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 Electromyographic (EMG) signals contain various information about muscle actions, such 

as intensity and time. In most studies on EMG signals of hand motions, the model is trained 

on a single action dataset before being applied to action recognition. But rehabilitation 

training aims to enable the patient to make daily actions, each of which encompasses a series 

of individual actions. Because EMG signals are noisy and non-stationary, the transition 

between individual actions could result in a high error in action recognition. This paper 

designs the common composite actions in daily life, and then obtains the EMG signal data 

of continuous actions. The signal segments of the composite actions were determined to 

derive the static and dynamic states of each action. With the aid of the sliding window, the 

authors obtained the time series data of the eight-channel EMG signals of each composite 

action, which vary with the elapse of time. Then, the time series data were transformed into 

the time-frequency image flow of the corresponding composite action. The ten individual 

actions of the designed composite hand actions were recognized by a self-designed model, 

which couples three-dimensional convolutional neural network (3D CNN) with long short-

term memory (LSTM) network. The recognition rate was as high as 92%. Finally, an 

interactive simulation environment was constructed for hand actions on Unity5.3.1f1. Under 

the environment, the accuracy of controlling the movement of an unmanned vehicle with 

hand actions was measured. The results show that the recognition rate of our method 

stabilized at 90%.  
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1. INTRODUCTION 

 

Electromyographic (EMG) signals have been widely 

applied in medical diagnosis, rehabilitation treatment, action 

recognition, and human-machine interaction (HCI). Surface 

EMG (sEMG) signals refer to the weak nonlinear and non-

stationary signals produced by the physiological changes of 

muscle fibers, which are the result of the time-domain 

superposition between the EMG signals from multiple muscle 

action units covered by sampling electrodes. Carrying a wealth 

of information on biological activities, sEMG signals have a 

great research value in the field of medical rehabilitation, 

sports health, and pattern recognition [1, 2]. 

Beckman Institute for Advanced Science and Technology, 

a unit of the University of Illinois at Urbana-Champaign, 

carried out experiments on EMG signals, and observed that the 

subjects and the manipulator took the same actions in response 

to the same EMG signal [3]. Gesture recognition experiments 

have confirmed that human gestures can be identified through 

EMG signal recognition [4]. 

Currently, EMG signals are generally acquired by two 

methods. The indwelling or intramuscular EMG signals are 

detected with needles or wires inserted into muscles, while the 

sEMG signals, i.e., the sum of potentials as the muscles 

contract, are obtained by electrodes pasted on the skin [5-8]. 

In this paper, the second method is adopted to acquire the 

sEMG signals. Based on these signals, the authors analyzed 

the EMG activities of muscles, and determined the functional 

and morphological changes of neuromuscular system [9-11]. 

 

 

2. LITERATURE REVIEW 

 

The key issue of EMG control system is the accurate 

recognition of user’s movement intentions [12, 13]. As a result, 

researchers have always been trying to improve the 

recognition rate of sEMG signals. In fact, how to improve the 

recognition rate is a research hotspot in the field of sEMG 

signal recognition. 

On the sEMG signal recognition of hand actions, neither 

time-domain feature analysis nor frequency-domain feature 

analysis could achieve the desired classification effect [14-16]. 

Based on time-frequency domain features, however, the 

feature points can be allocated to clear classes, improving the 

recognition rate of the classifier. In recent years, the time-

frequency domain feature analysis mainly focuses on short-

time Fourier transform (STFT) and wavelet transform [17, 18]. 

Both of them amplify or reduce the scale of the frequency 

domain, using the time scale factor [19-22]. 

To improve the poor resolution of wavelet transform in 

high-frequency bands, Du et al. [23] put forward a 

decomposition method called wavelet packets transform 

(WPT). In addition to low-frequency data, the WPT can 

decompose high-frequency signals, making up for the defect 
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of wavelet transform. Luo and Yan [24] extracted the features 

of sEMG signals by time-frequency domain method, 

performed pattern classification of sEMG signals, and realized 

the control of myoelectric prostheses. To solve the weakness 

of traditional wavelet thresholding on the denoising of sEMG 

signals, Ma et al. [25] proposed a denoising method through 

exponential and logarithmic approximations, and applied this 

improved thresholding approach to remove the noises from 

sEMG signals. Based on the amplitude-time feature 

recognition in electromyogram, Atzori et al. [26] opened a new 

way to estimate complex body actions, and proved that their 

method can effectively classify the sport skills of the subjects, 

according to the energy contribution of muscles to the 

movement. 

EMG signals have both spatial and temporal features. 

However, convolutional neural network (CNN) can only 

extract spatial features, failing to mine the time-domain 

features. During deep learning, the recurrent neural network 

(RNN) is usually adopted to handle time domain problems. 

With a looped architecture, the RNN is equivalent to a neural 

network whose values are assigned multiple times. It is 

capable of preserving information in the long term. However, 

the RNN faces the vanishing gradient problem. To overcome 

the problem, Hochreiter and Schmidhuber [27] introduced the 

storage unit to the traditional RNN, creating the long short-

term memory (LSTM) network, which avoids long-term 

dependence. 

 

 

3. DESIGN AND TRAINING OF LSTM MODEL 

 

3.1 Design of composite action and preparation of dataset 

 

The continuous hand actions were collected in the following 

manner: Each composite action contains ten actions, which are 

in turn palm opening, gripping, wrist raising, wrist lowering, 

wrist left bending, wrist right bending, wrist counterclockwise 

rotation, wrist clockwise rotation, arm raising, and arm 

lowering. The subjects were asked to maintain each action for 

3s before starting to take the next action. After completing a 

composite action, the subjects took a break for 1min. After the 

subjects resumed the initial action state, the next composite 

action would be collected. A total of thirty composite actions 

were collected from each subject. The collected data were 

transmitted to a computer, and stored as a composite action 

dataset. Then, the dataset was divided into three subsets: a 

training set (80%), a test set (10%), and a verification set 

(10%). 

Recently, neuroscientists have discovered that humans 

acquire the movement ability through observation and 

imitation. When a person observes and imitates the others’ 

movement, his/her brain does not perceive a continuous and 

smooth movement, but a composite action made up of several 

actions arranged in different sequences. The smallest 

movement units are referred to as action primitives [28]. This 

paper decomposes daily actions into countless action 

primitives. Then, a composite action can be recognized and 

classified by identifying the sequence and class of its action 

primitives. The daily composite actions and their action 

primitives of this research were defined as follows: 

The composite action of ball bouncing is completed by the 

up and down movements of the wrist. It can be broken down 

into three actions (Figure 1): palm opening, wrist raising, and 

wrist lowering. EMG signal acquisition began with the initial 

state. The subject was asked to maintain each action for 3s 

before starting to take the next action. After completing a 

composite action, the subject relaxed his/her hand for 5s. Then, 

he/she would resume the initial state, and got ready for the 

acquisition of the next composite action. Each composite 

action of ball bouncing lasts 9s. 

 

    
(a) Initial state (b) Palm opening (c) Wrist raising (d) Wrist lowering 

 

Figure 1. Signal acquisition flow of ball bouncing 

 

The composite action of hand waving is completed by the 

left and right movements of the wrist. It can be broken down 

into four actions (Figure 2): palm opening, arm raising, wrist 

left bending, and wrist right bending. After completing the 

four actions, the subject had 5s to relax his/her palm and 

withdraw the arm, resuming the initial state. Each composite 

action of hand waving lasts 12s. 

The composite action of water drinking lasts 18s, longer 

than the above two composite actions. It can be broken down 

into six actions (Figure 3): palm opening, wrist clockwise 

rotation, gripping, arm raising, arm lowering, and palm 

opening. After completing a composite action, the subject also 

relaxed for 5s, and resumed the initial state. 

Following the above signal acquisition flows, each of the 

three daily composite action was repeated 10 times. Every 

subject rested for 5-10min between taking different composite 

actions. The collected data were transmitted to the computer 

for storage. Besides, the EMG signals were imported to the 

trained composite action recognition network for recognition. 
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(a) Initial state  (b) Palm opening (c) Arm raising (d) Wrist left bending (e) Wrist right bending 

 

Figure 2. Signal acquisition flow of hand waving 

 

    
(a) Initial state  (b) Palm opening (c) Wrist clockwise rotation (d) Gripping 

   

 

(e) Arm raising (f) Arm lowering (g) Palm opening  

 

Figure 3. Signal acquisition flow of water drinking 

 

3.2 Modeling of composite action recognition network 

 

3.2.1 Composite action recognition model 

Each continuous daily action can be decomposed into 

isolated action primitives, that is, multiple single actions. Thus, 

the recognition of a daily action is equivalent to the 

recognition of each action making up the composite action. 

Figure 4 shows the flow chart of the composite action 

segmentation network.  

First, the EMG signals of a composite action are 

preprocessed. If the signals are currently static, the 

corresponding action must be relaxation. If the signals are 

currently dynamic, the recognition network will be called for 

training and recognition. The network training uses the EMG 

signals collected from the composite action. The trained 

recognition networks for single actions will be applied to 

recognize the composite action. The parameters of the 

composite action recognition network will be adjusted and 

optimized to obtain the final weights and biases of the network. 

 

3.2.2 Transfer learning of action signals 

Figure 5 shows the structure of the action recognition 

network in time series of EMG signals based on CNN + LSTM 

(ConvLSTM). To fully mine the features from the time-

frequency diagram of EMG signals, the recognition network 

was formed by the stacking of 3 deep CNN (DCNN) layers, 2 

ConvLSTM layers, 1 fully-connected (FC) layer, 1 G-way FC 

layer, and 1 Softmax layer. Tables 1 and 2 list the parameter 

settings of the DCNN and ConvLSTM modules, respectively. 

The short- and long-term spatiotemporal features were 

extracted from each channel. The outputted features were 

spread as a one-dimensional (1D) line for feature fusion. All 

features were imported to the FC. The number of action classes 

was set to 10 for the calculation unit in the G-way FC. Finally, 

the actions were summarized and output by the Softmax layer, 

clarifying the class of each action. 

This paper applies transfer learning to evaluate the 

recognition effect of the EMG signals of composite actions. 

Firstly, the action recognition network was trained on every 

single action dataset. Then, the learned features were used to 
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train the network on each composite action dataset, which 

helps to shorten the training process and prevent overfitting. 

Through transfer learning, the training speed was accelerated, 

the model converged earlier, and the recognition rate was 

improved. The network parameters were randomly initialized, 

and finetuned by Bayesian optimization. The output size was 

set to 10, and the learning rate to 0.001. 

 

 
 

Figure 4. Block diagram of composite action segmentation 

network 

 

 
 

Figure 5. Action recognition network 

 

Table 1. Parameter settings of DCNN 

 
Network layer Kernel size Filter number Step length 

Conv3D1 3×3×3 32 1 

Max Pooling   1×2×2 

Conv3D 2 3×3×3 64 1 

Max Pooling   1×2×2 

Conv3D 3 3×3×3 128 1 

 

Table 2. Parameter settings of ConvLSTM 

 
Network layer Kernel size Filter number Step length 

ConvLSTM1 3×3 128 1 

ConvLSTM2 3×3 64 1 

ConvLSTM3 3×3 128 1 

4. EXPERIMENTS 

 

4.1 Composite action recognition and results analysis 

 

The designed action recognition network was trained on 

every single action dataset. Then, the pretrained network and 

parameters were further trained on each composite action 

dataset. 

 

 
 

Figure 6. Recognition rates of EMG signals of single and 

composite actions 

 

Figure 6 shows that the designed network trained by single 

action dataset achieved very different recognition rates of the 

ten hand actions from that trained by composite action dataset. 

The recognition effect on the EMG signals of single action was 

much better than that on those of composite action. The main 

reason is as follows. 

During the recognition of isolated actions, there are only 

three states of the signals: static state, dynamic state, and 

static-dynamic transition state. Besides, the signals contain a 

single type of information. That is why single actions are easy 

to detect. However, real-life actions are composed of multiple 

single actions. The EMG signals of such composite actions 

carry rich information, and change between four states: static 

state, dynamic state, static-dynamic transition state, and 

dynamic-dynamic transition state. The transitions between 

different actions in the composite action make it hard to fully 

extract the effective information, adding difficulty to action 

recognition. Besides, the composite actions take a long time to 

complete. The resulting muscle fatigue will also suppress the 

recognition effect. 

 

4.2 Model optimization 

 

A major difficulty in the EMG signal recognition of 

composite actions lies in the differentiation between actions 

during the dynamic-dynamic transition state. The EMG 

signals often include noises of this state, making it hard to 

segment the signals. This paper tries to recognize the EMG 

signals of composite actions with sliding window, and 

optimize the recognition result by the voting mechanism. 

 

4.2.1 Design of sliding window 

There is a maximum delay of 300ms from the generation of 

sEMG signals to the execution of an action. To avoid 

excessive delay, it is necessary to design a sliding window 

with a suitable length for EMG signal recognition. In this 

paper, 200ms-long sliding windows (144 sampling points) is 
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designed, and moved across 48 sampling points on the original 

data. There is a certain overlap between windows. With these 

windows, the EMG signals of composite actions were divided 

into multiple partly overlapping segments (Figure 7). Then, 

the action recognition network was applied to process these 

segments one after another. 

During the sliding of each window, the window was placed 

at the first sampling point of the EMG signal series, and its 

window size was defined. After that, the signal series in the 

window were imported to the deep learning-based action 

recognition network for recognition and classification. Thus, 

the class of the action in the EMG signal series of the current 

window could be obtained. Then, the time window was slid 

along the direction of the action series by the preset step length, 

producing the class of the action in the second window. Next, 

the action recognition network was called to complete action 

recognition and classification. The windows were thus slid in 

turn across the EMG signal series of the entire composite 

action. In this way, the action class in each window could be 

determined for the whole composite action. 

 

 
 

Figure 7. EMG signals of the ten composite actions 

 

 
(a) Frame number of the current waveform 

 
(b) Hamming window 

 
(c) Signal after the application of Hamming window 

 

Figure 8. EMG signals after framing and Hamming window 

processing 

Normally, window is needed for signal truncation and 

framing. This is because frequency-domain energy inevitably 

leaks during the truncation; the window function can smooth 

the discontinuous changes at the truncated point, and suppress 

noise interference. The Hamming window does better than 

rectangular window in eliminating high-frequency 

interference and energy leakage. Its main lobe can be widened 

and shortened, and the size of its side lobes can be significantly 

reduced. Let L be the window length. Then, the size of 

Hamming window 𝜔𝑛 can be obtained as: 

 

𝜔𝑛 = {
0.54 − 0.46 cos

2𝜋𝑛

𝐿−1
, 0 ≤ 𝑛 < 𝐿 − 10

0,                                               otherwise 
  (1) 

 

This paper adds the Hamming window to process the EMG 

signals. Figure 8 provides the Hamming window function, 

post-framing EMG signals, and post-framing EMG signals 

processed by Hamming window. It can be seen that the 

application of Hamming window suppressed the EMG signals 

on the two sides. To prevent excessive attenuation and 

maintain signal integrity, a suitable frame shift should be 

selected for framing.  

 

4.2.2 Wavelet denoising 

EMG signals, as weak low-frequency signals, are 

susceptible to interference by the external environment and the 
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human body. To ensure recognition accuracy, it is critical to 

remove the noises from sEMG signals through preprocessing. 

Therefore, wavelet denoising was implemented in the 

following steps: 

Step 1. Select a suitable wavelet basis to decompose the 

signal after baseline drift correction, and obtain the low- and 

high-frequency coefficients of different layers. 

Step 2. Determine the threshold for the high-frequency 

coefficient of each post-decomposition layer through unbiased 

likelihood estimation, quantify the threshold with the linear 

attenuation threshold function, and zeroize any coefficient 

whose absolute value is smaller than the preset threshold, 

leaving only the high-frequency information. 

Step 3. Produce the sEMG signals free of high-frequency 

noises by reconstructing the low-frequency coefficient of the 

top layer after wavelet decomposition and the high-frequency 

information of each layer after thresholding. 

After multiple experiments, the wavelet basis function of 

Sym10 was selected to decompose the EMG signals into eight 

layers. The function boasts good local features in time and 

frequency domains, high smoothness, ease of implementation, 

and high recognition rate of frequency. Experimental results 

confirm that the function can effectively remove the noises 

from sEMG signals. Figure 9 compares the post-baseline drift 

correction waveform with the denoised waveform. The 

denoise waveform was much smoother than the sEMG signals 

after baseline drift correction, yet retained the shape of the 

original waveform. This means the wavelet analysis method 

has good filtering effect. 

sEMG signals contain many information about muscle 

actions and muscle fatigue. However, the signals cannot be 

directly applied, because they are interfered by various noises. 

This paper proposes a pertinent denoising method for noises 

like power-line interference, baseline drift, white noise, etc. 

After noise removal, the sEMG signals are suitable for feature 

extraction or decomposition. Then, the application value of 

these signals could crystalize in prosthesis control, gesture 

recognition, and muscle disease diagnosis and treatment. 

 

 
(a) Waveform after baseline drift correction 

 
(b) Waveform after wavelet denoising 

 

Figure 9. Waveforms before and after wavelet denoising 

5. EXPERIMENTAL VERIFICATION 

 

To experimentally verify our method, a simulated driving 

environment was established on Unity 5.3.1f1. The user 

information was collected by EMG signal acquisition 

instrument. Natural interaction with the virtual environment 

was achieved through gesture recognition. Taking the game 

scene as the core of training system, the simulation scene was 

constructed through software modeling. Through EMG signal 

detection, the patient’s instructions were transmitted to the 

scene, and his/her actions were recognized, laying the basis for 

rehabilitation training. 

 

5.1 Definition of gestures and interaction effects 

 

The composite actions of five subjects were collected 

offline, preprocessed, and segmented into individual actions. 

The segmented data were imported to deep learning network 

for offline training. After the training, the classifier parameters 

were inputted to the classifier in the host computer software. 

Then, the experimenter carried out online action recognition 

on the software, and tested the system performance by the 

recognition rate. After that, python program was run on the 

computer, and the trained classifier was used to predict hand 

actions. Finally, the unmanned vehicle was controlled to 

complete the corresponding actions. 

To better demonstrate the response of the unmanned vehicle 

to gesture instructions in virtual environment, eight hand 

actions were defined to control the unmanned vehicle to start, 

stop, move forward, move backward, turn left, turn right, 

change to the left lane, and change to the right lane, 

respectively. To interactively control the vehicle speed, three 

palm actions were defined to control the vehicle to speed up, 

slow down, and move at a constant speed, respectively. By 

these actions, the unmanned vehicle can respond in both 

direction and speed. The name of each gesture and meaning of 

each action are summarized in Table 3. 

The experiments were prepared the same as the data 

collection in Section 3.1 Prior to the experiments, every 

subject was told all the details about the experiments, 

including method, steps, and matters needing attention. The 

experiments were kicked off after all subjects expressed the 

consent. 

 

Table 3. Name of each gesture and meaning of each action 

 
Serial 

number 
Action Effect 

0 Initial state (static signal) Constant speed 

1 Palm opening Moving forward 

2 Gripping Moving backward 

3 Wrist raising Speeding up 

4 Wrist lowering Left turn of 90° 

5 Wrist left bending Left turn of 45° 

6 Wrist right bending Right turn of 45° 

7 Wrist counterclockwise rotation Stop 

8 Wrist clockwise rotation Right turn of 90° 

10 Arm raising Doubling speed 

11 Arm lowering Halving speed 

 

5.2 Action recognition and interaction simulation 
 

After receiving an instruction, the unmanned vehicle would 

perform the corresponding action, and record whether the 

recognition is correct. The program would record the time 

from the moment the vehicle receives the sEMG signal to the 
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moment it completes the action. Each subject need to complete 

the composite action under each scenario, as designed in 

Section 3.1 After completing a composite action, he/she could 

relax his/her arms, and get ready for the next composite action, 

according to the instructions. A total of ten rounds of 

experiments were carried out on each subject. Each round 

should recognize three daily composite actions. There was a 

5min-long break between two adjacent rounds of experiments. 

Figure 10 shows the photos on the real-time control 

experiments of the unmanned vehicle. 

 

 
 

Figure 10. Arm raising plus wrist right bending: the 

interactive effect of speeding up and changing to the right 

lane 

 

After all subjects completed ten rounds of experiment, the 

results of each subject were sorted out. Table 4 present the 

experimental results on five subjects. 

 

Table 4. Results of interaction experiments 

 
Serial number 

of subjects 

Recognition rate 

before denoising 

Recognition rate 

after denoising 

1 88.87% 90.22% 

2 89.64% 91.35% 

3 87.13% 90.76% 

4 86.59% 89.87% 

5 89.60% 91.28% 

Mean 88.37% 90.7% 

 

As shown in Table 4, the five subjects executed the actions 

with an average accuracy of 90.7% in the virtual rehabilitation 

training system. This proves the feasibility of our model in 

recognizing patient’s intention and completing rehabilitation 

training. 

 

 

6. CONCLUSIONS 

 

To recognize the EMG signals produced from the composite 

actions of rehabilitation training, this paper reviews the 

theories on deep learning, and proposes a hybrid algorithm 

based on 3D CNN and ConvLSTM for action recognition. 

Based on the algorithm, an optimal recognition model was 

developed for composite actions. Finally, action instructions 

were given in Unity 3D environment, and EMG signals were 

taken as inputs to control the driving of unmanned vehicle. The 

results show that our recognition system can recognize the 

patient’s intention in rehabilitation training, encourage 

him/her to actively complete the training actions, and improve 

the training effect. The main contributions are as follows: 

(1) To overcome the insufficient extraction of time-domain 

features from EMG signals, a 3D CNN-Conv LSTM action 

recognition network was constructed. The network can 

accurately recognize daily composite actions of hands, and 

performed well on the EMG signal data of untrained subjects. 

(2) The authors created a composite action recognition 

model, enhanced the ability of feature extraction of EMG 

signals with sliding window, and optimized the action 

recognition network by adding the voting mechanism. During 

the experiments, a self-designed dataset was prepared to test 

the proposed network. The results show that the optimized 

model achieved a good recognition rate. 

(3) Through virtual simulation experiments, our action 

recognition system was proved feasible for unmanned vehicle 

control in virtual environment, using EMG signals.  
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