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Face images, as an information carrier, are naturally weak in privacy. If they are collected 

and analyzed by malicious third parties, personal privacy will leak, and many other 

unmeasurable losses will occur. Differential privacy protection of face images is mainly 

being studied under non-interactive frameworks. However, the ε-effect impacts the entire 

image under these frameworks. Besides, the noise influence is uniform across the protected 

image, during the realization of the Laplace mechanism. The differential privacy of face 

images under interactive mechanisms can protect the privacy of different areas to different 

degrees, but the total error is still constrained by the image size. To solve the problem, this 

paper proposes a non-global privacy protection method for sensitive areas in face images, 

known as differential privacy of landmark positioning (DPLP). The proposed algorithm is 

realized as follows: Firstly, the active shape model (ASM) algorithm was adopted to position 

the area of each face landmark. If the landmark overlaps a subgraph of the original image, 

then the subgraph would be taken as a sensitive area. Then, the sensitive area was treated as 

the seed for regional growth, following the fusion similarity measurement mechanism 

(FSMM). In our method, the privacy budget is only allocated to the seed; whether any other 

insensitive area would be protected depends on whether the area exists in a growing region. 

In addition, when a subgraph meets the criterion for merging with multiple seeds, the most 

reasonable seed to be merged would be selected by the exponential mechanism. 

Experimental results show that the DPLP algorithm satisfies ε-differential privacy, its total 

error does not change with image size, and the noisy image remains highly available.  
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1. INTRODUCTION

The rapid advancement of information technology makes it 

easier to acquire and share face images. People can easily 

obtain others’ photos via online social networks, mobile 

payment, surveillance systems, and other channels. These 

digital images are rich in sensitive personal information. If 

they are collected and analyzed by malicious third parties, 

personal privacy will leak, and many other unmeasurable 

losses will occur [1]. Relevant stakeholders have expressed 

their concerns over the possible leak of personal privacy 

during the use of face images: a person may be kept in the dark 

about the public recognition and tracking of him/her, and 

about the collection, use, and sharing his/her personal data. To 

make matters worse, face image databases could be sold or 

shared by many parties to unknown buyers or sharers. 

The image data query under privacy protection provides a 

solution to the above-mentioned privacy problems. For 

example, Fung et al. [2] and Xiao and Tao [3] created the k-

same method, using the anonymization mechanism. However, 

there is a major weakness of the conventional anonymization 

mechanism: Prior to processing the data, it is necessary to set 

many prior conditions about the background knowledge and 

attack models of the attacker, many of which does not hold in 

the real world. For instance, Li et al. [4] restricted user access 

to images on social networks through access control. Instead 

of protecting image privacy, their strategy protects images 

from the angle of access setting. Terrovitis et al. [5] 

implemented same-state encryption of gray images. But data 

encryption still needs to make assumptions of the attacks. 

Focusing on anonymous images uploaded to Facebook, 

Sweeney [6] found that attackers can derive the social security 

number (SSN) of those in the anonymous images from 

Friendster, an extra feature of this social network. 

Differential privacy [7], proposed by Dwork in 2006, adds 

noise to the output to disturb sensitive data. Under differential 

privacy, the effect of a single record can be concealed. 

Whether he record is in the dataset or not, the same result will 

always be outputted by the same probability, which prevents 

the attacker from further reasoning. Dwork further studied 

differential privacy in a series of papers [8-12], and disclosed 

the realization mechanism of differential privacy [13, 14]. 

McSherry noted that sequence combination and concurrent 

combination must be satisfied by the differential privacy 

algorithm for complex privacy problems [15]. 

The data protected by differential privacy can be published 

interactively or non-interactively, depending on the realization 

environment. The following are some representative 

interactive data publication methods: Roth and Roughgarden 

[16] Median algorithm, which can respond to multiple queries;

Hardt and Rothblum [17] private multiplicative weights

(PMW) mechanism, which increases the number of queries;
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Gupta et al. [18] universal iterative dataset creation (IDC) 

framework; Fan and Xiong [19] filtering and adaptive 

sampling for releasing time series under differential privacy 

(FAST) algorithm; Kellaris et al. [20] flow data publication 

algorithm with an unlimited number of queries. Non-

interactive data publication mainly uses histogram publication. 

The following are some representative non-interactive data 

publication methods: Xiao et al. [21] Privelet algorithm; Xu et 

al. [22] Noise First and Structure First algorithms; Li et al. [23] 

matrix mechanism; Li et al. [24] data- and workload-aware 

(DAWA) algorithm. Under the framework of differential 

privacy, the sensitive information in the protected images has 

only been researched tentatively, because the image data are 

highly complex. Currently, the additive noise for the 

differential privacy protection of images impacts the entire 

image. For face images, the sensitive information of the face 

only concentrates in the face area, and even in some specific 

parts of the face area. The other insensitive areas have nothing 

to do with privacy leak of face images. 

Through the above analysis, this paper puts forward the 

differential privacy of landmark positioning (DPLP) algorithm, 

a non-global privacy protection method for sensitive areas in 

face images, details the realization of the algorithm, and 

experimentally verifies the performance of the DPLP in 

protecting the privacy of face images. 

 

 

2. PRELIMINARIES  

 

2.1 Differential privacy 

 

Definition 1. Adjacent datasets of face image 

For a given image X, the gray matrix Xmn can be obtained 

by normalizing the image. Then, there exists X|Xmn =

[

x11,x12, ⋯ x1n
⋮ ⋱ ⋮

xm1,xm1, ⋯ xmn
], where xij in matrix Xmn represents the 

gray of the corresponding element. If there exists an X′ with 

only one element difference from X, |X − X′| = xij(1 ≤ i ≤

m, 1 ≤ j ≤ n), then X and X′ are adjacent datasets. 

Definition 2. Differential privacy 

For a given random algorithm M of image data publication, 

with the output range of Range(M), the algorithm can provide 

ε- differential privacy, if its arbitrary outputs on two adjacent 

gray images X and X′ satisfy: 

 

Pr[M(X) ∈  S] ≤  exp(ε) ×  Pr[M(X′)  ∈  S] (1) 

 

Definition 3. Global sensitivity 

Let Q be a random query function meeting Q: D → Rn. Then, 

the global sensitivity of Q can be expressed as:  

 

ΔQGS = max
X,X′

||Q(D) − Q(D′)||ρ (2) 

 

Theorem 1. Laplace mechanism 

Let Q be a query series of the length d. The random 

algorithm M receives database D and outputs the following 

vector that satisfy ε-differential privacy:  

 

M(D) = Q(D)+< Lap1 (
ΔQLS
ε
) , … , Lapd (

ΔQLS
ε
)) > (3) 

 

Theorem 2. Exponential mechanism 

The exponential mechanism mainly handles the non-

numeric outputs of the sampling algorithm. Under any 

exponential mechanism, the sampling algorithm M satisfies ε-

differential privacy if it meets: 

 

𝑀(𝑋, 𝑢) = {𝑟: |𝑃𝑟[𝑟 ∈ 𝑆] ∝ 𝑒𝑥𝑝 (
𝜀𝑢(𝑋, 𝑟)
2𝛥𝑢𝐿𝑆

)} (4) 

 

where, u(X, r)  is the scoring function; ΔuLS  is the global 

sensitivity of the scoring function u(X, r) ; S  is the output 

domain of our algorithm; r is the selected output term of the 

output domain S. The higher the score of u(X, r), the greater 

the probability for r being selected as the output. 

Property 1. Differential privacy-serial combination property 

For a given dataset X and a set of differential privacy 

algorithms M1(X),M2(X), … ,Mm(X) related to X, if algorithm 

Mi(D)  satisfies εi - differential privacy, and the random 

processes of any two algorithms are independent of each other, 

then the algorithm combined from these algorithms satisfies 

∑ εi
m
i=1 - differential privacy. 

Property 2. Differential privacy-parallel combination 

property 

Let M1(X1),M2(X2), … ,Mm(Xm)  be a series of ε - 

differential privacy algorithms with input datasets 

X1, X2 , … , Xm, respectively. Suppose the random processes of 

any two algorithms are independent of each other. Then, the 

algorithm combined from these algorithms satisfies ε - 

differential privacy. 

 

2.2 Face landmark positioning 

 

Face landmark positioning can automatically detect the 

landmarks (positions) in representative sensitive areas 

(eyebrows, eyes, ears, noise, mouth, and face contours) in 

face-containing images, using some algorithms. This 

technique is of great significance to research fields like face 

identification, expression analysis, three-dimensional (3D) 

face modeling, face synthesis, and face image coding. Yang 

and Huang [25] realized the mosaic algorithm with the aid of 

edge tracking. Meng et al. [26] were the first to position face 

landmarks through geometric projection. On this basis, Feng 

and Zhou developed face landmark positioning using variance 

projection function (VPF) [27] and integral projection 

function (IPF) [28], respectively. Zhang and Lenders [29] 

introduced binarization to position landmarks in reference to 

pupil positions. Considering the symmetry of face, Reisfeld et 

al. [30] proposed the generalized symmetric transform (GST), 

which takes the eyes as center points, to position face 

landmarks. Wu et al. [31] established multiple Snake models 

for different face organs, and fitted the locally converging 

Snake models into a complete set of face landmarks. Yuile et 

al. [32] replaced the traditional edge prediction algorithm with 

a more stable approach, namely, the peak-valley variation 

frequency of face image gray value, and put forward a face 

landmark positioning method based on deformable template 

(DT). Lanitis et al. [33] suggested using principal distribution 

model (PDM) algorithm to realize face landmark positioning. 

Cootes et al. [34] designed the active shape model (ASM) 

algorithm, a statistical point distribution model. Dollár et al. 

[35] positioned landmarks in images through cascaded pose 

regression (CPR). With the development of convolutional 

neural network (CNN) [36], many scholars utilized the strong 

feature extraction power of the CNN to pinpoint face 

landmarks. The representative methods include deep CNN 

1678



 

(DCNN) [37], tasks-constrained deep convolutional network 

(TCDCN) [38], multitask cascaded convolutional networks 

(MTCNN) [39], and tweaked CNN (TCNN) [40]. In addition, 

some scholars solved face landmark positioning with principal 

component analysis (PCA) [41], support vector machine 

(SVM) [42], back propagation network (BPN) [43], dynamic 

link architecture (DLA) [44], and Gabor wavelet network 

(GWN) [45]. Table 1 analyzes the performance of the above 

methods. 

 

Table 1. Performance of different face landmark positioning methods 

 
Algorithm Image quality Computational complexity Accuracy 

Mosaic image Strongly high Strongly complex Strongly low 

VPF Strongly high Slightly simple Slightly low 

IPF Strongly high Slightly simple Slightly low 

Binarization Strongly high Slightly simple Slightly low 

GST Strongly high Strongly complex Slightly high 

Snake Strongly high Strongly complex Slightly high 

DT Strongly high Slightly complex Slightly high 

ASM Slightly high Slightly complex Strongly high 

CPR Slightly high Strongly complex Strongly high 

DCNN Strongly low Strongly complex Strongly high 

TCDCN Strongly low Strongly complex Strongly high 

MTCNN Strongly low Strongly complex Strongly high 

TCNN Strongly low Strongly complex Strongly high 

PCA Strongly low Strongly complex Strongly high 

SVM Strongly low Strongly complex Strongly high 

BPN Slightly low Slightly complex Strongly high 

DLA Slightly low Slightly complex Strongly high 

GWN Slightly low Slightly complex Strongly high 

 

 

3. METHODOLOGY 

 

3.1 Laplacian (LAP) algorithm  

 

This paper proposes the LAP algorithm based on the 

Laplace mechanism. Without changing any of the original data, 

this algorithm directly disturbs the two-dimensional (2D) 

matrix generated from the original image with Laplace noise, 

and publishes the disturbed image straightforwardly. In the 

LAP algorithm, every pixel xij  in the gray matrix Xm×n  is 

considered an independent individual, laying the basis for 

applying the interactive mechanism to privacy protection. 

Provided that the pixels do not disturb each other, and the 

privacy budget is allocated evenly, each xij (1≤i≤m, 1≤j≤n) 

consumes a privacy budget of ε (m × n)⁄ . The LAP algorithm 

is detailed as follows: 

Different from the original image X, the privacy protected 

image X′ contains an additive noise of 2m × n × (ΔQ × m ×
n/ε)2 . Although the LAP algorithm satisfies ε-differential 

privacy, a huge error will arise if the algorithm is directly 

applied for privacy protection of an excessively large image, 

making the noisy image strongly unavailable. The LAP 

algorithm applies to noise addition to the subgraphs of an 

image, but the noise level of a subgraph depends on the size of 

that subgraph. 

Most of the existing methods face the same problem as the 

LAP algorithm: the algorithm feasibility is limited by image 

size. Besides, there are two more defects with these methods: 

an excessively high computing load, and the low availability 

of the noisy image. 

 

Algorithm 1: LAP  

Input: original image X, privacy budget ε,parameters m 

and n, subgraph similarity expectation Th 

Output: Image X′ satisfying differential privacy 

Read the original image X, convert the image into gray 

matrix and store it in matrix Xm×n 

for i=1 to m 

for i=1 to n 

X(i,j)
′=X(j,i)+ lap(ΔQ × m× n/ε) 

end for 

end for 

Output privacy protected image X′  
 

3.2 ASM algorithm 

 

The ASM model abstracts the target by a shape model. It is 

an algorithm based on point distribution model (PDM). In the 

PDM, the geometry of objects with similar shapes, such as 

face, hands, heart, and lungs, can be described by a shape 

vector, which is formed by serial connected coordinates of 

several landmarks. Before implementing the ASM algorithm, 

it is necessary to manually label the training images, obtain the 

shape model through training, match specific objects with 

landmarks. The ASM algorithm is realized in two stages: 

training and search. 

During ASM training, the first step is to establish a shape 

model that matches any face shapes. The model construction 

requires the collection of sufficient training samples, and 

manual labeling of face landmarks (In this paper, 68 

landmarks are labeled on each training image). After labeling, 

all landmarks are combined into a shape vector 𝑔𝑖 =

(𝑥1
𝑖 , 𝑦1

𝑖 , 𝑥2
𝑖 , 𝑦2

𝑖 , … , 𝑥𝑘
𝑖 , 𝑦𝑘

𝑖 )(𝑖 = 1,2, … , 𝑛) , where 𝑘 = 68,

and (𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) is the position of landmark j on training sample i, 

and n depends on the number of training samples. In this way, 

a 2 × 𝑛-dimensional vector 𝑎 can be obtained: 

 

𝑔𝑖 = (𝑥1, … 𝑥𝑛, 𝑦1…𝑦𝑛)
𝑇 (5) 

 

The high dimensionality of vector (5) is not conducive to 

the subsequent computing. But the different dimensions have 
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a strong correlation, owing to the natural similarity of face 

features, even if the landmarks come from different faces. 

However, there is no excessively large position changes 

between the landmarks with the same label. To solve the 

excessively high dimensionality, the vector is subjected to 

dimensionality reduction and principal component extraction 

by the PCA. Hence, any set of landmarks can be viewed as a 

point in the principal component space. The mean of the point 

set is the origin. Thus, any point can be described as the sum 

of the origin and a vector. Thus, we have: 

 

𝑔𝑖 ≈ �̅� + 𝑃𝑏 (6) 

 

During the PCA, the mean shape vector needs to be 

calculated:  

 

�̅� =
1

𝑛
∑𝑔𝑖

𝑛

𝑖=1

 (7) 

 

Then, the covariance matrix can be derived: 

 

𝑆 =
1

𝑛
∑(𝑔𝑖 − �̅�)

𝑇 ∙ (𝑔𝑖 − �̅�)

𝑛

𝑖=1

 (8) 

 

After that, the eigenvalues of the covariance matrix S are 

calculated, and sorted to obtain 𝜏1,𝜏2,… . 𝜏𝑞,, where any 𝜏𝑖 > 0. 

The P in formula (6) is a covariance matrix containing the top-

t principal components. The matrix P and the corresponding 

eigenvalue satisfy:  

 

∑ 𝜏𝑖
𝑡
𝑖=1

∑ 𝜏𝑠
𝑞
𝑖=1

> 𝑓𝑣𝑉𝑇 (9) 

 

where, 𝑓𝑣  is a proportionality coefficient depending on the 

number of eigenvectors (the value of 𝑓𝑣 is usually 95%); 𝑉𝑇 is 

the sum of all eigenvalues. The b in formula (6) is a t-

dimensional vector controlling the variation in landmark shape:  

 

𝑏𝑖 = 𝑃
𝑇 ∙ (𝑔𝑖 − �̅�) (10) 

 

when b=0, x is the origin (mean shape). To prevent the shape 

variation from exceeding the preset range, the b value should 

be limited by:  

 

𝐷𝑚
2 =∑ (

𝑏𝑖
2

𝜏𝑖
)

𝑡

𝑖=1
≤ 𝐷𝑚𝑎𝑥

2  (11) 

 

where, 𝐷𝑚𝑎𝑥 is usually set to 3. Thus, |𝑏𝑖| < 3√𝜏𝑖. 

After setting up the shape model, it is necessary to establish 

the local features of each landmark, such as to match the shape 

model with the new point set. For a given face image X, the 

image matching process aims to rotate, scale, and translate the 

shape model:  

 

𝑋 = 𝑇𝑋𝑡,𝑌𝑡,𝑠,𝜃(�̅� + 𝑃𝑏) (12) 

 

where, 𝑇𝑋𝑡,𝑌𝑡,𝑠,𝜃 is the matching operation matrix: 

 

𝑇𝑋𝑡,𝑌𝑡,𝑠,𝜃 (
𝑥

𝑦
) = (

𝑋𝑡
𝑌𝑡
) + (

𝑠 𝑐𝑜𝑠 𝜃 −   𝑠 𝑠𝑖𝑛 𝜃

𝑠 𝑠𝑖𝑛 𝜃          𝑠 𝑐𝑜𝑠 𝜃
) (13) 

 

To match the landmark set Y (the results after translation, 

scaling, and rotation) and model X, i.e., minimize the 

difference between model X and image landmark set Y, it is 

necessary to solve the minimum of the following formula:  

 

|𝑌 − 𝑇𝑋𝑡,𝑌𝑡,𝑠,𝜃(�̅� + 𝑃𝑏)|
2 (14) 

 

Note that, if the model point positions are given in X, and if 

the nearest adjacent point to each model point is X’, then the 

error metric can be expressed as:  

 

𝐹(𝑏, 𝑋𝑡 , 𝑌𝑡 , 𝑠, 𝜃) = |𝑋 − 𝑋
′|2 (15) 

 

During ASM search, the mean shape needs to go through 

affine transformation to obtain an initial model: 

 

𝑋 = 𝑀(𝑠, 𝜃)[𝑔𝑖] + 𝑋𝑐 (16) 

 

The initial model X (16) refers to the results of the mean 

shape after being rotated counterclockwise by 𝜃  degrees, 

scaled by a ratio of s, and translated by a distance of 𝑋𝑐. Using 

the initial model, the search stage looks for the target shape in 

image Y, aiming to minimize the gap between the landmark 

position of the target shape and the actual landmark position. 

The final results of the search are obtained by adjusting the 

variation of parameter b and implementing affine 

transformation. The specific steps of the ASM search are 

explained in Algorithm 2. 

 

Algorithm 2: ASM search  

𝐿 = Lmax 
while (L ≥ 0) 

   Calculate the position of the model point in the L-th layer 

of the image 

     Search n sampling points on both sides of the model 

point 

     Update the position and adjust the parameters to fit the 

model to the new point 

     if (the preset number of iterations is exceeded or no 

closer feature point is found at the current position) 

         Return to line 2 

     if (L > 0) then L → (L − 1) 
if (convergence of layer 0 function) 

     Output result  

 

3.3 DPLP algorithm 

 

Non-interactive data publication is the research hotspot of 

the data publication under differential privacy. In this form of 

data publication, the entire image is influenced by 𝜀-effect. As 

a result, the noise level obeys uniform distribution across the 

image. However, the sensitive information only exists in 

specific areas of real-world face images. For an image, 

different parts require different degrees of privacy protection. 

Thus, it is meaningful to realize non-global privacy protection 

of human images, and reduce the noise impact on the protected 

image. This paper combines landmark positioning, regional 

growth, and differential privacy into a novel face image 

privacy protection method called DPLP. Our algorithm adopts 

the ASM algorithm to estimate the areas of sensitive 

information, and implements non-global noise disturbance to 

the specific areas containing sensitive face information. Under 

the premise of satisfying 𝜀 -differential privacy, the DPLP 

algorithm mitigates the influence of Laplace noise on the 
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privacy protected image, and balances image availability and 

the degree of privacy protection.  

To ensure the realization of the DPLP algorithm, four key 

problems must be solved during the algorithm design: 

selecting landmark positioning algorithm, setting the rules for 

regional growth, allocation of privacy budget, and selecting 

the best target out of multiple seeds available for a subgraph.  

The setting of the rules for regional growth is crucial to 

regional growth. Due to the limitations of the traditional 

regional growth rules, this paper adopts the fusion similarity 

measurement mechanism (FSMM) [46] as regional growth 

rules. The 𝐹𝑆𝑀𝑀(𝑋, 𝑌) can be calculated by: 

 

𝐹𝑆𝑀𝑀(𝑋, 𝑌) =  

𝜑 × (𝑑(𝑋, 𝑌)  𝜌(𝑋, 𝑌) + 𝜎⁄ )

× (2𝑢𝑋𝑢𝑌 + 𝐶1) × (2𝜎𝑋𝜎𝑌 + 𝐶2)

(𝑢𝑋
2 + 𝑢𝑌

2 + 𝐶1) × (𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2)
 

(17) 

 

The regional growth of the DPLP algorithm needs to 

allocate a suitable portion of the privacy budget to each seed, 

using the Laplace mechanism of differential privacy. Whether 

an adjacent subgraph should be merged into the growing 

region of the current seed depends on the similarity between 

the subgraph and the region meets the preset threshold. In our 

method, the privacy budget is only allocated among the seeds. 

For an insensitive area, if it belongs to a growth region, it will 

be protected; otherwise, it will not be protected. In addition, 

when a subgraph can be merged with multiple seed areas, the 

most suitable seed area to be merged needs to be selected 

through the exponential mechanism. The realization of the 

DPLP algorithm is as follows:  

Lines 1-5 convert the original image into a gray image, 

divide the gray image into β subgraphs of the same size, and 

call the ASM algorithm to position 68 landmarks and to find 

the seeds needed for regional growth. Line 5 adjusts the 

position of seed regions to ensure the growth direction. Line 6 

divides the total privacy budget 𝜀 into two parts: the part 𝜀1 for 

adding Laplace noise to seed regions, and the part 𝜀2  for 

implementing the exponential mechanism. Line 7 defines the 

possibility of ≤ 𝑆: a subgraph may cover multiple landmarks, 

because the subgraph size is too large. Lines 8-20 overcome 

the defect of traditional regional growth technique: the 

adjacent subgraph can be merged to the growth region of the 

current seed, as long as the subgraph satisfies the growth rules; 

when multiple seed areas are available for merging the 

subgraph, the traditional technique depends both on growth 

rules and the sequence of seed selection. To solve the problem, 

Lines 15-16 take the Euclidean distance as the scoring function 

between each subgraph and each seed, and choose the most 

suitable seed by the exponential mechanism. The nearest seed 

is not preferred for region fusion. Otherwise, the attacker can 

deduce the distribution of landmarks, a prediction result of 

face identification, leading to privacy leak. 

 

Algorithm 3: DPLP 

Input: original image X, privacy budget 𝜀 , preset 

parameters β, subgraph similarity expectation 𝑇ℎ 

Output: image 𝑋′ satisfying differential privacy 

Read the original image X, convert the image into gray 

matrix and store it in matrix 𝑋𝑚×𝑛 

𝑋𝑚×𝑛  according to preset parameters β, split into 

subgraph sets with the same structure 𝑇(𝐼,𝐽) 

Extracting facial feature point 𝐾𝑆 = (𝐾1, 𝐾2, …𝐾68) 
using ASM algorithm_ S 

If  𝐾𝑆 belongs to a subgraph 𝑇(𝑖,𝑗) (1 ≤ i ≤ 𝐼, 1 ≤ j ≤ 𝐽) 

Set 𝑇(𝑖,𝑗)  as the backup seed, optimize the position of 

𝑇(𝑖,𝑗), and add it to the 𝑆𝑒𝑒𝑑𝑁, 

𝜀 = 𝜀1 + 𝜀2 
Find all backup 𝑆𝑒𝑒𝑑𝑁 = (𝑆𝑒𝑒𝑑1, 𝑆𝑒𝑒𝑑2, … 𝑆𝑒𝑒𝑑𝑛)   

(𝑁 ≤ 𝑆) 

𝑆𝑒𝑒�̃� = 0  

Create the list to record the status of the current seed 

region merging process 

 𝑤ℎ𝑖𝑙𝑒(𝑆𝑒𝑒�̃� ≤ 𝑁) 

 𝑖𝑓 𝑙𝑖𝑠𝑡_ℎ𝑒𝑎𝑑 == 𝑁𝑈𝐿𝐿 
Randomly select unmarked 𝑆𝑒𝑒𝑑𝑛  and add noise to 

it, 𝑆𝑒𝑒𝑑𝑛
′ = 𝑆𝑒𝑒𝑑𝑛 + 𝑙𝑎𝑝(𝛥𝑄 × 𝑁/𝜀1) 

    If (𝐹𝑆𝑀𝑀(𝑆𝑒𝑒𝑑𝑛
′ , 𝑇(𝑖,𝑗)) ≤ 𝑇ℎ&& 𝑇(𝑖,𝑗) is unmarked 

     Calculate all 𝑆𝑒𝑒𝑑𝑀  that meets the condition by 

𝐹𝑆𝑀𝑀(𝑆𝑒𝑒𝑑𝑁
′ , 𝑇(𝑖,𝑗))  ≤ 𝑇ℎ  ( 𝑆𝑒𝑒𝑑𝑀 ∈ 𝑆𝑒𝑒𝑑𝑁|𝑆𝑒𝑒𝑑𝑀 =

(… , 𝑆𝑒𝑒𝑑𝑚|𝑆𝑒𝑒𝑑𝑚 = 𝑇(𝑥,𝑦), …) 

     𝑢(𝑇(𝑖,𝑗), 𝑆𝑒𝑒𝑑𝑀)=−√(𝑖 − 𝑥)
2 + (𝑗 − 𝑦)2 

     Extract 𝑆𝑒𝑒𝑑𝑚|𝑆𝑒𝑒𝑑𝑚 ∈ 𝑆𝑒𝑒𝑑𝑀  (P ∝

exp(𝜀2𝑢(𝑇(𝑖,𝑗), 𝑆𝑒𝑒𝑑𝑀) 2𝛥𝑢⁄ )) 

     𝑇(𝑖,𝑗)
′ = 𝑆𝑒𝑒𝑑𝑚 + 𝑙𝑎𝑝(𝛥𝑄 × 𝑁/𝜀1) 

     𝑆𝑒𝑒𝑑𝑛 as marked, 𝑇(𝑖,𝑗) as marked 

     𝑆𝑒𝑒�̃� = 𝑆𝑒𝑒�̃� + 1 

     Release all data in the list, and the consolidation of 

this sub region is comple 

 

Theorem 3. In DPLP, the privacy budget under the Laplace 

mechanism will not surpass 𝜀1. 

Proof: According to the constraint of 𝑁 ≤ 𝑆  in Line 7, 

Algorithm 3, when each seed only contains one landmark, 

𝑁 = (𝑆 = 68). Then, there exists: 

 

𝜀1
1 + 𝜀1

2 + 𝜀1
3 +⋯+ 𝜀1

68 = 𝜀1  

 

when each seed contains more landmarks, 𝑁 < (𝑆 = 68) . 

Then, there exists: 

 

𝜀1
1 + 𝜀1

2 + 𝜀1
3 +⋯+ 𝜀1

𝑁 < 𝜀1  

 

Q.E.D. 

Theorem 4. DPLP satisfies ε- differential privacy. 

Proof: 

In the DPLP, the total privacy budget ε is divided into two 

parts: 𝜀=𝜀1+𝜀2. Among them, 𝜀2 is used to select the target 

seed by the exponential mechanism. The selection probability 

is positively proportional to 𝑒𝑥𝑝 (
𝜀2𝑢(𝑇(𝑖,𝑗),𝑆𝑒𝑒𝑑𝑀)

2𝛥𝑢
) . For 

convenience, the scoring function 𝑢(𝑇(𝑖,𝑗), 𝑆𝑒𝑒𝑑𝑀) is replaced 

with 𝛥𝑄, that is, there exists: 

 

𝑃𝑟[𝑀(𝑆𝑒𝑒𝑑𝑀 , 𝛥𝑄) = 𝑆𝑒𝑒𝑑𝑚]

=
𝑒𝑥𝑝 (

𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚)
2𝛥𝑢

)

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

 
(18) 

 

Given 𝑆𝑒𝑒𝑑𝑀  and its adjacent 𝑆𝑒𝑒𝑑𝑀
′
, for any 𝑆𝑒𝑒𝑑𝑚 

value ( 𝑆𝑒𝑒𝑑𝑚 ∈ 𝑂 ), the following can be derived from 

formula (18):  
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 𝑃𝑟[𝑀(𝑆𝑒𝑒𝑑𝑀 , 𝛥𝑄) = 𝑆𝑒𝑒𝑑𝑚]

𝑃𝑟[𝑀(𝑆𝑒𝑒𝑑𝑀
′, 𝛥𝑄) = 𝑆𝑒𝑒𝑑𝑚]

=

𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚)

2𝛥𝑢
)

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀

′, 𝑆𝑒𝑒𝑑𝑚)
2𝛥𝑢 )

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀

′, 𝑆𝑒𝑒𝑑𝑚
′)

2𝛥𝑢
)𝑆𝑒𝑒𝑑𝑚

′∈𝑂

 

 

=

(

 
 
𝑒𝑥𝑝 (

𝜀2𝛥𝑄((𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚))
2𝛥𝑢

)

𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀

′, 𝑆𝑒𝑒𝑑𝑚)
2𝛥𝑢

)
)

 
 

× (
∑ 𝑒𝑥𝑝 (

𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀
′, 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

) 

= 𝑒𝑥𝑝

(

 
 
𝜀2 (

𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚)

−𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀
′, 𝑆𝑒𝑒𝑑𝑚)

)

2𝛥𝑢

)

 
 

× (
∑ 𝑒𝑥𝑝 (

𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀
′, 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

)

≤ e𝑥𝑝 (
𝜀2
2
)

×

(

 
 
 
 
 ∑

𝑒𝑥𝑝 (
𝜀2
2
)

× 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)
𝑆𝑒𝑒𝑑𝑚

′∈𝑂

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

)

 
 
 
 
 

≤ e𝑥𝑝 (
𝜀2
2
) × 𝑒𝑥𝑝 (

𝜀2
2
)

× (
∑ 𝑒𝑥𝑝 (

𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚
′)

2𝛥𝑢
)𝑆𝑒𝑒𝑑𝑚

′∈𝑂

∑ 𝑒𝑥𝑝 (
𝜀2𝛥𝑄(𝑆𝑒𝑒𝑑𝑀 , 𝑆𝑒𝑒𝑑𝑚

′)
2𝛥𝑢

)𝑆𝑒𝑒𝑑𝑚
′∈𝑂

) 

= 𝑒𝑥𝑝(𝜀2) 

 

 

Therefore, the DPLP satisfies 𝜀2-differential privacy during 

the selection of unlabeled subgraphs under the exponential 

mechanism. In addition, the proof of Theorem 3 suggests that 

the DPLP satisfies 𝜀1 -differential privacy during noise 

addition. According to Property 1, the whole process of the 

DPLP satisfies 𝜀-differential privacy. 

Q.E.D. 

Theorem 5. The error of the DPLP is no greater than that of 

the LAP, i.e.:  

 

𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃) < 𝐸rror(𝐿𝐴𝑃)  

 

Proof: 

In the DPLP, the privacy protected image contains three 

types of subgraphs, namely, noise-free subgraph P(i,j) , seed 

Seedn, and subgraph merged in regional growth T(i,j). Under 

the Laplace mechanism, 𝑆𝑒𝑒𝑑𝑛  and 𝑇(𝑖,𝑗)  are mixed with an 

additive noise to form 𝑆𝑒𝑒𝑑𝑛
′  and 𝑇(𝑖,𝑗)

′ . Then, it is necessary 

to prove that 𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃) ≤ 𝐸rror(𝐿𝐴𝑃) for each type of 

subgraph. 

(1) For P(i,j) in DPLP: 

 

𝑃(𝑖,𝑗)_𝐷𝑃𝐿𝑃
′ = 0  

 

𝑃(𝑖,𝑗)_𝐿𝐴𝑃
′ = 𝑃(𝑖,𝑗) + 𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2))  

 

Subtracting the two formulas above, we have: 

𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃(𝑃(𝑖,𝑗))) < 𝐸rror(𝐿𝐴𝑃(𝑃(𝑖,𝑗))). 

(2) For 𝑆𝑒𝑒𝑑𝑛 in DPLP: 

 

𝑆𝑒𝑒𝑑𝑛_𝐷𝑃𝐿𝑃
′ = 𝑆𝑒𝑒𝑑𝑛 + 𝑙𝑎𝑝(𝛥𝑄 × 𝑁/𝜀1) 

 

 

𝑆𝑒𝑒𝑑𝑛_𝐿𝐴𝑃
′ = 𝑆𝑒𝑒𝑑𝑛 + 𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2)) 

 

 

Since 𝑁 ≪ 𝐼 × 𝐽, the numerical gap between 𝜀1 and 𝜀1 + 𝜀2 

is so small as to be negligible. Subtracting the two formulas 

above, we have: 𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃(𝑆𝑒𝑒𝑑𝑛)) <
𝐸rror(𝐿𝐴𝑃(𝑆𝑒𝑒𝑑𝑛)). 

(3) For 𝑇(𝑖,𝑗) in DPLP: 

 

𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃(𝑇(𝑖,𝑗))) = 𝑇(𝑖,𝑗)_𝐷𝑃𝐿𝑃
′

= 𝑆𝑒𝑒𝑑𝑛 + 𝑙𝑎𝑝 (𝛥𝑄 ×
𝑁

𝜀1
) − 𝑇(𝑖,𝑗) 

 

 

𝐸rror(𝐿𝐴𝑃(𝑇(𝑖,𝑗))) = 𝑇(𝑖,𝑗)_𝐿𝐴𝑃
′

= 𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2)) 
 

 

Subtracting the two formulas above, we have: 

 

𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃(𝑇(𝑖,𝑗)))

− 𝐸rror(𝐿𝐴𝑃(𝑇(𝑖,𝑗))) = 𝑆𝑒𝑒𝑑𝑛

+ 𝑙𝑎𝑝 (𝛥𝑄 ×
𝑁

𝜀1
) − 𝑇(𝑖,𝑗)

− 𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1
+ 𝜀2)) = (𝑆𝑒𝑒𝑑𝑛

+ 𝑙𝑎𝑝 (𝛥𝑄 ×
𝑁

𝜀1
)) − (𝑇(𝑖,𝑗)

+ 𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2)))
= 𝑆𝑒𝑒𝑑𝑛_𝐷𝑃𝐿𝑃

′ − 𝑇(𝑖,𝑗)_𝐿𝐴𝑃
′  

 

 

The maximum and minimum of the image gray matrix are 

255 and 0, respectively. Under the noise effect, all values 

greater than 255 will be converted into 255, and all values 

smaller than 0 will be converted into 0. Under the Laplace 

mechanism, when the privacy budget approaches zero, 

𝐸𝑟𝑟𝑜𝑟(𝑇(𝑖,𝑗)_𝐿𝐴𝑃
′ )  is equivalent to 𝐸𝑟𝑟𝑜𝑟(𝑆𝑒𝑒𝑑𝑛_𝐿𝐴𝑃

′ ) . Thus, 

we have: 

 

𝑆𝑒𝑒𝑑𝑛_𝐷𝑃𝐿𝑃
′ − 𝑇(𝑖,𝑗)_𝐿𝐴𝑃

′

= 𝑆𝑒𝑒𝑑𝑛_𝐷𝑃𝐿𝑃
′

− 𝑆𝑒𝑒𝑑𝑛_𝐿𝐴𝑃
′ = 𝑆𝑒𝑒𝑑𝑛

+ 𝑙𝑎𝑝 (𝛥𝑄 ×
𝑁

𝜀1
) − 𝑆𝑒𝑒𝑑𝑛

−  𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2))

= 𝑙𝑎𝑝 (𝛥𝑄 ×
𝑁

𝜀1
)

−  𝑙𝑎𝑝(𝛥𝑄 × 𝐼 × 𝐽/(𝜀1 + 𝜀2)) < 0 
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Thus, we have: 𝐸𝑟𝑟𝑜𝑟(𝐷𝑃𝐿𝑃(𝑇(𝑖,𝑗))) <

𝐸rror(𝐿𝐴𝑃(𝑇(𝑖,𝑗))). 

Q.E.D. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Experiments 

 

The feasibility of the DPLP was tested on 17-2m.jpg 

(480*640) from the IMM Face Database. During the execution 

of the algorithm, the subgraph size was set to 10*10, and the 

original image was split into 3,072 subgraphs. To realize the 

DPLP, the first step is to convert the original image (Figure 1) 

into a gray image (Figure 2). Then, the ASM algorithm was 

adopted to label 68 landmarks (Figure 3) in the face of the gray 

image. To satisfy the regional growth requirements of the 

DPLP, the face image needs to be divided into multiple 

subgraphs of the same size, using the preset parameters 

(Figure 4). If the landmark position overlaps the area 

contained in a subgraph (Figure 5), the subgraph will be 

treated as a sensitive area, and selected as a seed for regional 

growth (Figure 6). 

 

                   
 

Figure 1. Original image                          Figure 2. Gray image                  Figure 3. Face landmark positioning 

 

                   
 

Figure 4. Subgraph division                 Figure 5. Overlapping region              Figure 6. Sensitive area (seed) 

 

          
 

Figure 7. Candidate areas for merging                    Figure 8. Ideal areas for merging 

 

         
 

Figure 9. Results of the LAP               Figure 10. Results of the DPLP
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As shown in Figure 7, when a subgraph (black area) could 

be merged with multiple seeds (white area) in the DPLP, the 

merging result depends too much on the sequence of seed 

selection. To prevent the attacker from predicting the target 

face from landmark distribution, the Euclidean distance 

between each subgraph and each seed is adopted as the scoring 

function of the exponential mechanism to guide the selection 

of areas to be merged. Figure 8 shows the most reasonable 

merging method under 𝜀2. 

Figure 9 presents the results of the LAP algorithm, and 

Figure 10 displays the results of the DPLP under the same 

privacy budget. It can be observed that the DPLP only 

functions within the regional growth range with face 

landmarks as seeds, while the LAP acts on the entire image. 

 

4.2 Results analysis 

 

To verify the feasibility of our algorithm, some multi-face 

images were selected from IMM Face Database, Aberdeen 

Face Database, and LFW Face Database, and compiled into 

test sets. The experimental environment includes Intel® Core 

i9-9900K CPU @ 3.60 GHz, 32G memory, GTX 21080TI 

GPU, and Windows 10. During the experiments, the faces 

were recognized by TensorFlow + AlexNet CNN. The privacy 

budget ε was set to 0.5, 1, 1.5, 2, 2.5, and 3, in turn. The 

performance was measured by Precision, Recall, and F1-score. 

The experimental results are displayed in Figures 11-19. 

 

 
 

Figure 11. Precision on IMM 

 

 
 

Figure 12. Recall on IMM 

 

 
 

Figure 13. F1-score on IMM 

 

 
 

Figure 14. Precision on Aberdeen 
 

 
 

Figure 15. Recall on Aberdeen 

 

 
 

Figure 16. F1-score on Aberdeen 
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Figure 17. Precision on LFW 

 

 
 

Figure 18. Recall on LFW 

 

 
 

Figure 19. F1-score on LFW 

 

Under the same privacy budget (ε=0.5), the LAP performed 

the best on LFW (250*250) (Precision=4.7%), followed by 

Aberdeen (400*550) (Precision=2.1%), and worked the worst 

on IMM (480*640) (Precision=1.8%). This is because the total 

error of the LAP depends on the image size. For sliding 

window publication (SWP) algorithm, sort-SWP algorithm, 

region growing publication (RGP), and atypical RGP (ARGP) 

algorithm, the total error hinges on the regional growth results. 

Under the same privacy budget and Th, the results of regional 

growth depend on the complexity of the image. All four 

algorithms had the worst performance (Precision=32.7%, 

48.6%, 37.5%, 51.8%) on LFW, due to the complex 

background of images in the database. Their performances on 

IMM (Precision=40.9%, 57.2%, 46.6%, 57.7%) and Aberdeen 

(Precision=38.2%, 54.9%, 43.8%, 55.5%) were similar, both 

were better than the performance on LFW. This is attributable 

to the fact that region merging is easier due to the pure color 

backgrounds of images in these two databases. In addition, the 

experimental results show that the error of the DPLP is 

independent of image size, but affected by the percentage of 

face area in the entire image. That is, the proportion of face 

area is negatively correlated with Precision, Recall, and F1-

score. The result is consistent with the previous expectation. 

 

 

5. CONCLUSIONS 

 

To solve the problems in privacy protection of face images, 

this paper integrates face landmark positioning, regional 

growth, and Laplace mechanism in differential privacy to add 

noise to local sensitive areas in the original image, and thus 

realizes the non-global privacy protection of face images 

under the interactive framework. Through comparative 

experiments on several face databases (IMM, Aberdeen, and 

LFW), the proposed DPLP achieved better Precision, Recall, 

and F1-score than LAP, SWP, Sort-SWP, RGP, and ARGP. 

The results suggest that DPLP-based privacy protection of 

face images improves the availability of the protected image. 

Using DPLP, the protected areas in the original image only 

depend on landmark positions and growth rules. Thus, the 

noise error induced by privacy protection does not change with 

image size. 

Notably, although the DPLP can effectively protect the face 

information in face images, the algorithm is unable to pinpoint 

the landmarks in multiple faces, if the original image contains 

more than one faces, and the face areas only account for a 

small portion of the image. In this case, some face information 

in the image may be leaked. To prevent the privacy leak, the 

future research will further improve the face image privacy 

protection framework for multi-face images. 
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