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Face images, as an information carrier, are rich in sensitive information. Direct publication 

of these images would cause privacy leak, due to their natural weak privacy. Most of the 

existing privacy protection methods for face images adopt data publication under a non-

interactive framework. However, the ε-effect under this framework covers the entire image, 

such that the noise influence is uniform across the image. To solve the problem, this paper 

proposes region growing publication (RGP), an algorithm for the interactive publication of 

face images under differential privacy. This innovative algorithm combines the region 

growing technique with differential privacy technique. The privacy budget ε is dynamically 

allocated, and the Laplace noise is added, according to the similarity between adjacent sub-

images. To measure this similarity more effectively, the fusion similarity measurement 

mechanism (FSMM) was designed, which better adapts to the intrinsic attributes of images. 

Different from traditional region growing rules, the FSMM fully considers various attributes 

of images, including brightness, contrast, structure, color, texture, and spatial distribution. 

To further enhance algorithm feasibility, RGP was extended to atypical region growing 

publication (ARGP). While RGP limits the region growing direction between adjacent sub-

images, ARGP searches for the qualified sub-images across the image, with the aid of the 

exponential mechanism, thereby expanding the region merging scope of the seed point. The 

results show that our algorithm can satisfy ε-differential privacy, and the denoised image 

still have a high availability. 
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1. INTRODUCTION

Since its nascency, facial recognition has attracted much 

attention for the intuitiveness, uniqueness, and privacy of face 

images. The public cautiously enjoy the convenience of facial 

recognition, while worrying about whether their privacy and 

rights will be violated someday. With the commercialization 

of facial recognition, consumers are calling for effective 

regulation of the technology. Many scholars and organizations 

have worked to promote relevant legislations. Against this 

backdrop, the United States Government Accountability 

Office (U.S. GAO) released two reports: Facial Recognition 

Technology: Federal Law Enforcement Agencies Should 

Better Assess Privacy and Other Risks, and Facial Recognition 

Technology: Privacy and Accuracy Issues Related to 

Commercial Uses. In China, the Public Research Report of 

Facial Recognition Applications shows that, more than 60% 

of the respondents feel that facial recognition has been 

misused, and over 30% expressed that they have suffered 

privacy leak or financial loss due to the misuse of facial 

recognition. Therefore, information technology is a mixed 

blessing. How to make good use of the technology is a 

worldwide concern. Owing to the rapid development of 

information technology and multimedia technology, it is 

increasingly easy to acquire and share digital face images. 

Users can upload the photos in their mobile phones or digital 

cameras to social network platforms like Twitter, Pinterest, 

LinkedIn, or WeChat. Statistics have shown that more than 3.2 

billion face images are shared by users each day on the major 

social network platforms across the globe. Besides, countless 

face images are generated from videos. These digital images 

contain lots of sensitive personal information. If they are 

collected and analyzed by malicious third-parties, privacy leak 

and other losses will be beyond measure [1]. 

In related reports, some stakeholders express concerns 

about the privacy issues related to the commercial use of facial 

recognition. The technology may publicly identify and track 

people without being noticed by them, and may collect, use, 

and share their personal data. However, some working in the 

industry argue that facial recognition will not bring new or 

special privacy risks, and the risks of the technology are 

controllable. 

The National Telecommunications and Information 

Administration (NTIA) once organized a test on multiple 

parties. Some participants worried that facial recognition may 

threaten personal privacy, because it reduces the anonymity of 

individuals in public or commercial locations (such as 

pavement or stores). The participants also expressed the 

concern that facial recognition may be used to individuals in 

public, and erode personal privacy. Industry insiders revealed 

that facial recognition has not been widely used to track 

consumers in business environments. 

The Center for Democracy and Technology announces that 

most people are willing to be facially identified in public by 

some people or enterprises. But they do not want their faces to 

be linked with their names, not to mention associating their 
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faces with other data, such as network behavior, and travel 

plan. If facial technology is widely adopted in public, and if 

the recognized faces are shared between enterprises, the 

consumer movement from one place to another will be tracked 

any time by a network of cameras. A representative of World 

Privacy Forum wore that, most consumers will find their 

privacy be violated, if their activities are tracked by security 

cameras for marketing. Similarly, the staff of the Federal 

Trade Commission reported that, consumers will face higher 

privacy risks, if enterprises start tracking consumers in stores, 

using collected digital images. 

Another widely concerned issue is that consumers will find 

it impossible to opt out if facial technology is popularized, 

even if they are notified of the right to reject facial recognition. 

In many cases, facial recognition is applied to commercial 

identity recognition or verification, without the knowledge or 

consent from consumers. This issue has been noticed by some 

industry trade organizations, which remain cautious about 

using facial recognition without informed consent from 

consumers. Computer and Communications Industry 

Association suggested that, when an enterprise matches face 

images with names and curriculum vitae through facial 

recognition, the whole process should remain transparent, and 

the relevant parties must be given the right to opt out. 

Market surveys, patent data, as well as the growing 

participation in the Facial Recognition Vendor Test (FRVT) 

organized by the National Institute of Standards and 

Technology (NIST), indicate that a rising number and types of 

enterprises are adopting facial recognition. Facial recognition 

often relies on the acquisition of massive face images (face 

image databases). Focusing on the massive personal data in 

such databases, privacy protection organizations, government 

agencies, the academia, and some industry representatives 

have expressed concerns over the collection, use, and sharing 

of personal data by commercial entities. 

Face image databases can be sold or shared by all parties, 

but the selling range remains unknown. The data associated 

with facial recognition may be sold or shared, often without 

the knowledge or consent from the affected parties. In recent 

years, there is a surge in the total amount of personal data 

collected and shared by resellers and other enterprises, which 

exacerbates the public concern over this issue. 

Privacy is a word with emotional color. Different people 

have different understandings of this word. According to the 

International Organization for Standardization (ISO), privacy 

refers to the features that distinguish individuals or groups 

from other individuals and groups. Different countries have 

different legal definitions of privacy. The definition of privacy 

also varies with objects (individuals, enterprises, governments, 

etc.). For digital images, sensitive information can be a 

specific person or object in the original image, a face or 

fingerprint, embedded information (the location and creation 

time of the image), or the region of interest (ROI) in the eyes 

of the image owner. How to publish and analyze images 

without disclosing sensitive information is the main purpose 

of privacy protection. 

The above privacy issues can be solved through image data 

query under privacy protection. For the image data released on 

the social network, the privacy can be usually protected by k-

anonymity, access control, and privacy encryption. Fung et al. 

[2] and Xiao and Tao [3] proposed the k-same method under 

the anonymization mechanism. Their method anonymizes the 

published grayscale image, reducing the probability that the 

attacker re-identifies the user with the published image to less 

than 1/k. However, the traditional anonymization mechanism 

has a prominent defect: Before data processing, researchers 

must set lots of prior conditions for the attacker’s background 

knowledge and attack models. But these conditions are not 

fully established in reality. For example, Li et al. [4] relied on 

access control to restrict user access to social network images, 

and to control the number of transfers and accesses of the 

images published on the social network. Despite realizing the 

goal of privacy protection, the access-oriented protection is 

merely a superficial privacy protection approach for images. If 

the attacker has a certain background knowledge, he/she will 

be able to acquire user images and the relevant privacy 

information. Terrovitis et al. [5] carried out same-state 

encryption of the grayscale image to prevent the re-

identification of the communication process. Nevertheless, the 

data encryption algorithms are developed based on some 

assumptions of the attacks. The existing algorithms are quickly 

phased out, due to the continuously updating attack modes. 

Sweeney [6] revealed that attackers can identify sensitive 

personal information (diseases, and address) from anonymous 

images on Facebook by deriving the social security number 

(SSN) of the people in the anonymous images from the extra 

Friendster feature of Facebook. So, is there any technique that 

can protect personal privacy in spatial data without the 

background knowledge of an attacker? This is the focus of 

image data publication based on differential privacy. 

In 2006, Dwork [7] invented differential privacy, which 

disturbs sensitive data by adding noise to the output. 

Differential privacy can limit the further reasoning ability of 

the attacker by hiding the impact of a single record, i.e., the 

output probability of the same result does not change 

significantly, whether the record is in the dataset. Therefore, 

differential privacy does not make any assumption for any 

potential attacker’s background knowledge. This is better than 

other privacy protection technologies. Dwork further 

investigated differential privacy in a series of theses [8-12], 

and proposed its implementation mechanism [13, 14]. 

McSherry [15] pointed out that the differential privacy 

algorithm for complex privacy issues need to satisfy two 

combined features: sequence combination and concurrent 

combination. In recent years, differential privacy is mainly 

applied in data publication. To protect data publication with 

differential privacy, the main issues is to ensure the accuracy 

of the released data or query results, while fulfilling the 

conditions of differential privacy. The relevant research 

mainly focuses on the publication mechanism and algorithm 

complexity. The main research approach is quantification 

based on calculation theory and learning theory. Based on the 

realization environment, data publication protected by 

differential privacy can be divided into interactive data 

publication and non-interactive data publication [13]. The 

representative interactive data publication (query) methods are 

as follows: Roth and Roughgarden [16] presented a Median 

algorithm that can respond to multiple queries. Hardt and 

Rothblum [17] developed a private multiplicative weights 

(PMW) mechanism that increases the number of queries. 

Gupta et al. [18] put forward a universal iterative dataset 

creation (IDC) framework. Fan and Xiong [19] designed a 

FAST algorithm based on filtering and adaptive sampling. 

Kellaris et al. [20] designed a flow data publication algorithm 

with an unlimited number of queries. When it comes to non-

interactive data publication, histogram publication is the most 

widely adopted technique. The representative strategies 

include Xiao et al.’s [21] Privelet algorithm, Xu et al.’s [22] 
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Noise First and Structure First algorithms, Li et al.’s [23] 

matrix mechanism, and Yuan et al.’s data- and workload-

aware (DAWA) algorithm [24]. Due to the complexity of 

image data, the research of sensitive information in the images 

protected by differential privacy is still in the exploratory stage. 

The real domain matrix is a common representation of 

images. Any pixel in the image can be mapped to a value at 

the corresponding position of the two-dimensional (2D) 

matrix. The most direct approach is to add a Laplace noise to 

all values in the matrix. Although this approach can satisfy ε-

differential privacy, the disturbed image will be excessively 

distorted and weakly available. Fourier transform and wavelet 

transform are often adopted to compress images. Zhang et al. 

[25] proposed an image compression method based on discrete 

Fourier transform, which adds corresponding Laplace noise to 

the compressed image. Despite reducing the noise error, their 

method introduces reconstruction error to image compression. 

Considering the noncorrelation between data in image matrix, 

Nissim et al. [26] converted the grayscale matrix into a one-

dimensional (1D) sequential data flow through image 

segmentation, modeled the data flow with sliding window 

model, and dynamically distribute privacy budget based on the 

data similarity between adjacent sliding windows. In this way, 

the privacy protection of images is achieved. However, this 

highly feasible approach faces two problems: the overall 

operation is confined in the 1D space, and Laplace noise 

covers the entire image. 

 

 

2. BACKGROUND 

 

2.1 Differential privacy  

 

Dalenius pointed out a problem with the statistics database: 

No one should get any information about any person by 

accessing the database. However, absolute privacy protection 

is impossible due to background knowledge. Differential 

privacy circumvents this problem, and pursues relative privacy 

protection, trying to limit any possible privacy leak to the 

range of a small multiplier factor. Note that severe leaks may 

still occur, but will not be caused by whether a certain data 

exists in the database. 

Face images, as a carrier of information, are usually stored 

and transmitted using three-dimensional (3D) matrices (i.e., a 

color image can be described as three 2D matrices red R, greed 

G, and blue B). For simplicity, the 3D image matrix is 

normalized to obtain the corresponding 2D grayscale matrix. 

Then, image X can be represented as a 2D matrix Xmn, where 

m and n are the number of rows and columns of the matrix, 

respectively: 

 

𝑋𝑚𝑛 = 𝑅𝑚𝑛 × 0.299 + 𝐺𝑚𝑛 × 0.587
+ 𝐵𝑚𝑛 × 0.114 

(1) 

 

Adjacent datasets are an important concept of differential 

privacy. In fact, the concept comes from the basic operations 

of sets. The main set operation adopted for adjacent datasets is 

the operation of symmetric difference ⊕. In the set operation 

formula T = R ⊕ S = (R⋃S) − (R⋂S) , T contains the 

elements in set R but not in set S, and the elements in set S but 

not in set R. The number of different elements between the two 

sets can be calculated by ∆= |R ⊕ S|. Before giving a formal 

definition of differential privacy, it is necessary to define the 

adjacent datasets of face image X. 

Definition 1. Adjacent datasets of face image 

For a given image X, the grayscale matrix Xmn  can be 

obtained by normalizing the image. Then, there exists 

X|Xmn = [

x11,x12, ⋯ x1n

⋮ ⋱ ⋮
xm1,xm1, ⋯ xmn

] , where xij  in matrix Xmn 

represents the grayscale of the corresponding element. If there 

exists an X′  with only one element difference from X, 

|X − X′| = xij(1 ≤ i ≤ m, 1 ≤ j ≤ n) , then X and X′  are 

adjacent datasets. 

Definition 2. Differential privacy 

For a given random algorithm M of image data publication, 

with the output range of Range(M), the algorithm can provide 

ε- differential privacy, if its arbitrary outputs on two adjacent 

grayscale images X and X′ satisfy: 

 

𝑃𝑟[𝑀(𝑋) ∈ 𝑆] ≤ 𝑒𝑥𝑝(𝜀) × 𝑃𝑟[𝑀(𝑋′) ∈ 𝑆] (2) 

 

where, ε is typically a small positive number that balances 

privacy with accuracy. If ε is small, the privacy is high and 

accuracy is low. The inverse is also true. Normally, ε is 

selected by the user by executing a privacy policy. When the 

adjacent datasets vary by only one record, the algorithm 

satisfies ε-differential privacy. When the adjacent datasets 

vary by k records, the algorithm satisfies kε-differential 

privacy. 

To realize differential privacy, a certain amount of random 

noise needs to be added to the query results. Intuitively, the 

magnitude of the additive noise should surpass the maximum 

impact of a single record on the output. Therefore, the noise 

level is closely related to the global sensitivity of the 

corresponding query function. 

Definition 3. Global sensitivity 

Let Q be a random query function meeting Q: D → Rn. Then, 

the global sensitivity of Q can be expressed as:  

 

𝛥𝑄𝐺𝑆 = 𝑚𝑎𝑥
𝑋,𝑋′

||𝑄(𝐷) − 𝑄(𝐷′)||𝜌 (3) 

 

Global sensitivity can indeed be applied to all methods of 

differential privacy. But some functions have a relatively high 

global sensitivity. In this case, lots of noise need to be added 

to ensure privacy. Then, the balance between information 

availability and privacy will be undermined after privacy 

protection. To solve the problem, Nissim et al. proposed the 

concept of local sensitivity [26]. Nissim held that, for the same 

function, it is possible to predict the distribution feature of a 

subset d of a dataset D with a high global sensitivity. Under 

the effect of the prediction result, a relatively small local 

sensitivity could be obtained specifically for d. The local 

sensitivity, and its relationship with global sensitivity are 

explained below. 

Definition 4. Local sensitivity 

Let Q be a random query function meeting Q: d → Rn(d ∈
D). Then, the local sensitivity of Q can be expressed as:  

 

𝛥𝑄𝐿𝑆 = 𝑚𝑎𝑥
𝑋,𝑋′

||𝑄(𝑑) − 𝑄(𝑑′)||𝜌 (4) 

 

𝛥𝑄𝐺𝑆 = 𝑚𝑎𝑥(𝛥𝑄𝐿𝑆) (5) 

 

Note that any dataset d with predictable distribution feature 

faces the risk of privacy leak. To solve the potential privacy 

leak of local sensitivity, the smooth upper bound is defined for 

local sensitivity. 
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Definition 5. Smooth upper bound 

For a dataset d and its adjacent dataset d’, if the local 

sensitivity of function Q is ΔQLS , the function S: d → Rn 

satisfying S(d) ≥ ΔQLS and S(d) ≤ eβS(d′)(β > 0) is the β- 

smooth upper bound of the local sensitivity of function Q. 

Any function S meeting Definition 5 can be treated as a 

smooth upper bound. During the use, the local sensitivity 

ΔQLS is substituted to function S to obtain the corresponding 

smoothness sensitivity, and then derive the final Laplace noise. 

Figure 1 shows the relationship between the smooth upper 

bound and local sensitivity. 

 

 
 

Figure 1. Smooth upper bound of local sensitivity 

 

Theorem 1. Laplace mechanism 

Let Q be a query series of the length d. The random 

algorithm M receives database D and outputs the following 

vector that satisfy ε-differential privacy:  

 

M(D) = Q(D)+< Lap1(ΔQLS/ε, … , Lapd(ΔQLS/ε > (6) 

 

As the most common noise addition mechanism, the 

Laplace mechanism disturbs the real output by adding the 

noise generated by Laplace distribution, thereby achieving 

differential privacy. The probability density function (PDF) of 

its noise distribution satisfies f(x|μ, b) =
1

2b
e

|x−μ|

b  (Figure 2). 

 

 
 

Figure 2. Laplace PDF 

 

Then, the cumulative probability distribution function can 

be derived from the PDF in the following manner: 

 

𝐹(𝑥|𝜇, 𝑏) = {

1

2
𝑒

𝜇−𝑥
𝑏 , 𝑥 < 𝑢

1 −
1

2
𝑒

𝑥−𝜇
𝑏 , 𝑥 ≥ 𝑢

 

If x < μ, andf(x|μ, b) =
1

2b
e

|x−μ|

b , there exists: 

 

𝐹(𝑥|𝜇, 𝑏) =
1

2𝑏
∫ 𝑒

𝜇−𝑥
𝑏

𝑥

−∞

𝑑𝑥 =
1

2𝑏
∫ 𝑒

𝑥−𝜇
𝑏

𝑥

−∞

𝑑𝑥 

 

Suppose t =
x−μ

b
. We have: 

 

𝐹(𝑥|𝜇, 𝑏) =
1

2𝑏
∫ 𝑏𝑒𝑡

𝑥−𝜇
𝑏

−∞

𝑑𝑡 =
1

2
∫ 𝑒𝑡

𝑥−𝜇
𝑏

−∞

𝑑𝑡 =
1

2
[𝑒𝑡]−∞

𝑥−𝜇
𝑏

=
1

2
𝑒

𝑥−𝜇
𝑏  

 

Expectation and variance are the two most basic attributes 

of the probability distribution. For a Laplace distribution 

function, the expectation and variance μ  and 2b2  can be 

derived by: 

Expectation: 

 

E(𝑥) =
1

2𝑏
(∫ 𝑥𝑒

𝜇−𝑥
𝑏 𝑑𝑥 +

𝜇

−∞

∫ 𝑥𝑒
𝜇−𝑥

𝑏 𝑑𝑥
+∞

𝜇

)

=
1

2𝑏
(∫ 𝑏(𝑏𝑡 + 𝜇)𝑒𝑡𝑑𝑡

0

−∞

− ∫ 𝑏(𝜇 − 𝑏𝑡)𝑒𝑡𝑑𝑡
−∞

0

)

=
1

2𝑏
∫ 𝑏((𝑏𝑡 + 𝜇) + (𝜇 − 𝑏𝑡))𝑒𝑡𝑑𝑡

−∞

0

= ∫ 𝜇𝑒𝑡𝑑𝑡
0

−∞

= 𝜇 

 

Variance:  

 

D(𝑥) = 𝐸(𝑥2) − 𝐸2(𝑥)

=
1

2𝑏
(∫ 𝑥2𝑒

𝜇−𝑥
𝑏 𝑑𝑥 +

𝜇

−∞

∫ 𝑥2𝑒
𝜇−𝑥

𝑏 𝑑𝑥
+∞

𝜇

)

− 𝜇2

=
1

2𝑏
(∫ 𝑏((𝑏𝑡 + 𝜇)2

0

−∞

+ (𝜇 − 𝑏𝑡)2)𝑒𝑡𝑑𝑡) − 𝜇2

=
1

2𝑏
(∫ 2𝑏(𝑏2𝑡2 + 𝜇2)𝑒𝑡𝑑𝑡

0

−∞

) − 𝜇2

= 𝑏2 ∫ 𝑡2𝑒𝑡𝑑𝑡
0

−∞

= 𝑏2 ∫ 𝑡2𝑑𝑒𝑡
0

−∞

= 𝑏2 ([𝑡2𝑒𝑡]−∞
0 − ∫ 𝑒𝑡𝑑𝑡2

0

−∞

)

= −2𝑏2 ∫ 𝑡𝑑𝑒𝑡
0

−∞

= −2𝑏2 ([𝑡𝑒𝑡]−∞
0 − ∫ 𝑒𝑡𝑑𝑡

0

−∞

) = 2𝑏2 

 

Note that Lapi(ΔQLS/ε) ( 1 ≤ i ≤ d ) is an independent 

Laplace noise, whose magnitude is positively proportional to 

ΔQLS, and negatively proportional to ε. 

Theorem 2. Exponential mechanism 

The exponential mechanism mainly handles the non-

numeric outputs of the sampling algorithm. Under any 

exponential mechanism, the sampling algorithm M satisfies ε-

differential privacy if it meets: 
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𝑀(𝑋, 𝑢) = {𝑟: |𝑃𝑟[𝑟 ∈ 𝑆] ∝ 𝑒𝑥𝑝 (
𝜀𝑢(𝑋, 𝑟)
2𝛥𝑢𝐿𝑆

)} (7) 

 

where, u(X, r)  is the scoring function; ΔuLS  is the global 

sensitivity of the scoring function u(X, r) ; S  is the output 

domain of our algorithm; r is the selected output term of the 

output domain S. The higher the score of u(X, r), the greater 

the probability for r being selected as the output. 

Corollary 1. Algorithm M in Definition 2 satisfies ε- 

differential privacy. 

Proof: X  and X′  are adjacent datasets, with M(X) =
(x1, x2, … xd)TandM(X′) = (x′

1, x′
2, … x′

d)T = (x1 +
∆x1, x2 + ∆x2, … xd + ∆xd)T. Without loss of generality, it is 

assumed that xi = 0(xi ∈ X) and ρ = 1. It can be calculated 

that M(X) = (0,0, … 0)TandM(X′) = (∆x1, ∆x2, … ∆xd)T . 

When the vector S = (s1, s2, … sd)T is outputted, it can be seen 

that: 

 

𝑃𝑟[𝑀(𝑋) ∈ 𝑆] = ∏
𝜀

2𝛥𝑄𝐺𝑆

𝑑

𝑖=1

𝑒
𝜀

𝛥𝑄𝐺𝑆
|𝑠𝑖|

 

 

𝑃𝑟[𝑀(𝑋′)  ∈ 𝑆] = ∏
𝜀

2𝛥𝑄𝐺𝑆

𝑑

𝑖=1

𝑒
𝜀

𝛥𝑄𝐺𝑆
|∆𝑥𝑖−𝑠𝑖|

 

 

Pr[𝑀(𝑋) ∈ 𝑆]

𝑃𝑟[𝑀(𝑋′)  ∈ 𝑆]
=

∏
𝜀

2𝛥𝑄𝐺𝑆

𝑑
𝑖=1 𝑒

𝜀
𝛥𝑄𝐺𝑆

|𝑠𝑖|

∏
𝜀

2𝛥𝑄𝐺𝑆

𝑑
𝑖=1 𝑒

𝜀
𝛥𝑄𝐺𝑆

|∆𝑥𝑖−𝑠𝑖|

= ∏ 𝑒
𝜀

𝛥𝑄𝐺𝑆
(|𝑠𝑖|−|∆𝑥𝑖−𝑠𝑖|)

𝑑

𝑖=1

= 𝑒𝑒

𝜀
𝛥𝑄𝐺𝑆

∑ (|∆𝑥𝑖−𝑠𝑖|−|𝑠𝑖|)
𝑑
𝑖=1

 

 

Because of inequality −|∆xi| ≤ |∆xi − si| − |si| ≤ |∆xi| , 

and ΔQGS = max(∑ |xi − x′i|
d
i=1 ) = max(∑ |∆xi|

d
i=1 ) , we 

have ∑ (|∆xi − si| − |si|)
d
i=1 ≤ ΔQGS . Hence, Algorithm M 

satisfies ε- differential privacy. 

Corollary 2. When norm p takes a random value, Algorithm 

M does not necessarily satisfy ε- differential privacy. 

Proof: From the definition of the norm, it can be learned that 
‖x‖p  is a decreasing function with the increase of p. Let 

ΔQGS
(p) = max

X,X′
‖M(X) − M(X′)‖p be the value of ΔQGS under 

norm p, with 1 ≤ p ≤ +∞. Suppose ΔQGS
(p)

 is a decreasing 

function, i.e., ΔQGS
(p) ≤ ΔQGS

(1). Then, when the norm is p, 

 

𝑀(𝐷)
= Q(𝐷)

+ (𝐿𝑎𝑝1 (
𝛥𝑄𝐺𝑆

𝜀
) , 𝐿𝑎𝑝2 (

𝛥𝑄𝐺𝑆

𝜀
) , … 𝐿𝑎𝑝𝑑 (

𝛥𝑄𝐺𝑆

𝜀
))

𝑇

 

 

 
𝑀(𝐷)

= Q(𝐷) +

(

 
 
 
 
 
 
 

𝐿𝑎𝑝1

(

 
 𝛥𝑄𝐺𝑆

𝜀 ×
𝛥𝑄𝐺𝑆

(1)

𝛥𝑄𝐺𝑆
(𝑝)

)

 
 

,

𝐿𝑎𝑝2

(

 
 𝛥𝑄𝐺𝑆

𝜀 ×
𝛥𝑄𝐺𝑆

(1)

𝛥𝑄𝐺𝑆
(𝑝)

)

 
 

, … 𝐿𝑎𝑝𝑑

(

 
 𝛥𝑄𝐺𝑆

𝜀 ×
𝛥𝑄𝐺𝑆

(1)

𝛥𝑄𝐺𝑆
(𝑝)

)

 
 

)

 
 
 
 
 
 
 

𝑇

 

Since M(D) satisfies ε ×
ΔQGS

(1)

ΔQGS
(p) differential privacy, with 

ε ×
ΔQGS

(1)

ΔQGS
(p) ≥ ε, we have: 

 

𝑃𝑟[𝐴𝑀(𝑋) ∈ 𝑆]

𝑃𝑟[𝑀(𝑋′)  ∈ 𝑆]
≤ 𝑒𝜀 ×

𝛥𝑄𝐺𝑆
(1)

𝛥𝑄𝐺𝑆
(𝑝)

 

 

Therefore, Corollary 2 holds. 

There are two combinations of differential privacy 

mechanism: serial combination and parallel combination. For 

the protection of differential privacy, simple differential 

privacy algorithms can be combined in these two approaches 

to obtain innovative complex differential privacy algorithms. 

Property 1. Differential privacy-serial combination 

property 

For a given dataset X and a set of differential privacy 

algorithms M1(X), M2(X), … , Mm(X) related to X, if algorithm 

Mi(D)  satisfies εi - differential privacy, and the random 

processes of any two algorithms are independent of each other, 

then the algorithm combined from these algorithms satisfies 

∑ εi
m
i=1 - differential privacy. 

Proof: Since algorithm Mi(D)  satisfies εi - differential 

privacy:  

 

∀𝑆𝑖 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑖), 𝑃𝑟[𝑀𝑖(𝐷) = 𝑆𝑖]

≤ 𝑒𝜀×|𝑋⊕𝑋 ,| × 𝑃𝑟[𝑀𝑖(𝑋
′) = 𝑆𝑖] 

(8) 

 

Suppose algorithm M⃡  (X) is the algorithm combined from 

all algorithms Mi(X). Let {S1, S2, … , Sm} denote the output of 

algorithm M⃡  (X). 
Since the random processes of any two algorithms Mi(D) 

are independent of each other, the following formula holds: 

 

∀𝑆𝑖 = {𝑆1, 𝑆2, … , 𝑆𝑚}𝑅𝑎𝑛𝑔𝑒(�⃡�  ), 𝑃𝑟[�⃡�  (𝑋) = 𝑆]

= ∏ 𝑃𝑟[𝑀𝑖(𝐷) = 𝑆𝑖]

𝑚

𝑖=1

 

 

Hence, the following must be independent: 

 

𝑃𝑟[�⃡�  (𝑋) = 𝑆] = ∏ 𝑃𝑟[𝑀𝑖(𝐷) = 𝑆𝑖]

𝑚

𝑖=1

≤ ∏ (𝑒𝜀𝑖 × 𝑃𝑟[𝑀𝑖(𝐷
′) = 𝑆𝑖])

𝑚

𝑖=1

= 𝑒∑ 𝜀𝑖
𝑚
𝑖=1 × ∏ 𝑃𝑟[𝑀𝑖(𝐷

′) = 𝑆𝑖]

𝑚

𝑖=1

= 𝑒∑ 𝜀𝑖
𝑚
𝑖=1 × 𝑃𝑟[�⃡�  (𝑋) = 𝑆] 

 

From the above, it is possible to derive:  

 

Pr[�⃡�  (𝑋) = 𝑆] ≤ 𝑒∑ 𝜀𝑖
𝑚
𝑖=1 × Pr[�⃡�  (𝑋′) = 𝑆] (9) 

 

According to the definition of differential privacy, 

algorithm M⃡  (X) satisfies ∑ εi
m
i=1 - differential privacy. 

Property 2. Differential privacy-parallel combination 

property 

Let M1(X1), M2(X2), … , Mm(Xm)  be a series of ε - 

differential privacy algorithms with input datasets 

X1, X2 , … , Xm, respectively. Suppose the random processes of 
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any two algorithms are independent of each other. Then, the 

algorithm combined from these algorithms satisfies ε - 

differential privacy. 

Proof: Since all algorithms Mi(Xi)  satisfy ε - differential

privacy, the complete differential privacy can be defined as: 

∀𝑆𝑖 ∈ 𝑅𝑎𝑛𝑔𝑒(M𝑖), Pr[M𝑖(𝑋𝑖) = 𝑆𝑖]

≤ 𝑒𝜀×|𝑋𝑖⊕𝑋𝑖
,| × Pr[M𝑖(X′) = 𝑆𝑖]

Let M⃡  (X)  be the algorithm combined from algorithms 

Mi(Xi), and {S1, S2, … , Sm} be its output. Since the random

processes of any two algorithms Mi(Xi)  algorithms are

independent of each other, the following must be independent: 

∀𝑺 = {𝑆1, 𝑆2, … , 𝑆𝑚}𝑅𝑎𝑛𝑔𝑒(�⃡�  ), 𝑃𝑟[�⃡�  (𝑋) = 𝑆]

= ∏ 𝑃𝑟[𝑀𝑖(𝑋𝑖) = 𝑆𝑖]

𝑚

𝑖=1

From the above, it is possible to derive: 

𝑃𝑟[�⃡�  (𝑋) = 𝑆] = ∏ 𝑃𝑟[𝑀𝑖(𝑋𝑖) = 𝑆𝑖]

𝑚

𝑖=1

≤ ∏ (𝑒𝜀×|𝑋𝑖⊕𝑋𝑖
,| × 𝑃𝑟[𝑀𝑖(𝑋′) = 𝑆𝑖])

𝑚

𝑖=1

= 𝑒𝜀×∑ |𝑋𝑖⊕𝑋𝑖
,|𝑚

𝑖=1 × ∏ 𝑃𝑟[𝑀𝑖(𝑋
′
𝑖) = 𝑆𝑖]

𝑚

𝑖=1

= 𝑒𝜀×∑ |𝑋𝑖⊕𝑋𝑖
,|𝑚

𝑖=1 × 𝑃𝑟[�⃡�  (𝑋′) = 𝑆]

From the leftmost or rightmost expression, we have: 

𝑃𝑟[�⃡�  (𝑋) = 𝑆] ≤ 𝑒𝜀×∑ |𝐷𝑖⊕𝐷𝑖
,|𝑚

𝑖=1 × 𝑃𝑟[�⃡�  (𝑋′) = 𝑆] (10) 

The above formula shows that the differential privacy 

algorithm under parallel combination meets (ε × ∑ |Di ⊕m
i=1

Di
,|)- differential privacy.

Besides, X and X , should satisfy |X ⊕ X ,| = 1, according to

the precondition of the definition of differential privacy. Since 

∀i ≠ j, Xi ∩ Xj = ∅ ∧ Xi
′ ∩ Xj

′ = ∅ , it can be derived for

∑ |Xi ⊕ Xi
,|m

i=1  that: 

∑ |𝑋𝑖 ⊕ 𝑋𝑖
,|

𝑚

𝑖=1
= |⋃ 𝑋𝑖 ⊕ 𝑋𝑖

,
𝑚

𝑖=1
|

= |⋃ ((𝑋 ∩ 𝑅𝑖) ⊕ (𝑋′ ∩ 𝑅𝑖))
𝑚

𝑖=1
|

= |⋃ ((𝑋 ⊕ 𝑋′) ∩ 𝑅𝑖)
𝑚

𝑖=1
|

= |(𝑋 ⊕ 𝑋′) ∩ ⋃ 𝑅𝑖

𝑚

𝑖=1
|

= (𝑋 ⊕ 𝑋′) ∩ 𝑅

R is the definition domain of elements, with D ⊆ R, D′ ⊆ R.

The final result of the above derivation is: 

∑ |𝐷𝑖 ⊕ 𝐷𝑖
,|

𝑚

𝑖=1
= |𝐷 ⊕ 𝐷′| = 1 (11) 

Therefore, the differential privacy algorithm under parallel 

combination satisfies  ε- differential privacy. 

Corollary 3. Suppose M1(X1), M2(X2), … , Mm(Xm) are a

series of independent differential privacy algorithms, and 

algorithm Mi(D)  satisfies εi -differential privacy. Then, the

algorithm combined from these algorithms satisfy max
1>i>m

εi -

differential privacy. 

Proof: Formula (11) shows that ∑ |Xi ⊕ Xi
′|m

i=1 = |Xi ⊕
Xi

′| = 1. In all |Xi ⊕ Xi
′|, there is one and only one |Xi ⊕ Xi

′|
equaling 1, and the other |Xi ⊕ Xi

′| = 0(j ≠ i). In this case, Xi

and Xi
′ are adjacent datasets, Xj = Xj

′,.

Let Q = 〈X, X′〉 denote the dataset combined from X and X′.

According to the above property, Q can be divided into m 

classes Q1, Q2, … , Qm , according to the subpart difference

between X and X′. The Qi in each class can be defined as:

𝑄𝑖 = {〈𝑋, 𝑋′〉|(|𝑋𝑖 ⊕ 𝑋𝑖
′| = 1) ∧ (|𝑋𝑗 = 𝑋𝑗

′|)}

Suppose the combined algorithm M⃡  (X)  with unknown 

degree of protection satisfies ε′- differential privacy.

∀𝑋, 𝑋′，satisfying |𝑋𝑖 ⊕ 𝑋𝑖
′| = 1，Pr[�⃡�  (𝑋) ∈ 𝑺] ≤

Pr[�⃡�  (𝑋′) ∈ 𝑺]

⇔ ⋀ ∀𝑋, 𝑋′,

1<𝑖<𝑚

〈𝑋, 𝑋′〉 ∈ 𝑄𝑖，Pr[�⃡�  (𝑋) ∈ 𝑺]

≤ Pr[�⃡�  (𝑋′) ∈ 𝑺]

It is known that each constituent algorithm Mi(X) satisfies

εi-differential privacy. By definition, it can be derived that

Pr[M⃡  (X) ∈ S] ≤ eεi × Pr[M⃡  (X′) ∈ S]  holds if and only if

ε′ ≥ εi. Thus, ε′ can be calculated by:

𝜀′ = 𝑚𝑖𝑛{𝜀′| ⋀ (𝜀′ ≥ 𝜀𝑖)1<𝑖<𝑚 } = 𝑚𝑖𝑛 {𝜀′|𝜀′ ≥ 𝑚𝑎𝑥
1<𝑖<𝑚

𝜀𝑖}

= 𝑚𝑎𝑥
1<𝑖<𝑚

𝜀𝑖

Therefore, M⃡  (X) satisfies max
1>i>m

εi-differential privacy.

2.2 Region growing 

Region growing is an ancient method of image 

segmentation. The earliest region growing segmentation was 

proposed by Adams and Bischof [27]. There are two ways to 

implement the region growing segmentation. The first way is 

to select a small block or seed point from the target object, add 

the surrounding pixels to the seed point continuously by a 

certain rule, and eventually combine all the pixels representing 

the object into one region. The second way is to segment the 

image into multiple highly consistent small blocks (e.g., small 

blocks with the same grayscale), and merge the blocks into 

large blocks by a certain rule, thereby achieving the goal of 

image segmentation. One of the typical region growing 

methods is Matalas et al.’s [28] facet model-based regional 

growing strategy. Over segmentation, i.e., segmenting the 

image into too many regions, poses an intrinsic defect of 

region growing. 

Region growing can segment the original image into a series 

of regions. This simple method can segment connected regions 

with the same features, and clearly delineate the edges 

between the regions. Region growing is capable of achieving 

the optimal performance, in the absence of prior knowledge. 

Therefore, the method applies to the segmentation of complex 

images, i.e., natural scenery images and face images. 
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The basic idea of region growing is to combine pixels with 

similar properties into a region. Region growing can be 

realized in the following steps: 

Step 1. Choose a region or pixel in the original image as the 

seed point, which serves as the starting point of growth. The 

seed point can be selected randomly or based on specific 

demands. Normally, the seed point should not cover any 

sudden change of pixels. 

Step 2. Compare the seed point with each surrounding 

region that has not been merged. If the two have the same or 

similar attributes, merge them into one seed point (the 

necessity of merging depends on the preset growth rule or 

similarity rule). Then, treat the merged seed point as the new 

seed point, and repeat the above process, until no qualified 

region can be merged. In this way, a region is fully grown. The 

above operation segments the original image into a labeled 

region and an unlabeled region. 

Step 3. Choose a region in the unlabeled region as a new 

seed point, and repeat Step 2. 

Step 4. Repeat Step 3 until the entire image no longer 

contains any non-seed region to be merged. This marks the 

completion of region growth of the entire image. 

To ensure the accuracy of initial segmentation, the regions 

should not be too large. The region size needs to be limited in 

the growth rule. That is, a threshold num should be defined for 

the region size. If a region grows larger than num, the region 

must stop growing. After region growing, some small regions 

(e.g., those with fewer than 10 pixels) will be merged with the 

most similar adjacent region, aiming to reduce the number of 

vertices in the subsequent graph. 

 

 

3. METHODOLOGY 

 

Today’s differential privacy methods for face image 

publication mostly change the data in the original matrix Xm×n 

through reconstruction (e.g., Fourier transform or wavelet 

transform), disturb the changed data by adding Laplace noise, 

and restore the disturbed data to obtain a noisy matrix Xm×n
′. 

However, two errors may occur during the derivation of Xm×n
′: 

the noise error LE(Xm×n
′) brought by the Laplace mechanism, 

and the reconstruction error RE( Xm×n
′ ) produced in the 

reconstruction of the original data. Hence, the overall error 

Error( Xm×n
′ ) of the released face image Xm×n

′  can be 

expressed as: 

 

Error(𝑋𝑚×𝑛
′)= LE(𝑋𝑚×𝑛

′)+ RE(𝑋𝑚×𝑛
′) (12) 

 

To reduce noise, the above-mentioned reconstruction 

methods (Fourier transform and wavelet transform) essentially 

modify the 2D data extracted from the face image, and add 

noise to the modified data. None of these methods can avoid 

the reconstruction error RE(Xm×n
′). 

Therefore, this paper inherits the approach of Liu et al. [1]: 

rather than change the data in the 2D matrix, implement the 

reconstruction from the perspective of structure. Without 

changing the original data, this approach effectively avoids 

RE(Xm×n
′). Hence, the following conclusion can be drawn: 

 

Error(𝑋𝑚×𝑛
′)= LE(𝑋𝑚×𝑛

′) (13) 

 

On differential privacy of data publication, the main 

research focus lies in the publication method of non-

interactive data. In this method, the ε effect range covers the 

entire image, such that the noise level is the same across the 

image. In reality, however, the sensitive information of a face 

image clusters in specific regions. For an image, different 

regions need different degrees of privacy protection. Therefore, 

this paper tries to protect the privacy of face images by 

combining the differential privacy of interactive data 

publication with the image segmentation technology. Under 

the premise of meeting ε-differential privacy, the integrated 

method reduces the influence of Laplace noise on the privacy 

protection image, and strikes a balance between image 

availability and degree of privacy protection. 

 

3.1 LAP algorithm 

 

This paper designs the LAP algorithm based on Laplace 

mechanism. Without changing the original data, the LAP 

algorithm directly disturbs the values in the 2D matrix of the 

original image with Laplace noise, and publishes the disturbed 

image straightforwardly. 

Drawing on image segmentation theory, each pixel xij in the 

grayscale matrix Xm×n of the original image is treated as an 

independent entity. The pixels do not interfere with each other, 

and the privacy budget is distributed evenly. Then, each 

xij (1≤i≤m, 1≤j≤n) consumes the privacy budge of the size 

ε (m × n)⁄ . In the LAP algorithm, the overall error induced by 

Laplace noise can be expressed as: 

 

𝐸𝑟𝑟𝑜𝑟(𝑋𝑚×𝑛
′) = 𝐸 ∑ (∑ (𝑥𝑖𝑗

′ − 𝑥𝑖𝑗)
2𝑗=𝑛

𝑗=1
)

𝑖=𝑚

𝑖=1

= 𝐸 ∑ (∑ (𝑥𝑖𝑗 − 𝑥𝑖𝑗

𝑗=𝑛

𝑗=1

𝑖=𝑚

𝑖=1

+ 𝑙𝑎𝑝 (𝛥𝑄 × 𝑚 ×
𝑛

𝜀
))

2

)

= 2𝑚𝑛(𝛥𝑄 × 𝑚 × 𝑛/𝜀)2 

(14) 

 

Although the LAP algorithm satisfies ε-differential privacy, 

a huge noise error will occur when the algorithm is adopted to 

protect image privacy, if the image is too large. In this case, 

the noisy image will be weakly available. 

 

3.2 Publication method based on region growing 

 

To control the effect of noise error on the privacy protection 

of image publication, this paper proposes an image publication 

algorithm called region growing publication (RGP), which 

combines region growing with differential privacy technique. 

In traditional region growing rule, the mean intensity 

difference between the seed point and a surrounding pixel is 

compared with the given threshold to judge if the pixel should 

be merged into the seed point. That is, the growth rule can be 

expressed as:  

 

|𝑥𝑖±1,𝑗±1 − 𝑥𝑖𝑗
𝑅 | < 𝑇ℎ (15) 

 

where, xi±1,j±1 is the grayscale of the surrounding pixel; xij
R is 

the mean intensity of region R with xij as the seed point; Th is 

the given threshold. Formula (15) reveals two deficiencies 

with the traditional region growing method. Firstly, the object 

to be merged is merely a pixel, which carries very limited 

information, as the most basic unit of the image. The lack of 

information will bias the final result of region merging. To 
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solve the problem, this paper divides the face image Xm×n into 

multiple non-intersecting sub-images: 

 

𝑋𝑚×𝑛 = [

𝑥11，𝑥12， ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1，𝑥𝑚1， ⋯ 𝑥𝑚𝑛

]

= [

𝑇11，𝑇12， ⋯ 𝑇1𝐽

⋮ ⋱ ⋮
𝑇𝐼1，𝑇𝐼1， ⋯ 𝑇𝐼𝐽

] 

(16) 

 

Any sub-image Tij(1 ≤ i ≤ I, 1 ≤ j ≤ J) contains multiple 

pixels. Hence, the non-intersecting sub-images Tij could carry 

lots of information of the original image. The division is 

nondestructive and reversible (Figure 3). 

 

 
 

Figure 3. Dividing the original image into multiple sub-

images 

 

Secondly, the key of region growing is the definition of 

growth rule. Due to the natural complexity of face images, the 

growth rule should be configured in the light of the various 

attributes of the original image. The traditional growth rule 

mainly relies on the grayscale difference. However, the 

grayscale of a single pixel cannot reflect the rich information 

of the original image. To solve the problem, this paper takes 

sub-images as the basic unit of region growing. The sub-

images retain most of the features of the original image, 

namely, brightness, contrast, structure, color, texture, and 

spatial distribution. To further improve the accuracy of region 

merging with sub-images as the basic unit, this paper puts 

forward a brand-new growth rule called fusion similarity 

measurement mechanism (FSMM). 

After being converted into a grayscale matrix, the original 

image becomes meaningful in mathematical calculation. Let X 

and Y be the grayscale matrices of two adjacent sub-images, 

respectively (During region growing, sub-image Y can be any 

of the eight adjacent sub-images of sub-image X), X =

[
X1 ⋯ ⋯
⋯ ⋱ ⋯
⋯ ⋯ Xc

] , Y = [
Y1 ⋯ ⋯
⋯ ⋱ ⋯
⋯ ⋯ Yc

] . Then, the similarity 

between X and Y can be measured by Euclidean distance: 

 

𝑑(𝑋, 𝑌) = √∑(𝑋𝑖 − 𝑌𝑖)
2

𝑛

𝑖=1

2

 (17) 

 

Many scholars have adopted Euclidean distance to measure 

the similarity between two matrices, and to regulate region 

growing. The measurement can accurately characterize the 

difference between two sub-images in mathematical properties. 

This difference is directly exhibited in terms of image colors. 

However, the similarity rule, which solely considers the 

mathematical difference between grayscale matrices, cannot 

fully demonstrate the other properties of the image. 

Below is an example illustrating the limitation of Euclidean 

distance as region growing rule: Suppose there are three 

grayscale matrices T1 = [
0 0 0
0 0 0
0 0 0

] , T2 =

[
7 6 3
15 20 11
6 3 5

] , andT3 = [
0 0 0
0 0 0
0 0 255

] . The Euclidean 

distances between T1 and T2, and T1 and T3 are denoted as θ1 

and θ2, respectively. Since θ1 < θ2, T1 is more similar to T2. 

However, after the matrices are converted to grayscale images, 

T1 is more similar to T3 even in naked eyes. In this example, 

images T1 and T3 have very similar colors. However, their 

Euclidean distance (color eigenvalue) is exaggerated by a 

salient eigenvalue. The mis-judgement is attributed to the fact 

that Euclidean distance (color eigenvalue) is solely considered 

to compute the grayscale matrices of the two images. The 

salient value of T3 could be the result of texture or shape 

features of the image. 

To solve the above problem, the Jaccard similarity index is 

introduced to compute the similarity θ between the grayscale 

matrices of the two images. The Jaccard similarity index, a 

metric of the similarity between two sets, is defined as the 

number of pixels in the interaction between two sets, divided 

by the number of pixels in the union of two sets:  

 

𝜌(𝑋, 𝑌) = |𝑋 ∩ 𝑌| |𝑋 ∪ 𝑌|⁄  (18) 

 

In this paper, the Jaccard similarity index is taken as the 

optimization value in the result of formula (17): 

 

𝜃 = 𝑑(𝑋, 𝑌) 𝜌(𝑋, 𝑌) + 𝜎⁄  (19) 

 

where, d(X, Y) is the Euclidean distance between the grayscale 

matrices of two images; ρ(X, Y) is the Jaccard similarity index 

between the grayscale matrices of two images; σ is a small 

positive number that prevents the denominator from being 

zero. 

The above-mentioned example can prove that the θ value 

derived from both Euclidean distance and Jaccard similarity 

index can largely reflect the similarity between the grayscale 

matrices of two images, and serve as the growth rule. However, 

some special cases are found during the experiments, in which 

the above formula is not applicable. Another example was 

given to explain the influence of the special cases. 

Suppose two local grayscale matrices T1 =

[
7 9 8
4 3 7
1 5 6

] , andT2 = [
8 7 9
3 4 7
6 5 1

] are obtained from the same 

image. The similarity θ between them, which is calculated by 

formula (19), is far smaller than the expectation θ′  given 

during the explements. θ′ is a preset threshold. If θ > θ′, the 

grayscale matrices are not similar; otherwise, the grayscale 

matrices are similar. It can be observed from the experimental 

values in matrices T1 and T2 that formula (19) cannot calculate 

the correct θ value, due to its neglection of spatial distribution 

features of the images. Hamming distance is often employed 

to measure the difference between two spatial vectors of the 

same structure and size. This criterion sequentially compares 

the values in the corresponding positions of two spatial vectors 

X and Y. If Xi=Yi, value is 0; otherwise, the value is 0. After 

all the corresponding positions of two spatial vectors have 

been compared, all the ones will be cumulated to obtain the 

Hamming distance between the two spatial vectors:  
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𝜇(𝑋, 𝑌) = ∑ 𝑋𝑖

𝑛

𝑖=1
⊕ 𝑌𝑖  (20) 

 

In this paper, the values are extracted from each grayscale 

matrix by formula (1). Thus, the values in the grayscale 

matrices are approximate. The color information of the images 

cannot be truthfully reflected, with Hamming distance as the 

only criterion. What is worse, the Hamming distance cannot 

be directly applied to formula (19). 

To solve these problems, Hamming distance is combined 

with the result of perceptual hash algorithm into a disturbance 

φ for formula (19), further improving the correctness of the 

similarity θ between grayscale matrices. Combining formulas 

(19) and (20), the similarity θ between the grayscale matrices 

of two images can be expressed as:  

 

𝜃 = 𝜑(𝑑(𝑋, 𝑌) 𝜌(𝑋, 𝑌) + 𝜎⁄ ) (21) 

 

Suppose the two contrastive spatial vectors are grayscale 

matrices X and Y of face images. Each matrix contains c pixels. 

Then, the disturbance φ can be calculated by:  

 
𝜑 = 

{

𝜃′ × (𝜌(𝑋, 𝑌) + 𝜎) 𝑑(𝑋, 𝑌)⁄ , 𝜇(𝑋, 𝑌) < 0.078 × 𝑐

1, 0.078 × 𝑐 ≤ 𝜇(𝑋, 𝑌) ≤ 0.156 × 𝑐

1 𝑙𝑔× (𝑚 × 𝑛 − 𝜇(𝑋, 𝑌))⁄ , 𝜇(𝑋, 𝑌) > 0.156 × 𝑐

 
(22) 

 

where, c is sample size; θ′ is a preset threshold. 

Structural similarity (SSIM) is a full reference image quality 

evaluation index. The traditional image quality metrics, such 

as mean squared error (MSE) and peak signal-to-noise ratio 

(PSNR), deviate from the actual visual perception of human 

eyes. By contrast, SSIM considers the visual features of human 

eyes, and adapts to the visual perception of humans. MSE and 

PSNR evaluates absolute errors, while SSIM, a perception-

based metric, takes account of the fuzzy perceptual changes of 

image structure. The SSIM includes some phenomena related 

to perceptual changes, including brightness and contrast. The 

structural information refers to the internal dependence 

between pixels, especially the spatially close ones. The 

dependence carries important information about the visual 

perception of objects. 

The SSIM ranges from 0 to 1. The greater the SSIM, the 

higher the similarity between two images. Based on the SSIM 

theory, the structural information is defined from the angle of 

image composition as an attribute reflecting the object 

structure in the scene, and independent of brightness and 

contrast, while distortion is modeled as the combination of 

brightness, contrast, and structure. Let X and Y be the 

reference image and the distorted image. Then, the following 

definitions can be established: 

 

𝑙(𝑇𝑖×𝑗 , 𝑇(𝑖±1)×(𝑗±1))

= (2𝑢𝑋𝑢𝑌 + 𝐶1) (𝑢𝑋
2 + 𝑢𝑌

2 + 𝐶1⁄ ) 
(23) 

 

𝑐(𝑋, 𝑌) = (2𝜎𝑋𝜎𝑌 + 𝐶2) (𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2⁄ ) (24) 

 

𝑠(𝑋, 𝑌) = (𝜎𝑋𝑌 + 𝐶3) (𝜎𝑋𝜎𝑌 + 𝐶3⁄ ) (25) 

 

where, uXanduY  are the mean of images X and Y, 

respectively, reflecting the brightness of each image; 

σXandσY are the variances of images X and Y, respectively, 

reflecting the contrast of each image; C1, C2, andC3 are very 

small positive integers that prevent the denominator from 

being zero. Based on the above three information, the SSIM 

can be calculated by: 

 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙(𝑋, 𝑌)]𝛼 · [𝑐(𝑋, 𝑌)]𝛽 · [𝑠(𝑋, 𝑌)]𝛾 (26) 

 

where, α, β, andγ  are the weights of different eigenvalues. 

If α = β = γ = 1, C1 = (K1L)2, C2 = (K2L)2, C3 =
C2 2⁄ , andK1 ≪ 1, K2 ≪ 1, with L being the dynamic range 

of the image, formula (26) can be simplified as:  

 

𝑆𝑆𝐼𝑀(𝑋, 𝑌)

=
(2𝑢𝑋𝑢𝑌 + 𝐶1)

(2𝜎𝑋𝜎𝑌 + 𝐶2)
(𝑢𝑋

2 + 𝑢𝑌
2 + 𝐶1)(𝜎𝑋

2 + 𝜎𝑌
2 + 𝐶2)⁄  

(27) 

 

To sum up, the FSMM mechanism can be expressed as:  

 

𝐹𝑆𝑀𝑀(𝑋, 𝑌) = 

𝜑 × (𝑑(𝑋, 𝑌) 𝜌(𝑋, 𝑌) + 𝜎⁄ ) ×

(2𝑢𝑋𝑢𝑌 + 𝐶1) × (2𝜎𝑋𝜎𝑌 + 𝐶2)

(𝑢𝑋
2 + 𝑢𝑌

2 + 𝐶1) × (𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2)
 

(28) 

 

The innovation of RGP algorithm lies in merging similar 

sub-images into one region via region growing. When RGP 

and LAP have the same privacy budget, RGP can produce a 

smaller noise error during privacy protection of images. 

During image growing, the face image Xm×n is segmented into 

k sub-images of the same structure. Then, a sub-image Tij is 

selected randomly as the seed point, and assigned a privacy 

budget of ε k⁄ . Then, LAP is called to add a Laplace noise to 

the produce Tij
′ . Whether an adjacent T(i±1)(j±1)  needs to be 

merged into the growing region of the current seed point 

depends on whether the gap between Tij
′  and T(i±1)(j±1) 

satisfies the preset threshold. If FSMM(Tij
′ , T(i±1)(j±1)) ≤ Th 

(Th is the preset threshold), T(i±1)(j±1) will be replaced with 

Tij
′  before publication. Once no more qualified sub-image can 

be merged with Tij being the seed point, a new seed point will 

be selected randomly from the remaining sub-images, and the 

above process will be repeated until the entire image is fully 

grown. 

Note that no privacy budget is consumed as T(i±1)(j±1)  is 

replaced with Tij
′ . Hence, the privacy budget assigned to 

T(i±1)(j±1) will be retained for use in subsequent operations.  

To facilitate understanding, an example was provided to 

explain the implementation of RGP. The sub-image division is 

displayed in Figure 4: Xm×n = (T11, T12, T13, … , T55). Out of 

the sub-images, a random sub-image is selected as the seed 

point, and assigned a privacy budget of the size ε 25⁄ . As 

shown in Figure 5, T22
′  serves as the seed point, i.e., the 

disturbance obtained by adding Laplace noise to T22. In this 

case, the state of T22 is labeled. After the seed point is selected, 

a chain will be created to temporarily store the seed points and 

candidate seed points. 

Next, the seed point will be compared with each of the eight 

adjacent sub-images via region growing (Figure 6). If a sub-

image is sufficiently similar and in line with the merging 

condition, replacement will be carried out, and the sub-image 

will be added to the temporary chain list as a candidate seed 

point. As shown in Figure 7, T23 is the only sub-image whose 

similarity with the seed point satisfies the preset threshold. 

Hence, T23  is replaced with T22
′ , the current seed point is 

removed from the chain list, and the candidate seed point is 

selected as the new seed point. The above process is repeated 

until the temporary chain list is empty. 
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Figure 4. Image division 
 

 
 

Figure 5. Seed point selection 
 

 
 

Figure 6. Traversing adjacent regions 
 

 
 

Figure 7. Replacement 
 

 
 

Figure 8. Result of local region growing 
 

 
 

Figure 9. Result of global region growing 

Figure 8 shows the labeled region after one region growing. 

A seed is selected from the unlabeled region, and the above 

steps are repeated, until all sub-images are labeled. Figure 9 

shows the noisy grayscale matrix after four region growing 

operations. 

The specific implementation of RGP is summarized as 

follows: 

 

Algorithm 1: RGP  

Inputs: Original image X, privacy budget ε , preset 

parameters a and b, and expectation for sub-image 

similarity Th 

Output: Image X′ satisfying differential privacy 

1. Read original image X, and convert the image into 

a grayscale matrix Xm×n by formula (1). 

2. Segment the grayscale matrix Xm×n  into a set 

T1[a][b] of sub-images with the same structure, 

according to preset parameters a and b. 

3. Create T2[a][b]={0} to record whether the state of 

a submatrix is labeled during region growing.  

4. Create a chain list list to temporarily store the 

current seed point and candidate seed points.  

5. s=0;  

6. εleft=ε;  

7. While(z<a*b) 

8.   iflist_head == NULL 
9.      Randomly select T1[i][j] as the seed point 

10.         if T2[i][j]=1 then 

11.         break; 

12.         else 

13.       i=head->x;  

14.     j=head->y;  

15.     p=head;  

16.     head=p->next;  

17.     free(p);  

18.    T2[i][j]=1;  

19.   T1
′[i][j] = T1[i][j] + lap(ΔQ × (a ∗ b − s)/

εleft) 

20.   εleft = εleft − εleft (a ∗ b − s)⁄  

21.   s=s+1;  

22.   p=list_head;  

23.   for m=i-1 to i+1 do 

24.     for n=j-1 to j+1 do 

25.             If(m>=1&&m<=a&&n>=1 

&&n<=b&&T2[i][j]!=1) 

26.            Use FSMM  to compute the similarity θ 

between the current noisy seed point T1
′[i][j] and 

T1[m][n]. 
27.              If θ <= Th 
28.              T1[m][n] = T1

′[i][j];  
29.              while(p->next!=NULL) 

30.                  if(p->x==m&&p->y==n) 

31.                      break;  

32.                  p=p->next;  

33.                  If p==NULL 

34.                      Add T1[m][n] to the chain list. 

35. Merge all the labeled submatrices into a noisy 

grayscale matrix Xm×n
′. 

36. Convert Xm×n
′ into the privacy protected image 

X′. 

 

RGP provides a way to protect the privacy of face images 

based on region growing and differential privacy. Lines 5-7 
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define two variables and set the termination condition (while 

circulation). The two variables are z and εleft . The former 

ensures that, after the algorithm completes, each sub-image 

T1[i][j]  will be converted into a noisy sub-image T1
′[i][j] , 

while εleft defines the initial value for the allocation of privacy 

budget ε . Lines 8-18 specifies the seed point selection of 

region growing. Specifically, Lines 8-11 judge whether 

T1[i][j] has been merged to a region. If it has been labeled, it 

is necessary to choose a new seed point. Lines 12-17 release 

the labeled seed point from the chain list, and select the next 

seed point from the candidates. Line 18 changes the state of 

the current seed point from unlabeled to labeled. Lines 19-21 

assign a proper privacy budget and add a noise to the current 

seed point. Line 22 saves the current seed point to the chain 

list. Lines 23-25 demand that the adjacent region T1[m][n] of 

the seed point should not surpass the image boundary and the 

labeled state. Lines 26-28 use the FSMM mechanism to 

compute the similarity between an adjacent region and the 

seed point, and judge if the former meets the growth rule. If 

yes, T1[m][n] will be replaced with T1
′[i][j]. Lines 29-34 judge 

whether T1[m][n] that satisfies growth rule exists in the chain 

list. If not, this region will be added to the chain list, and 

become a candidate seed point. 

Note that Lines 19-21 of RGP provide a dynamic allocation 

(DA) mechanism for privacy budget. Unlike the common 

binary allocation mechanism, DA offers a more reasonable 

solution to the privacy budget allocation during region 

growing, and reduces the influence of noise on the original 

data. The DA mechanism can be described as follows: 

Suppose each region growing consumes a privacy budget of 

εi = {ε1, ε2, ε3, … , εm} , each merged region contains si =
{s1, s2, s3, … , sm}  sub-images, and s1 + s2 + s3 + ⋯ + sm =
k, withk = a × b being the total number of sub-images. Let 

εi
left  be the residual privacy budget after the completion of 

state i. Then, the εi  and εileft  in any state under the DA 

mechanism can be expressed as:  

 

𝜀𝑖 = 𝜀𝑖−1
𝑙𝑒𝑓𝑡

(𝑘 − ∑ 𝑠𝑗

𝑖−1

𝑗=1
)⁄  (29) 

 

𝜀𝑖
𝑙𝑒𝑓𝑡

= 𝜀𝑖−1
𝑙𝑒𝑓𝑡

− 𝜀𝑖 (30) 

 

Theorem 3. In RGP, the consumption of privacy budget 

will not surpass  ε, i.e., ε1 + ε2 + ε3 + ⋯ + εm ≤ ε. 

Proof: Formula (29) shows that, when k − ∑ sj
m−1
j=1 = 1 , 

εm−1left = εm. Then,εmleft = 0. In this case, we have: 

 

𝜀1 + 𝜀2 + 𝜀3 + ⋯ + 𝜀𝑚 = 𝜀 

 

Whenk − ∑ sj
m−1
j=1 > 1,  εm−1left εm > 1⁄ . Then, εmleft >

0, In this case, we have: 

 

𝜀1 + 𝜀2 + 𝜀3 + ⋯ + 𝜀𝑚 < 𝜀 

 

Q.E.D. 

Theorem 4. RGP satisfies ε- differential privacy. 

Proof: According to Theorem 3: 

 

𝜀1 + 𝜀2 + 𝜀3 + ⋯ + 𝜀𝑚 ≤ 𝜀 

 

where, εi(1 ≤ i ≤ m) is the privacy budget consumed under 

each state. According to the differential privacy-parallel 

combination property (Property 2), RGP satisfies ε - 

differential privacy. 

Q.E.D. 

Theorem 5. The error generated by RGP is no greater than 

that generated by LAP, i.e.: 
 

𝐸𝑟𝑟𝑜𝑟(𝑅𝐺𝑃) ≤ 𝐸rror(𝐿𝐴𝑃) 

 

Proof: The DA mechanism of RGP consumes a privacy 

budget of εi = {ε1, ε2, ε3, … , εm}  each time. The number of 

submatrices affected by εi = {ε1, ε2, ε3, … , εm}  can be 

described by si = {s1, s2, s3, … , sm} , s1 + s2 + s3 + ⋯ +
sm = k. The Laplace mechanism of LAP consumes a privacy 

budget ofε k⁄ , ∑ si
′k

i=1 = k (s1
′ = s2

′ = s3
′ = ⋯ = sk

′ = 1) each 

time. 

Firstly, the maximum possible error of DA mechanism is 

calculated, revealing that s1 = s2 = s3 = ⋯ sm = 1, i.e., m =
k. Thus, we have: 

 

𝐸𝑟𝑟𝑜𝑟(𝑅𝐺𝑃)𝑚𝑎𝑥 = (𝑙𝑎𝑝(𝛥𝑄/𝜀1) + 𝑙𝑎𝑝(𝛥𝑄/𝜀2) + 𝑙𝑎𝑝(𝛥𝑄/𝜀3) +

⋯ 𝑙𝑎𝑝(𝛥𝑄/𝜀𝑚))
𝑚𝑎𝑥

=∑ 𝑙𝑎𝑝(𝛥𝑄/𝜀𝑖)
𝑘
𝑖=1 =𝑘 × 𝑙𝑎𝑝(𝛥𝑄/

(𝜀 𝑘⁄ ))=𝐸rror(𝐿𝐴𝑃) 

 

The other situations can be judged by formula (30). After 

the completion of state i, the residual privacy budget of DA 

mechanism is εileft, while that of Laplace mechanism is εileft
′ . 

Since DA mechanism allows an si > 1, and s1 = s2 = s3 =
⋯ si−1 = 1(1 < i < m), we have: 

 

𝜀𝑖𝑙𝑒𝑓𝑡 − 𝜀𝑖𝑙𝑒𝑓𝑡
′ =(𝜀 − 𝜀 ×

𝑘−(𝑖−1+𝑠𝑖)

𝑘
) − (𝜀 − 𝜀 ×

𝑘−𝑖

𝑘
)=𝜀 ×

(
𝑘−𝑖

𝑘
−

𝑘−(𝑖−1+𝑠𝑖)

𝑘
)=𝜀 ×

𝑠𝑖−1

𝑘
 

 

Since si > 1 , εileft − εileft
′ > 0 . Thus, 

(εi+1, εi+2, εi+3, … , εm) > ε k⁄ . It can be seen that 

Error(RGP) < Error(LAP). 

Q.E.D. 

 

3.3 Atypical region growing publication (ARGP) 

 

If the RGP is applied to an image, the merged region 

through one region growing with T11 as the seed point can be 

illustrated in Figure 10 (the dark region). From the perspective 

of the entire image, i.e., removing the limitation on region 

growing direction, the similarity θ  between T11
′  and each 

unlabeled sub-image is calculated, and all the qualified sub-

images are merged together. But the merged region may not 

be as expected (Figure 11). Obviously, the current merged 

region is not continuous in 2D space (RGP cannot yield such 

a merged region), but every sub-image of the merged region 

satisfies θ <= Th. 
 

 
 

Figure 10. Region growing direction estimated by RGP 
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To find more qualified sub-images for the seed point 

without damaging ε-differential privacy, this paper integrates 

atypical region growing with differential privacy into a novel 

privacy protection approach for image publication, denoted as 

ARGP. Different from traditional region growth strategy, the 

ARGP does not restrict the growing direction within adjacent 

sub-images, but searches for qualified sub-images among all 

unlabeled sub-images, using the exponential mechanism. The 

specific steps of the ARGP are as follows:  

 

Algorithm 2. ARGP  

Inputs: Original image X, privacy budget ε , preset 

parameters a and b, and expectation for sub-image 

similarity Th 

Output: Image X′ satisfying differential privacy 

1. Read original image X, and convert the image into 

a grayscale matrix Xm×n by formula (1). 

2. Segment the grayscale matrix Xm×n  into a set 

T1[a][b]  of sub-images with the same structure, 

according to preset parameters a and b. 

3. Create T2[a][b]={0} to record whether the state of 

a submatrix is labeled during region growing.  

4. ε=ε1+ε2;  

5. s=0;  

6. εleft=ε2;  

7. While(w<a*b) 

8.   If i==0&&j==0 

9.       Randomly select T1[i][j] as the seed point 

10.   endif 

11.   T2[i][j]=1;  

12.   T1
′[i][j] = T1[i][j] + lap(ΔQ × (a ∗ b − s)/εleft);  

13.   εleft = εleft − εleft (a ∗ b − s)⁄  

14.   s=s+1;  

15.   Find all unlabeled sub-images T1[a][b]. 
16.   Realize the region merging in the traditional 

direction of region growing of RGP. 

17.       Find all unlabeled sub-images T1[a][b] again. 

18.       Use FSMM to compute the similarity θ 

between T1
′[i][j] and each T1[a][b]. 

19.       ΔQ=
1

θ+σ
;  

20.       Select one T1[a][b]  at the probability P ∝

exp (
ε1ΔQ

2Δu
), using the exponential mechanism. 

21.       Use FSMM  to recalculate the similarity θ 

between the noisy current seed point T1
′[i][j] and 

the selected T1[a][b]. 
22.       If θ <= Th 
23.           T1[a][b] = T1

′[i][j];  
24.           i=m;  

25.           j=n;         

26.       else 

27.           i=0;  

28.           j=0;    

29. Merge all the labeled submatrices into a noisy 

grayscale matrix Xm×n
′. 

30. Convert Xm×n
′ into the privacy protected image X′. 

 

In ARGP, Line 4 divides the privacy budget ε into two parts: 

a part ε1 for exponential mechanism, and a part ε2 for noise 

addition. Lines 5-7 define two variables and set the 

termination condition (while circulation). The two variables 

are w and εleft. The former ensures that, after the algorithm 

completes, each sub-image T1[i][j] will be converted into a 

noisy sub-image T1
′[i][j], while εleft  defines the initial value 

for the allocation of privacy budget ε. Lines 8-14 specifies that, 

if there is no seed point, an unlabeled sub-image will be 

selected randomly as the seed point; then, the seed point will 

be labeled, and added a noise by DA mechanism. Lines 15-16 

realize the RGP. Lines 17-20 select a sub-image by the 

exponential mechanism. Specifically, Line 17 defines the 

scoring function of exponential mechanism. ARGP intends to 

select the sub-image more similar to the seed point at a larger 

probability. Σ is a very small positive number that prevents the 

denominator from being zero. In Line 18, Δu is the sensitivity 

of the scoring function. Since adding/removing one record 

only affects one count of θ, Δu=1. Lines 21-28 use the FSMM 

mechanism to compute the similarity between the seed point 

and the selected T1[m][n] . If the result satisfies the preset 

threshold, assign the value of T1
′[i][j] to T1[m][n], and set it as 

the new seed point. Otherwise, select a new seed point, and 

repeat the above process until all sub-images become noisy. 

For ARGP, the exponential mechanism does not necessarily 

lead to the needed optimal solution, but capable of obtaining 

the optimal or near optimal solution at a high probability. 

Table 1 shows the test results on the selection probability of 

the exponential mechanism in ARGP. The test aims to select 

the minimum of a set of random numbers. Column 1 reports 

the similarity θ  between the seed point and sub-regions. 

Column 2 reports the scoring function (σ=0.02). The other 

four columns report the section probabilities of each sub-

region at different ε values, and the sum of each column equals 

or approximates 1 (the error induced by indivisibility). If ε=0, 

the level of privacy protection is maximized, and all sub-

regions are selected at the same probability. With the growth 

of ε, the selection probability increases with the value of the 

scoring function ΔQ; the inverse is also true. 

 

 
 

Figure 11. Region growing direction estimated by ARGP 

 

Table 1. Exponential mechanism- minimum selection 

probability test 

 
θ ΔQ ε=0 ε=0.05 ε=0.1 ε=0.5 

15 0.0666 14.29% 2.15% 0.21% 0.20% 

62 0.0161 14.29% 0.73% 0.00% 0.00% 

28 0.0357 14.29% 1.01% 0.10% 0.00% 

7 0.1425 14.29% 14.50% 6.12% 0.52% 

8 0.1247 14.29% 13.21% 6.19% 0.51% 

1 0.9804 14.29% 67.56% 87.32% 98.77% 

37 0.0270 14.29% 0.86% 0.06% 0.00% 

 

Theorem 6. ARGP satisfies ε-differential privacy. 

Proof: ARGP divides the privacy budget ε into two parts: 

ε=ε1+ε2, where ε1 is used to select unlabeled sub-region T by 

the exponential mechanism; the selection probability is 

positively correlated with exp (
ε1ΔQ

2Δu
): 
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Pr[M(X, ΔQ) = T] =
exp (

ε1ΔQ(X, T)
2Δu

)

∑ exp (
ε1ΔQ(X, T′)

2Δu
)T′∈O

 (31) 

 

For the given X and its adjacent region X′, the following can 

be derived from formula (31) for any T ∈ O: 

 

𝑃𝑟[𝑀(𝑋,𝛥𝑄)=𝑇]

𝑃𝑟[𝑀(𝑋′,𝛥𝑄)=𝑇]
=

𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇)

2𝛥𝑢
)

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢 )
𝑇′∈𝑂

𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋′,𝑇)

2𝛥𝑢
)

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋′,𝑇′)

2𝛥𝑢
)

𝑇′∈𝑂

 = (
𝑒𝑥𝑝(

𝜀1𝛥𝑄(𝑋,𝑇)

2𝛥𝑢
)

𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋′,𝑇)

2𝛥𝑢
)
) ×

(
∑ 𝑒𝑥𝑝(

𝜀1𝛥𝑄(𝑋′,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

) = 𝑒𝑥𝑝 (
𝜀1(𝜀1𝛥𝑄(𝑋,𝑇)−𝜀1𝛥𝑄(𝑋′,𝑇))

2𝛥𝑢
) ×

(
∑ 𝑒𝑥𝑝(

𝜀1𝛥𝑄(𝑋′,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

) ≤ e𝑥𝑝 (
𝜀1

2
) ×

(
∑ 𝑒𝑥𝑝(

𝜀1
2

)×𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

) ≤ e𝑥𝑝 (
𝜀1

2
) × 𝑒𝑥𝑝 (

𝜀1

2
) ×

(
∑ 𝑒𝑥𝑝(

𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

∑ 𝑒𝑥𝑝(
𝜀1𝛥𝑄(𝑋,𝑇′)

2𝛥𝑢
)𝑇′∈𝑂

) = 𝑒𝑥𝑝(𝜀1) 

 

Hence, the exponential-based selection of unlabeled sub-

region of ARGP satisfies ε1 -differential privacy. From the 

proof of Theorem 4, it can be learned that the noise addition of 

ARGP satisfies ε2 -differential privacy. Overall, ARGP 

satisfies ε- differential privacy in the whole process. 

Q.E.D. 

Theorem 7. When an image is divided on equal conditions, 

the number zj of sub-images to be merged to a seed point in 

ARGP must be greater than or equal to the number si of sub-

images to be merged to the same seed point in RGP, under 

ideal conditions, that is, Error(ARGP) ≤ Error(RGP). 

Proof: Theorem 7 can be proved by contradiction. It is 

assumed that zj < si. 

In ARGP, there exists a sub-image T0, whose merged region 

is set A, i.e., T0 ∈ A, with zj being the number of elements in 

set A. In RGP, the merged region of the same sub-image T0 is 

set B, i.e., T0 ∈ B, with si being the number of elements in set 

B. If zj < si  holds, then there must exist a sub-image Tx 

satisfying Tx ∉ A in ARGP and Tx ∈ B in RGP. 

From the growing direction and seed point selection of the 

two algorithms, if Tx ∈ B, then there must exist Tx ∈ A. Thus, 

zj < si is invalid. 

Q.E.D. 

 

 
 

Figure 12. zj = si 

 

The conclusion of Theorem 7 can be further analyzed by 

dividing zj ≥ si into zj = si and zj > si. Suppose there is an 

image will produce δ  merged regions by RGP or ARGP 

(Figure 12; the merged regions are in dark color). If the 

exponential mechanism cannot obtain the qualified sub-

images for merging, then any zj = si . From the proof of 

Theorem 5, we have:  

 

max

maxError( ) 0

Error(Lap),

Error( ) 1 / 2

Error( )

Error(Lap), 1 ( *? ) / 2

Error(ARGP) 

 RGP 

 ARGP k

RGP or 

a b









= =
=


 
 =


 −  

 

 

As shown in Figure 13, if the exponential mechanism can 

obtain any qualified sub-images, which are not connected with 

the current merged region, then zj > si. It can be derived from 

formula (30) that: 

 

𝜀𝑅𝐺𝑃𝑙𝑒𝑓𝑡 − 𝜀𝐴𝑅𝐺𝑃𝑙𝑒𝑓𝑡=(𝜀 − 𝜀 ×
𝑘−(𝛾−1+𝑠𝑖)

𝑘
) − (𝜀 −

𝜀 ×
𝑎∗𝑏−(𝛾−1+𝑧𝑗)

𝑎∗𝑏
)==𝜀 ∗ (

𝑎∗𝑏−(𝛾−1+𝑧𝑗)

𝑎∗𝑏
−

𝑘−(𝛾−1+𝑠𝑖)

𝑘
)=𝜀 ×

𝑠𝑖−𝑧𝑗

𝑘
 

 

Since zj > si , εRGPleft − εARGPleft < 0 . Thus, 

Error(ARGP) < Error(RGP). 

Q.E.D. 

 

 
 

Figure 13. zj > si 
 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Experiments 
 

Among the various kinds of images, face images have the 

most representative sensitivity information. To verify its 

feasibility, our algorithm was tested on LENA.JPG (size: 

512*512). During the execution of the algorithm, the original 

image was split into 4,096 sub-images of the size 8*8. The 

following figures present the test results of different 

algorithms under the same conditions: Figure 14 shows the 

original image; Figure 15 shows the results of direct addition 

of Laplace noise to the original image; Figure 16 shows the 

result obtained by RGP; Figure 17 shows the result obtained 

by ARGP. Apparently, Figures 16 and 17 are closer to the 

original image than Figure 15, and the result of ARGP is better 

than that of LPA and RGP. 

 

 
 

Figure 14. Original image 
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Figure 15. Result of LAP 

 

 
 

Figure 16. Result of RGP 

 

 
 

Figure 17. Result of ARGP 

 

Now, a preliminary conclusion can be drawn: RGP and 

ARGP are superior to LAP. But the conclusion is merely 

obtained by observing the images on test results. It might be 

one-sided or inaccurate. To further validate the conclusion, the 

four images were converted into grayscale histograms and 

compared once more. Grayscale histogram demonstrates the 

relationship between the occurrence frequency of pixels on 

each grayscale and grayscale. Although it does not reflect the 

specific distribution of image pixels, the grayscale histogram 

statistically showcases the similarity between different images. 

 

 
 

Figure 18. Grayscale histogram of the original image 

 

 
 

Figure 19. Grayscale histogram of LAP result 

 
 

Figure 20. Grayscale histogram of RGP result 

 

 
 

Figure 21. Grayscale histogram of ARGP result 

 

As shown in Figures 18-21, under the same conditions, the 

histogram of RGP has similar distribution as that of LAP, but 

differs significantly from that of the original image. The pixel 

distribution of ARGP’s histogram is basically the same as that 

of the original image. Hence, ARGP has the least noise 

disturbance to the image, and achieves the highest availability. 

 

4.2 Result analysis 

 

Table 2. ORL & Precision 

 
Precision LAP SWP RGP Sort-SWP ARGP 

ε=1 6.5% 39.3% 47.4% 53.9% 54.6% 

ε=ln7 8.7% 42.4% 56.5% 69.0% 72.3% 

ε=ln20 11.4% 47.3% 63.6 % 71.9% 73.2% 

ε=5 16.7% 62.7% 70.1% 82.8% 83.6% 

ε=10 18.6% 68.7% 73.6% 85.1% 85.7% 

 

Table 3. ORL & Recall 

 
Recall LAP SWP RGP Sort-SWP ARGP 

ε=1 71.3% 78.0% 80.6% 83.6% 82.7% 

ε=ln7 73.2% 75.0% 81.7% 81.2% 83.1% 

ε=ln20 74.7% 83.8% 82.1% 84.0% 83.9% 

ε=5 77.9% 76.3% 84.6% 86.1% 88.0% 

ε=10 80.1% 82.2% 86.6% 88.1% 88.3% 

 

Table 4. ORL & F1-score 

 
F1-score LAP SWP RGP Sort-SWP ARGP 

ε=1 11.9% 52.3% 59.7% 65.5% 65.8% 

ε=ln7 15.5% 54.2% 66.8% 74.6% 77.3% 

ε=ln20 19.8% 60.5% 71.7% 77.5% 78.2% 

ε=5 27.5% 68.8% 76.7% 84.4% 85.7% 

ε=10 30.2% 74.8% 79.6% 86.6% 87.0% 

 

Table 5. YALE & Precision 

 
Precision LAP SWP RGP Sort-SWP ARGP 

ε=1 4.1% 27.3% 33.2% 44.5% 55.3% 

ε=ln7 6.5% 31.1% 37.8% 56.3% 60.2% 

ε=ln20 9.6% 39.0% 45.2% 62.7% 66.9% 

ε=5 13.0% 59.3% 60.1% 75.9% 77.3% 

ε=5 18.6% 63.5% 68.5% 77.4% 78.9% 
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Table 6. YALE & Recall 

 
Recall LAP SWP RGP Sort-SWP ARGP 

ε=1 77.3% 77.5% 77.4% 84.2% 84.0% 

ε=ln7 77.6% 77.7% 79.1% 81.7% 83.1% 

ε=ln20 79. 4% 82.6% 85.8% 86.8% 87.5% 

ε=5 75.4% 82.4% 86.2% 85.7% 88.0% 

ε=10 77.3% 85.2% 88.7% 89.2% 90.0% 

 

Table 7. YALE & F1-score 

 
F1-sroce LAP SWP RGP Sort-SWP ARGP 

ε=1 7.8% 40.4% 46.5% 58.2% 66.7% 

ε=ln7 12.0% 44.4% 51.2% 67.7 % 69.8% 

ε=ln20 17.1% 53.0% 59.2% 72.8% 75.8% 

ε=4 19.6% 59.3% 67.0% 75.6% 78.9% 

ε=10 30.0% 72.8% 77.3% 82.9% 84.1% 

 

Table 8. IMM & Precision 

 
Precision LAP SWP RGP Sort-SWP ARGP 

ε=1 3.9% 45.6% 50.1% 62.6% 65.4% 

ε=ln7 6.5% 51.2% 63.2% 72.3% 76.5% 

ε=ln20 8.6% 57.8% 69.1% 75.3% 82.1% 

ε=5 10.7% 68.6% 75.8% 84.0% 87.5% 

ε=10 15.2% 75.6% 79.6% 88.9% 91.2% 

 

Table 9. IMM & Recall 

 
Recall LAP SWP RGP Sort-SWP ARGP 

ε=1 54.6% 81.2% 83.7% 84.1% 85.6% 

ε=ln7 58.2% 80.7% 82.7% 84.5% 85.9% 

ε=ln20 63.8% 85.4% 86.3% 88.7% 89.0% 

ε=5 66.7% 78.9% 83.6% 87.8% 90.1% 

ε=10 70.1% 83.2% 85.9% 88.0% 91.2% 

 

Table 10. IMM & F1-score 

 
F1-sroce LAP SWP RGP Sort-SWP ARGP 

ε=1 7.3% 58.4% 62.7% 71.8% 74.1% 

ε=ln7 11.7% 62.7% 71.6% 78.0% 80.9% 

ε=ln20 15.2% 68.9% 76.7% 81.5% 85.4% 

ε=5 18.4% 73.4% 79.5% 85.9% 88.8% 

ε=10 25.0% 79.2% 82.6% 88.4% 91.2% 

 

To verify the feasibility of our algorithm, experiments were 

carried out on ORL, YALE, and IMM face databases, under 

the environment of Intel® Core i9-9900K CPU @ 3.60 GHz, 

32G memory, GTX 21080TI GPU, and Windows 10 operating 

system. During the experiments, a facial recognition method 

based on improved AlexNet, a convolutional neural network 

(CNN), was adopted. This approach has a simpler structure 

and fewer parameters than AlexNet, and thus saves lots of 

training time, laying the basis for rapid prediction. The sub-

image size was set to 4*4 for the experiment on ORL database, 

5*5 for that on YALE database, and 8*8 for that on IMM 

database. The privacy budget ε was set to 1, ln7, ln20, 5, and 

10, respectively. The test metrics are precision, recall, and F1-

score. The test results are listed in Tables 2-10. 

For differential privacy, the noise level is an important 

metric of algorithm performance. Under the same conditions, 

fewer noise means higher feasibility. Of course, noise level is 

only one of the indices of images, a special information carrier. 

Our algorithm needs to divide the original image into multiple 

sub-images before subsequent computing. The sub-image size 

affects the division results, which in turn influence the total 

noise generated by the algorithm. In addition to LAP, RGP, 

and ARGP, XXX’s sliding window publication (SWP) 

algorithm [1] and sort-SWP algorithm are compared in our 

experiments. Note that SWP and sort-SWP are realized based 

on 1D data flows. During image division, the two algorithms 

can only compute 1D sub-images. 

The image size varies between face image databases: 

92*112 in ORL, 100*100 in YALE, and 480*640 in IMM. The 

image division on each database must respect the size of 

original images. Thus, it is impossible to unify the sub-image 

size across the databases. The experimental results are 

displayed in Figures 22-24. 

 

 
 

Figure 22. Influence of ORL & sub-image size on noise 

 

 
 

Figure 23. Influence of YALE & sub-image size on noise 

 

 
 

Figure 24. Influence of IMM & sub-image size on noise 

 

Experimental results show that the total noise generated by 

an algorithm change with the sub-image size. When the sub-

images are too large or too small, the images after privacy 
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protection will have a low availability. The optimal sub-image 

size is 4*4 for ORL, 5*5 for YALE, and 8*8 for IMM. Thus, 

it can be derived that the optimal sub-image size is related to 

the size of the original image. Drawing on the results in Tables 

2-10 and Figures 22-24, it was found that image quality affects 

the final operation results of the algorithms. The better the 

image quality, the more in line the results are with our 

expectation. 

 

 

5. CONCLUSIONS 

 

To solve the privacy protection of face image publication, 

this paper combines regional growing technique with the 

Laplace mechanism of differential privacy to add noise to the 

original image, thereby protecting the sensitive information in 

face images. Compared with the LAP algorithm, which 

directly adds Laplace noise to the image, RGP and ARGP can 

effectively reduce the influence of noise on the protected 

image, and improve the feasibility of privacy protection on 

images. Moreover, this paper presents a novel region growing 

rule: FSMM, and discusses the influence of sub-image size on 

algorithm results. These conclusions provide an effective 

reference for other researchers.  

It is worth noting that our differential privacy protection 

approach for face image publication is realized by global noise 

addition. However, the sensitive information of a face image 

mostly exists in specific regions (e.g., facial contours, eyes, 

eyebrows, mouth, and noise). The future work will try to 

pinpoint the locations of sensitive information, and add noise 

to these places, aiming to further reduce the noise influence, 

and enhance the availability of face images after privacy 

protection. 

 

 

ACKNOWLEDGMENT 

 

This work is supported by National Natural Science 

Foundation of China (Grant No.: 61672179), Natural Science 

Foundation, Heilongjiang Province, China (Grant No.: 

LH2021D022, 2019F004), and Fundamental Research Funds, 

Heilongjiang Provincial Education Department, China (Grant 

No.: 135309457). 

 

 

REFERENCES  

 

[1] Liu, C., Yang, J., Zhao, W., Zhang, Y., Li, J., Mu, C. 

(2021). Face image publication based on differential 

privacy. Wireless Communications and Mobile 

Computing, 2021(9): 1-20. 

https://doi.org/10.1155/2021/6680701 

[2] Fung, B.C., Wang, K., Philip, S.Y. (2007). Anonymizing 

classification data for privacy preservation. IEEE 

Transactions on Knowledge and Data Engineering, 19(5): 

711-725. https://doi.org/10.1109/TKDE.2007.1015 

[3] Xiao, X., Tao, Y. (2006). Anatomy: Simple and effective 

privacy preservation. In Proceedings of the 32nd 

International Conference on Very Large Data Bases, pp. 

139-150. 

[4] Li, T., Li, N., Zhang, J., Molloy, I. (2010). Slicing: A new 

approach for privacy preserving data publishing. IEEE 

Transactions on Knowledge and Data Engineering, 24(3): 

561-574. https://doi.org/10.1109/TKDE.2010.236 

[5] Terrovitis, M., Liagouris, J., Mamoulis, N., 

Skiadopoulos, S. (2012). Privacy preservation by 

disassociation. Proceedings of the VLDB Endowment, 5: 

944-955. https://doi.org/10.14778/2336664.2336668 

[6] Sweeney, L. (2002). K-anonymity: A model for 

protecting privacy. International Journal of Uncertainty, 

Fuzziness and Knowledge-Based Systems, 10(5): 557-

570. https://doi.org/10.1142/S0218488502001648 

[7] Dwork, C. (2006). Differential privacy. In International 

Colloquium on Automata, Languages, and Programming. 

Springer, Berlin, Heidelberg, 1-12. 

https://doi.org/10.1007/11787006_1 

[8] Dwork, C. (2008). Differential privacy: A survey of 

results. In International Conference on Theory and 

Applications of Models of Computation. Springer, Berlin, 

Heidelberg, pp. 1-19. https://doi.org/10.1007/978-3-540-

79228-4_1 

[9] Dwork, C. (2009). The differential privacy frontier. In 

Theory of Cryptography Conference, Springer, Berlin, 

Heidelberg, 496-502. https://doi.org/10.1007/978-3-642-

00457-5_36 

[10] Dwork, C., Lei, J. (2009). Differential privacy and robust 

statistics. In Proceedings of the forty-first annual ACM 

symposium on Theory of computing, Bethesda, MD, 

USA, pp. 371-380. 

https://doi.org/10.1145/1536414.1536466 

[11] Dwork, C. (2010). Differential privacy in new settings. 

In Proceedings of the twenty-first annual ACM-SIAM 

symposium on Discrete Algorithms, Society for 

Industrial and Applied Mathematics, pp. 174-183. 

https://doi.org/10.1137/1.9781611973075.16 

[12] Dwork, C. (2011). The promise of differential privacy a 

tutorial on algorithmic techniques. In 2011 IEEE 52nd 

Annual Symposium on Foundations of Computer 

Science, pp. 1-2. https://doi.org/10.1109/FOCS.2011.88 

[13] Dwork, C., McSherry, F., Nissim, K., Smith, A. (2006). 

Calibrating noise to sensitivity in private data analysis. In 

Theory of Cryptography Conference, Springer, Berlin, 

Heidelberg, pp. 265-284. 

https://doi.org/10.1007/11681878_14 

[14] McSherry, F., Talwar, K. (2007). Mechanism design via 

differential privacy. In 48th Annual IEEE Symposium on 

Foundations of Computer Science (FOCS'07), pp. 94-

103. https://doi.org/10.1109/FOCS.2007.66 

[15] McSherry F. (2010). Privacy integrated queries: An 

extensible platform for privacy-preserving data analysis. 

Communications of the ACM, 53(9): 89-97. 

https://doi.org/10.1145/1810891.1810916 

[16] Roth, A., Roughgarden, T. (2010). Interactive privacy via 

the median mechanism. In Proceedings of the Forty-

Second ACM Symposium on Theory of Computing, pp. 

765-774. https://doi.org/10.1145/1806689.1806794 

[17] Hardt, M., Rothblum, G.N. (2010). A multiplicative 

weights mechanism for privacy-preserving data analysis. 

In 2010 IEEE 51st Annual Symposium on Foundations 

of Computer Science, pp. 61-70. 

https://doi.org/10.1109/FOCS.2010.85 

[18] Gupta, A., Roth, A., Ullman, J. (2012). Iterative 

constructions and private data release. In Theory of 

Cryptography Conference, Springer, Berlin, Heidelberg, 

pp. 339-356. https://doi.org/10.1007/978-3-642-28914-

9_19 

[19] Fan, L., Xiong, L. (2012). Real-time aggregate 

monitoring with differential privacy. In Proceedings of 

1400



 

the 21st ACM International Conference on Information 

and Knowledge Management, pp. 2169-2173. 

https://doi.org/10.1145/2396761.2398595 

[20] Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D. 

(2014). Differentially private event sequences over 

infinite streams. Proceedings of the VLDB Endowment, 

7(12): 1155-1166. 

https://doi.org/10.14778/2732977.2732989 

[21] Xiao, X., Wang, G., Gehrke, J. (2010). Differential 

privacy via wavelet transforms. IEEE Transactions on 

Knowledge and Data Engineering, 23(8): 1200-1214. 

https://doi.org/10.1109/TKDE.2010.247 

[22] Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, 

M. (2013). Differentially private histogram publication. 

The VLDB Journal, 22(6): 797-822. 

https://doi.org/10.1007/s00778-013-0309-y 

[23] Li, C., Miklau, G., Hay, M., McGregor, A., Rastogi, V. 

(2015). The matrix mechanism: optimizing linear 

counting queries under differential privacy. The VLDB 

Journal, 24(6): 757-781. https://doi.org/10.1007/s00778-

015-0398-x 

[24] Li, C., Hay, M., Miklau, G., Wang, Y. (2014). A data-

and workload-aware algorithm for range queries under 

differential privacy. Proceedings of the VLDB 

Endowment, 7(5): 341-352. 

https://doi.org/10.14778/2732269.2732271 

[25] Zhang, X.J., Fu, C.C., Meng, X.F. (2018). Facial image 

publication with differential privacy. Journal of Image 

and Graphics, 23(9): 1305-1315. 

[26] Nissim, K., Raskhodnikova, S., Smith, A. (2007). 

Smooth sensitivity and sampling in private data analysis. 

In Proceedings of the Thirty-Ninth Annual ACM 

Symposium on Theory of Computing, pp. 5-84. 

https://doi.org/10.1145/1250790.1250803 

[27] Adams, R., Bischof, L. (1994). Seeded region growing. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 16(6): 641-647. 

https://doi.org/10.1109/34.295913 

[28] Matalas, L., Benjamin, R., Kitney, R. (1997). An edge 

detection technique using the facet model and 

parameterized relaxation labeling. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 19(4): 328-

341. https://doi.org/10.1109/34.588006 

 

1401




