𝑖=(𝑚−1)𝐿+1𝑚

(L)
  (3) 

 

where, L is the scale factor with 1 ≤ 𝑚 ≤ 𝑁/𝐿. The actual 

time series length divided by scale factor L gives the coarse-

grained time sequence length. Figure 1 demonstrates that the 

coarse-grained time sequence is distributed into non-

coinciding windows of length L, and each window contains 

the average value of data points. 

Step 2: For calculating the MPE, coarse-grained time 

sequence  {𝐴𝑚: 𝑚 = 1,2. . . 𝑁}  is implanted to 𝑠  dimensional 

space: 

 

𝐴𝑚 = {𝐴(𝑚), 𝐴(𝑚 + 𝜏), . . . , 𝐴(𝑚 + (𝑠 − 1)𝜏)}  (4) 

 

Here 𝑠 is the embedding dimension whereas T represents 

the time delay. For each m, the existent values 𝐴𝑚  =
[𝐴(𝑚), 𝐴(𝑚 + 𝜏), … . . . , 𝐴(𝑚 + (𝑠 − 1)𝜏)]  of s dimensions 

can be organized in a cumulative order [𝐴(𝑚 + (𝑚1 − 𝑙)𝜏 ≤
 𝐴(𝑚 + (𝑚2 − 1)𝜏 . . . ≤ 𝐴(𝑚 + (𝑚𝑠 − 1)𝜏].  Hence any 

vector 𝐴, is plotted onto (𝑚1, 𝑚2, … , 𝑚𝑠), that is one of the 

permutations of 𝑠  diverse signs  [1,2, . . . 𝑠] . Let, for diverse 

signs, the probability distribution be 𝑃𝐸1, 𝑃𝐸2, . 𝑃𝐸𝑐, then for 

the coarse-grained time sequence, the 𝑃𝐸  is defined as the 

Shannon Entropy for 𝑐 diverse signs. 

 

𝑀𝑃𝐸 = − ∑ (𝑝𝐸𝑢  𝑙𝑛 𝑝𝐸𝑢)𝑐
𝑢=1   (5) 

 

The length of the time scale is very important as most of the 

measurements of entropy are reliant on it. The decrease in 

length of coarse-grained series causes an increase in the 

variance of measurements of entropy. At greater scales, the 

approximate error of the MPE algorithm would be high. 

 

2.4 Improved Multiscale Permutation Entropy (IMPE) 

 

In simple MPE algorithm [20], MPE is calculated using 

only the first coarse-grained time sequence 𝐴1
(𝐿)

, but in IMPE, 

the PE of all coarse-grained time sequences are computed at 

every scale factor of L. It is evident from Figure 2 that for scale 

factors of 2 and 3 there are two and three coarse-grained time 

sequences, respectively. 

For a distinct time sequence  {𝑡𝑖: 𝑖 = 1,2. . . 𝑁} , mth time 

sequence based on the coarse-grained method for some scale 

factor of L, 𝑦 =𝑚
(L)

𝑦  𝑚,1
(L)

𝑦  … 𝑚,2
(L)

𝑦  𝑚,𝑛
(L)

is defined as 

 

𝑦 =
1

𝐿
∑ 𝑡𝑖

𝑚𝐿
𝑖=(𝑚−1)𝐿+1𝑚

(L)
  1 ≤ m ≤

N

L
  (6) 

 

The IMPE is calculated using the relation 

 

IMPE(t, L, ord) = 1/L ∑ 𝑀𝑃𝐸(𝑦 , 𝑜𝑟𝑑𝑚
(L)

)
L

𝑖=1
   (7) 

 

 
 

Figure 1. Schematic illustration of coarse graining procedure [15] for computation of MPE 
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Figure 2. Schematic illustration of coarse graining procedure [19] for computation of IMPE 

 

2.5 Statistical analysis 

 

Kruskal–Wallis and Mann–Whitney–Wilcoxon (MWW) 

tests are used to find significant differences among various 

groups. Kruskal-Wallis test is a non-parametric analog to one-

way ANOVA for comparing three or more random 

independent samples. Kruskal-Wallis test reveals at least one 

of the groups differs from the remaining groups but does not 

recognize which pair of groups actually differ. Therefore, for 

a paired comparison, the Mann-Whitney U test is used to 

investigate which pair of groups are significantly different. 

The degree of separation between various groups is assessed 

using the Area Under Curve (AUC) [31]. The AUC can take 

any value between 0 and 1, closer the AUC value to 1, better 

the degree of separation between the groups. The practical 

lower limit of AUC is 0.5 at which the Receiver Operating 

Characteristic (ROC) curve will fall to the diagonal and the 

overall performance of the diagnostic test will rely on pure 

chance [31]. 

 

2.6 Machine learning based classification of HRV signals 

 

Popular machine learning algorithms, SVM (with linear and 

radial kernels) [26], RF [27], and kNN [28] are used in this 

study to investigate the efficacy of the features (extracted 

using scale based measures from HRV signals) in 

classification of HRV signals. Following is a brief description 

of each of above mentioned machine learning algorithms. 

 

2.6.1 Support Vector Machine (SVM) 

SVM is one of the most widely used algorithm for both 

linear and nonlinear data classification [26]. SVM basically 

uses a nonlinear mapping to convert original training data into 

higher dimensions. It examines the linear hyperplanes for 

separating data of one class from another one within new 

dimension. The SVM algorithm selects that hyperplane for 

which the support vectors (points nearest to the hyperplane on 

its both sides) have the maximum distance (margin) from the 

hyperplane. The nonlinear separable data is handled using a 

kernel function [32], by mapping nonlinear data from input 

space to the higher dimensional feature space. The most 

commonly used kernels are linear and radial. 

The generic equation for SVM classifier is: 

 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 , 𝑥) + 𝑏𝑙

𝑖=1   (8) 

 

k(xi, x) indicates the kernel function. The mathematical 

representation of linear and radial kernel functions used in this 

study are as follows. 

 

Linear: 𝑘(𝑥1, 𝑥2)=𝑥1
𝑇𝑥2  (9) 

 

Radial: 𝑘(𝑥1, 𝑥2) = 𝑒−𝛾||𝑥1−𝑥2||2
 (10) 

 

The geometric definition of SVM is represented in Figure 3. 

Figure is retrieved from Toledo-Pérez’s study [33].  

 

2.6.2 Random Forest (RF) 

RF is a flexible and efficient algorithm which constructs 

various decision tree models and merges them together for 

reliable and accurate prediction [27]. The accuracy of RF 

models depends on strength of individual trees in the forest as 

well as the correlation between them. The generalization error 

is reduced when the individual trees are more accurate for 

prediction. In order to forecast a new sample from an input 

vector, the new sample is positioned at the end of each tree in 

the forest. Each tree gives a predicted value and the final 

predicted value is the one which is selected by the forest based 

on maximum votes from all trees. RF classifier with n decision 

trees is illustrated in Figure 4. Figure is retrieved from Gajja’s 

study [34]. 
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2.6.3 k-Nearest neighbor 

kNN algorithm [28] is based on distance function (e.g. 

Euclidean distance) and is used to classify data with respect to 

their 𝑘  nearest neighbors [35]. It is based on learning by 

similarity i.e. by doing a comparison of test tuple with training 

tuples. A descriptive example of kNN classifier which 

supports three classes A, B, and C with k=7 is illustrated in 

Figure 5. The point 𝑋𝑡 will be classified to class B. Figure is 

retrieved from Atallah’s study [36]. 

 

 
 

Figure 3. Generic definition of SVM 

 

 
 

Figure 4. RF classifier example 

 

 
 

Figure 5. kNN classifier example 

 

2.6.4 Leave One Out Cross Validation (LOOCV) 

The LOOCV is a method used to investigate the genralized 

classification ability of models for the problems where the 

number of samples for each class are extremely small. In this 

study, we have 72 NSR and 44 CHF subjects in the available 

dataset which is considered as extremely small dataset. 

LOOCV is used here for the formulation of training/testing 

data and parameter optimization. In LOOCV one of the 

samples is used to test the performance of the predictive model 

while the rest of the samples are used to construct the 

predictive model. This procedure is repeated for all the 

samples in the available dataset and every time only a single 

sample is used for performance evaluation. In this way, the 

performance of the predictive models is measured for all the 

samples in the available dataset. 

 

 

3. RESULTS 

 

In Figure 6, the distributional characteristics of NSR-young, 

NSR-old, CHF class-(I, II), and CHF class-(III, IV) subjects 

using a scale based SE and PE at optimal pattern length/order 

are presented in the form of a boxplot. The middle line inside 

each box is the median value, while the edges of the box 

represent 25th and 75th percentile and points outsides the 

whiskers represented by a dot are outliers. It is evident from 

the Figure 6 that the degree of overlap is higher between 

various groups for SE and PE (entropies computed at temporal 

scale 1) as compared to scale based version of SE and PE. The 

scale based SE and PE manifest obvious differences between 

healthy subjects and physiological disturbances caused by 

aging or disease. 

In Figure 7 (a, b, c), results of PE, MPE, and IMPE in terms 

of mean ranks and in Table 1, their corresponding p-values at 

temporal scales 1 to 15 are presented. Higher mean rank 

corresponds to higher entropy estimates representing 

physiologically complex signals. The PE assigned higher 

mean ranks to NSR-old, CHF class-(I, II) and CHF class-(III, 

IV) subjects than NSR-young subjects, representing incorrect 

information about the dynamics of these systems. Whereas, 

scale based PE measures assigned higher entropy values to 

NSR-young subjects at higher temporal scales indicating 

healthy dynamics are more complex, refuting the original PE 

algorithm. MPE and IMPE significantly distinguishes healthy 

from pathological and elderly subjects at wide range of 

temporal scales. The findings indicate that both time scale and 

specific entropy values need to be taken into account for better 

characterization of physiological processes. 

In Figure 8 (a, b, c), results of SE, MSE, and CMSE in terms 

of mean rank and in Table 2, their corresponding p-values for 

distinguishing healthy from pathological subjects are 

presented. Higher mean rank corresponds to higher entropy 

values manifesting more complex dynamics of the underlying 

system. It is evident from the Figure that the mean ranks of 

NSR-young subjects are higher than NSR-old, CHF class-(I, 

II) and CHF class-(III, IV) subjects at all the temporal scales 

including scale 1 i.e. simple SE. The MSE and CMSE are able 

to distinguish NSR-young from other groups more 

significantly at a wide range of temporal scales compared to 

SE. 

In Figure 9 (a, b), the values of AUC for assessing the 

degree of separation of scale based PE and SE at different 

temporal scales for distinguishing healthy subjects from 

pathological and elderly subjects are presented. The AUC is a 

generally distinguished index showing the degree of 

separation among the groups. The AUC values show perfect 

separation between two groups at a maximum value that is ‘1’ 

and AUC value ‘0.5’ correspond to the separation between 

groups by pure chance. It is evident from the Figure that AUC 
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values for both scale based PE and SE are considerably high 

as compared to PE and SE. The maximum separation between 

NSR-young and NSR-old subjects for both MPE and IMPE is 

obtained at scale 5 (AUC value = 0.85 & 0.84 respectively), 

whereas the maximum separation among NSR-young and 

CHF class-(I, II) subjects is achieved at scale 13 and 7 (AUC 

value = 0.78 & 0.76 respectively). The optimal separation 

among NSR-young and CHF class-(III, IV) subjects is 

obtained at scale 7 (AUC value = 0.86). In the case of MSE 

and CMSE, the optimal separation between NSR-young and 

NSR-old subjects is achieved at scale 13 (AUC value = 0.79), 

whereas the optimal separation between NSR-young and CHF 

class-(I, II) subjects is obtained at scale 3 (AUC value = 0.78 

& 0.79). The optimum separation among NSR-young and 

CHF class-(III, IV) subjects for both MSE and CMSE is 

achieved at scale 4 (AUC value = 0.82 & 0.81). The results 

indicate that the degree of separation between NSR and CHF 

subjects increased with disease severity. It is also clear from 

Figure 9 (a, b) that scale based PE provides better separation 

compared to scale based SE at multiple time scales. 

In Table 3, the robustness of scale based PE measures for 

assessing the dynamics of time series data of different lengths 

is illustrated. The mean ± std values of MPE, IMPE, MSE, and 

CMSE at temporal scales 1 to 15 at specific length are 

compared. The results indicate that the standard deviation of 

MPE and IMPE values at different lengths is lower than the 

standard deviation of MSE and CMSE. Thus, MPE and IMPE 

lead to more consistent entropy estimates compared to MSE 

and IMSE. As shown in the Table 3, MSE induced the 

undefined entropy values at large temporal scales for time 

series data of short lengths, and CMSE even induced much 

more undefined entropy values compared to original MSE, 

whereas, MPE and IMPE eliminated the probability of 

inducing undefined entropy estimates. The results depict that 

scale based PE measures are superior than scale based SE 

measures regarding the validity of entropy estimates for short 

duration time series at large scale factors. 

 
Table 1. p-values for paired comparison of NSR-Young vs NSR-Old, NSR-Young vs CHF Class-(I, II) and NSR-Young vs CHF 

Class-(III, IV) groups 

 

Scale NSR-Young vs NSR-Old NSR-Young vs CHF Class-(I,II) NSR-Young vs CHF Class-(III,IV) 

  PE 

1 8.06×10-03 5.10×10-01 3.13×10-03 

  MPE IMPE MPE IMPE MPE IMPE 

2 5.11×10-01 4.89×10-01 3.62×10-01 3.46×10-01 9.66×10-06 9.66×10-06 

3 5.75×10-02 7.10×10-02 8.51×10-01 8.51×10-01 8.69×10-05 9.89×10-05 

4 7.79×10-05 5.24×10-05 3.79×10-01 2.86×10-01 3.02×10-01 2.95×10-01 

5 4.63×10-07 7.08×10-07 7.86×10-02 1.16×10-01 4.10×10-04 5.19×10-04 

6 1.01×10-06 1.14×10-06 2.38×10-02 1.70×10-02 4.63×10-06 6.70×10-06 

7 5.10×10-06 1.29×10-05 6.29×10-03 1.00×10-02 1.85×10-06 2.16×10-06 

8 6.08×10-05 8.59×10-05 1.43×10-02 7.60×10-03 7.21×10-06 4.63×10-06 

9 9.07×10-04 3.65×10-04 2.01×10-02 1.10×10-02 1.38×10-05 6.70×10-06 

10 3.49×10-04 1.75×10-03 9.15×10-03 1.10×10-02 6.23×10-06 2.26×10-05 

11 1.89×10-03 1.55×10-03 4.12×10-02 1.31×10-02 1.29×10-05 4.49×10-05 

12 9.86×10-04 9.46×10-04 1.20×10-02 1.56×10-02 5.49×10-05 5.49×10-05 

13 3.05×10-04 4.17×10-04 3.86×10-03 1.20×10-02 3.20×10-05 7.15×10-05 

14 1.84×10-04 3.05×10-04 1.10×10-02 1.20×10-02 6.69×10-05 1.06×10-04 

15 3.49×10-04 1.68×10-04 2.58×10-02 1.70×10-02 3.86×10-04 1.75×10-04 

 

Table 2. p-values for paired comparison of NSR-Young vs NSR-Old, NSR-Young vs CHF Class-(I,II) and NSR-Young vs CHF 

Class-(III,IV) groups 

 

Scale NSR-Young vs NSR-Old NSR-Young vs CHF Class-(I, II) NSR-Young vs CHF Class-(III,IV) 

  SE 

1 5.20×10-04 3.27×10-02 4.43×10-03 

  MSE CMSE MSE CMSE MSE CMSE 

2 2.57×10-05 3.50×10-05 7.60×10-03 7.60×10-03 9.89×10-05 8.69×10-05 

3 1.69×10-05 1.98×10-05 3.16×10-03 2.85×10-03 3.20×10-05 2.99×10-05 

4 1.98×10-05 2.85×10-05 6.92×10-03 6.29×10-03 1.20×10-05 1.59×10-05 

5 4.07×10-05 4.07×10-05 4.27×10-03 4.27×10-03 2.60×10-05 2.26×10-05 

6 3.68×10-05 3.16×10-05 5.19×10-03 5.19×10-03 2.43×10-05 2.43×10-05 

7 2.31×10-05 2.31×10-05 1.10×10-02 5.72×10-03 5.49×10-05 3.92×10-05 

8 2.85×10-05 1.88×10-05 8.34×10-03 5.19×10-03 4.20×10-05 4.20×10-05 

9 1.44×10-05 2.20×10-05 1.10×10-02 9.15×10-03 5.13×10-05 5.49×10-05 

10 6.37×10-06 1.44×10-05 1.31×10-02 1.00×10-02 6.26×10-05 6.69×10-05 

11 3.16×10-05 1.16×10-05 1.10×10-02 1.00×10-02 1.75×10-04 1.28×10-04 

12 8.39×10-06 9.36×10-06 1.43×10-02 1.00×10-02 1.75×10-04 9.89×10-05 

13 7.94×10-06 8.86×10-06 1.31×10-02 1.10×10-02 1.75×10-04 1.36×10-04 

14 8.39×10-06 1.16×10-05 3.82×10-02 1.31×10-02 2.86×10-04 1.55×10-04 

15 1.36×10-05 1.23×10-05 3.02×10-02 1.31×10-02 1.86×10-04 3.04×10-04 
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Table 3. Mean ± Std of various entropy estimates for NSR young subjects using different data lengths 

 

Data Length 

Scale 
2000 4000 6000 8000 

MSE MPE MSE MPE MSE MPE MSE MPE 

1 0.44±0.2 0.95±0.04 0.51±0.21 0.95±0.04 0.56±0.23 0.93±0.04 0.59±0.21 0.93±0.04 

2 0.28±0.18 0.94±0.05 0.55±0.21 0.93±0.04 0.59±0.24 0.93±0.03 0.63±0.22 0.93±0.04 

3 0.41±0.21 0.94±0.03 0.61±0.25 0.93±0.03 0.56±0.25 0.95±0.03 0.66±0.22 0.94±0.04 

4 0.39±0.23 0.96±0.02 0.54±0.24 0.95±0.03 0.61±0.26 0.97±0.02 0.65±0.21 0.95±0.03 

5 NaN 0.97±0.02 0.49±0.22 0.97±0.02 0.54±0.24 0.96±0.02 0.68±0.22 0.97±0.02 

6 NaN 0.97±0.01 0.43±0.23 0.96±0.02 0.53±0.25 0.97±0.02 0.67±0.22 0.97±0.02 

7 NaN 0.97±0.01 0.49±0.22 0.97±0.01 0.57±0.24 0.97±0.02 0.68±0.22 0.98±0.01 

8 NaN 0.98±0.01 0.45±0.22 0.97±0.02 0.44±0.2 0.97±0.02 0.67±0.21 0.97±0.02 

9 NaN 0.97±0.02 NaN 0.97±0.02 0.53±0.23 0.97±0.02 0.64±0.2 0.97±0.02 

10 NaN 0.97±0.02 NaN 0.98±0.01 0.43±0.2 0.97±0.02 0.67±0.21 0.98±0.02 

11 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.97±0.02 0.62±0.19 0.98±0.01 

12 NaN 0.98±0.02 NaN 0.98±0.02 NaN 0.97±0.02 0.65±0.2 0.98±0.01 

13 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.98±0.02 0.62±0.19 0.97±0.02 

14 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.97±0.02 0.66±0.2 0.98±0.01 

15 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.97±0.02 0.65±0.2 0.98±0.02 

Scale 
2000 4000 6000 8000 

CMSE IMPE CMSE IMPE CMSE IMPE CMSE IMPE 

1 0.44±0.2 0.95±0.04 0.51±0.21 0.95±0.04 0.56±0.23 0.94±0.04 0.59±0.21 0.93±0.04 

2 0.33±0.19 0.94±0.04 0.56±0.22 0.93±0.04 0.59±0.24 0.93±0.04 0.58±0.23 0.93±0.04 

3 NaN 0.94±0.03 0.54±0.23 0.93±0.03 0.57±0.25 0.93±0.03 0.59±0.24 0.94±0.04 

4 NaN 0.96±0.02 0.59±0.27 0.95±0.03 0.58±0.25 0.95±0.03 0.6±0.25 0.96±0.03 

5 NaN 0.97±0.02 0.53±0.23 0.97±0.02 0.56±0.25 0.97±0.02 0.57±0.24 0.97±0.02 

6 NaN 0.98±0.01 0.55±0.24 0.97±0.02 0.59±0.25 0.97±0.02 0.59±0.25 0.97±0.02 

7 NaN 0.98±0.01 NaN 0.97±0.02 NaN 0.97±0.02 0.54±0.23 0.98±0.01 

8 NaN 0.98±0.01 NaN 0.97±0.02 0.54±0.22 0.97±0.02 0.59±0.24 0.97±0.02 

9 NaN 0.98±0.01 NaN 0.97±0.02 0.57±0.22 0.97±0.02 0.6±0.23 0.97±0.01 

10 NaN 0.98±0.02 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.97±0.01 

11 NaN 0.98±0.02 NaN 0.97±0.01 NaN 0.97±0.02 NaN 0.97±0.01 

12 NaN 0.98±0.02 NaN 0.97±0.02 NaN 0.97±0.02 NaN 0.97±0.01 

13 NaN 0.98±0.02 NaN 0.97±0.02 NaN 0.98±0.02 NaN 0.97±0.01 

14 NaN 0.98±0.02 NaN 0.98±0.02 NaN 0.98±0.02 NaN 0.98±0.01 

15 NaN 0.98±0.02 NaN 0.98±0.02 NaN 0.98±0.02 NaN 0.98±0.01 

 

 
 

Figure 6. Boxplot of scale based SE and PE to study the distributional characterization of NSR-Young, NSR-Old, CHF class-(I, 

II) and CHF class- (III, IV) subjects 
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Figure 7. Mean ranks of PE, MPE & IMPE for paired 

comparison of a) NSR-Young vs NSR-Old, b) NSR-Young 

vs CHF Class-(I, II) and c) NSR-Young vs CHF Class-(III, 

IV).II) and CHF class- (III, IV) groups 

 

The features extracted from interbeat interval time series 

data using scale based PE and SE are also used to investigate 

the predictability of healthy and diseased subjects. Different 

machine learning algorithms (RF, SVM with the linear and 

radial kernel, and kNN) are used as learning algorithms to 

build predictive models for three scenarios (NSR-young vs 

CHF class-(III, IV), NSR-young vs CHF class-(I, II) and NSR-

young vs NSR-old). The classification has been done using 

LOOCV. LOOCV is used by researchers to explore the 

performance of predictive models built on the basis of features 

extracted from time series data for small sized datasets [37]. 

Classification Accuracy (CA) according to the notation of a 

confusion matrix is used to measure the performance of each 

classifier. 

 

𝐶𝐴 = [(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)] × 100 (11) 

 

where, TP is the count of a correctly classified healthy 

subjects, TN is of correctly classified diseased subjects, FP 

represents the count of a falsely classified healthy subjects and 

𝐹𝑁 is the count of falsely classified diseased subjects. 

The classification has been done on two groups of features i.e. 

single scale features (SE and PE at scale 1) and multiscale 

features (MPE, IMPE, MSE, and CMSE). The CA of single 

and multi-scale PE and SE features are compared with each 

other. In Figure 10 (a, b, c) results obtained using different 

classifiers for NSR-young vs NSR-old, NSR-young vs CHF 

class-(I, II), and NSR-young vs CHF class-(III, IV) groups 

respectively are presented. Results show that for single-scale 

PE feature, maximum average CA of 68% using RF, 68.4%, 

and 70.7% using SVM-L classifier have been obtained for the 

above-mentioned groups of healthy and diseased subjects. 

Whereas for single-scale SE feature, maximum average CA of 

75% using SVM-L, 75.8% using RF, and 69% using SVM-R 

classifier have been obtained for the above-mentioned groups 

of healthy and diseased subjects. For multiscale PE features 

(MPE and IMPE) maximum average CA of ([81.9, 81.5]% 

using SVM-L, [81.6, 81]%, and [91.4, 89.9]% using SVM-R) 

has been obtained against NSR-young vs NSR-old, NSR-

young vs CHF class-(I, II), and NSR-young vs CHF class-(III, 

IV) groups respectively. For multiscale SE features (MSE and 

CMSE) maximum average CA of ([80.6% using SVM-L, 

78.9% using SVM-R], [73.7% using kNN and SVM-R], and 

[70.7% using RF, 71% using SVM-L]) has been obtained 

against NSR-young vs NSR-old, NSR-young vs CHF class-(I, 

II), and NSR-young vs CHF class-(III, IV) groups 

respectively. These results reflect that multiscale features 

extracted using scale based measures from interbeat interval 

time series are more valuable for building a predictive model 

to classify healthy and diseased subjects as compared to 

single-scale features. Also, the better classification of healthy 

and pathological subjects can be achieved using features 

extracted through scale based PE measures. 

 

 

 

 
 

Figure 8. Mean Ranks of SE, MSE & CMSE for paired 

comparison of a) NSR-Young vs NSR-Old, b) NSR-Young 

vs CHF Class-(I, II) and c) NSR-Young vs CHF Class-(III, 

IV).II) and CHF class- (III, IV) groups
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Figure 9. AUC values of a) scale based PE and b) scale 

based SE measures for distinguishing healthy subjects from 

pathological and elderly subjects 

 

 

 

 
 

Figure 10. Classification Accuracy (CA) for three groups of 

healthy and diseased subjects a) NSR-young vs NSR-old b) 

NSR-young vs CHF class-(I, II) and c) NSR-young vs CHF 

class-(III,IV) using scale based PE and SE measures 

 

 

4. DISCUSSION 

 

Complexity analysis of time series data of physical and 

biological systems is an effective way to accurately quantify 

the dynamics of these systems. The complexity of a 

physiological system reveals its capability to adapt and 

function in a dynamically changing environment [5, 9, 11, 15]. 

The adaptive capability functioning of these systems in a 

dynamic environment degrades with disease and aging [10, 

12]. The complex biological systems exhibit structures at 

multiple time scales and function in a dynamical environment 

[10, 15, 16]. The concept of MSE has become a prevailing 

method that has been used in diverse fields [15-18]. MSE and 

its variant, CMSE, is used to estimate complexity which 

suffers from reliability issues and induce the probability of 

undefined entropy estimates. In this study instead of SE, PE is 

used as an entropy estimate. The computation of PE is based 

on the mapping ordinal patterns in which a comparison of a 

specific data point in a time series with neighboring values is 

made [13].  

The conventional PE is unable to characterize the complex 

dynamics of the biological systems with rich temporal 

structures operating at multiple spatial and temporal scales. 

Scale based PE measures, MPE, and IMPE have been used for 

the effective detection of dynamical changes in the heart rate 

dynamics of the NSR and CHF subjects. The performance of 

MPE and IMPE algorithms is compared with MSE and CMSE 

algorithms for precise detection of transitions from normal to 

pathological states. The results of the study demonstrate that 

MPE and IMPE better characterize the complexity of healthy 

and pathological groups and provide better discrimination 

between these groups than PE, MSE, and CMSE at a wide 

range of thresholds. The scale based PE measures assigned 

higher entropy value to NSR-young compared to pathological 

and elderly subjects at wide range threshold values. The 

findings of the study are in line with the conceptual construct 

that complexity is the marker of healthy dynamics operating 

across multiple time scales [15]. The functionality and 

adaptability of healthy dynamics are very high, which 

decreases with disease and aging, ultimately resulting in a 

decrease in complexity [14].  

MSE and CMSE use SE as an entropy estimate. The 

calculation of SE requires to fix the value of similarity 

criterion 𝑟  which depends on the standard deviation of the 

time series. At large time scales, the length of the coarse-

grained time decreases resulting in an increase in the standard 

deviation values. Thus at large temporal scales, reliability of 

the entropy estimates is decreased for MSE and CMSE. 

Furthermore, MSE and CMSE are prone to induce undefined 

entropy value to short length time series at large temporal 

scales resulting in decreased performance validity. On the 

other hand in MPE and IMPE, entropy estimates are based on 

PE which takes into account the ordinal pattern of neighboring 

values instead of the magnitude of the time series data. This 

feature has made PE a reliable entropy estimate for quantifying 

the complexity of the time series. Due to the dependence of PE 

on the temporal order of neighboring values, the scale based 

permutation entropy measures outperform MSE and CMSE in 

terms of accuracy, high performance validity (address the 

issue of inducing undefined entropy values). 

The analysis of different classifiers along with LOOCV 

based on features extracted through SE and PE from interbeat 

interval time series shows that the status of individuals (as 

healthy and diseased) can be predicted accurately. The 

presented results also depict that multiscale based features 

especially extracted using PE are more reliable for building an 

accurate predictive model as compared to single scale based 

features.  
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5. CONCLUSION 

 

Complex biological systems exhibit variability at large 

temporal scales. The recent research evidence suggested that 

scale based entropy measures are more appropriate to quantify 

nonlinear dynamics as compared to single scale conventional 

entropy measures. PE performs better in case of dynamical and 

observational noise, however, PE has limited performance in 

analyzing complicated real-world data. In the present study, 

scale based entropy measures MPE and IMPE are used to 

quantify the dynamics of NSR and CHF subjects at multiple 

time scales, and results are compared with SE, PE, MSE, and 

CMSE. Both scale based entropy measures are robust in 

distinguishing healthy and pathological subjects than MSE 

and CMSE at a wide range of time scales. The findings show 

that the complexity of NSR subjects is higher than CHF 

subjects, which indicate that healthy signals have structurally 

rich patterns of data as compared to pathological subjects. 

Furthermore, MPE and IMPE outperform MSE and CMSE to 

resolve the issue of undefined entropy estimates. 

Classification results also depict that scale based entropy 

measures especially scale based PE measures are more 

effective in analysing HRV signals compared traditional single 

scale entropy measures. 
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