
Color Enhancement of Low Illumination Garden Landscape Images 

Qian Zhang1, Shuang Lu1, Lei Liu1*, Yi Liu1, Jing Zhang2, Daoyuan Shi1  

1 School of Art and Design, Zhengzhou University of Light Industry, Zhengzhou 450002, China 
2 Henan Civil Affairs School, Zhengzhou 450002, China  

Corresponding Author Email: 2016034@email.zzuli.edu.cn

https://doi.org/10.18280/ts.380618 ABSTRACT 

Received: 5 August 2021 

Accepted: 16 November 2021 

The unfavorable shooting environment severely hinders the acquisition of actual landscape 

information in garden landscape design. Low quality, low illumination garden landscape 

images (GLIs) can be enhanced through advanced digital image processing. However, the 

current color enhancement models have poor applicability. When the environment changes, 

these models are easy to lose image details, and perform with a low robustness. Therefore, 

this paper tries to enhance the color of low illumination GLIs. Specifically, the color 

restoration of GLIs was realized based on modified dynamic threshold. After color 

correction, the low illumination GLI were restored and enhanced by a self-designed 

convolutional neural network (CNN). In this way, the authors achieved ideal effects of color 

restoration and clarity enhancement, while solving the difficulty of manual feature design in 

landscape design renderings. Finally, experiments were carried out to verify the feasibility 

and effectiveness of the proposed image color enhancement approach.  
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1. INTRODUCTION

Photography fans of garden landscape convey their 

perception of the beauty of garden landscapes and their 

understanding of garden landscape design to the human visual 

system in the form of images [1-11]. The generation of 

landscape design renderings is greatly affected by the color 

matching, design layout and other information in the original 

image [12-14]. Based on high quality garden landscape images 

(GLIs), designers can effectively visualize the design intent 

and conception of the actual landscape effect [16-19]. In the 

real world, GLIs taken in an unfavorable shooting 

environment are insufficiently exposed, unevenly illuminated, 

and generally dark. These features severely hinder the 

acquisition of actual landscape information in garden 

landscape design. With the continuous development of 

computer technology, low quality, low illumination GLIs can 

be enhanced through advanced digital image processing [20-

22]. The enhanced GLIs can promote the final expressiveness 

of the landscape scheme, and fully reflect the designer's 

personal aesthetics. 

Currently, many cities in China lack landscape images. Yao 

and Kang [23] introduced the principle of big data 

visualization to urban landscape images, and discussed the 

application of urban landscape image enhancement in China. 

The improving effect of big data visualization on urban 

landscape images was discussed from multiple dimensions, 

including online questionnaire survey, big data software 

visualization, and urban landscape image improvement. On 

this basis, several countermeasures were developed for 

enhancing landscape images of Chinese cities. In harsh 

environments (e.g., low illumination environment), the images 

collected by sensors may degrade, and feature low visibility, 

low brightness, and low contrast. To improve such images, Ma 

et al. [24] proposed a low-light level sensor image 

enhancement algorithm based on the hue-saturation-intensity 

(HSI) color model: the piecewise exponential method was 

adopted to process the saturation of the original image; a deep 

convolutional network (DCN) was specially designed to 

enhance the intensity (I) component. Yamashita et al. [25] and 

Yamashita et al. [26] suggested using a single sensor to 

simultaneously capture red, green, blue (RGB) and near-

infrared (NIR) information, trying to enhance the color images 

from low-light scenes. Under the guidance of the NIR 

information, the joint denoising technique was adopted to 

reconstruct the corresponding color image, and the estimated 

color image was iteratively restored based on the constructed 

guide image. Jung [27] presented a selective image fusion 

technique, which applies adaptive guided filter-based 

denoising and selective detail transfer to pixels considered 

reliable in binocular image fusion. By constructing an 

experimental system of color-plus-mono camera, it was 

demonstrated that the binocular just-noticeable-difference 

(BJND)-aware denoising and selective detail transfer are 

helpful in improving the image quality during low light 

shooting. 

Deep learning-based image enhancement requires lots of 

images to support network training. During the training, the 

joint estimation of intermediate parameters is far from 

sufficient. As a result, the models thus trained have a low 

applicability. When the environment changes, these models 

are easy to lose image details, and perform with a low 

robustness. Therefore, this paper tries to enhance the color of 

low illumination GLIs. Firstly, Section 2 explains the color 

restoration of GLIs based on modified dynamic threshold, 

establishes a color correction framework, and expounds the 

principle of color transform of GLIs. Next, Section 3 designs 

a convolutional neural network (CNN) to restore and enhance 

the color of corrected low illumination GLIs. In this way, the 

authors achieved ideal effects of color restoration and clarity 
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enhancement, while solving the difficulty of manual feature 

design in landscape design renderings. Finally, experiments 

were carried out to verify the feasibility and effectiveness of 

the proposed image color enhancement approach. 

 

 

2. COLOR RESTORATION  

 

After being converted to the luma-blue difference-red 

difference (YCbCr) color space, the original GLI is divided 

into multiple blocks. The mean value AVo of Cr and mean 

value AVe of Cb of each block are calculated. The cumulative 

absolute differences RPo and RPe of Cr and Cb of each block 

can be respectively calculated by: 
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The blocks with relatively small RPo and RPe are identified. 

These blocks should be removed, for they cannot provide 

sufficient color information. The mean values of AVo, AVe, RPo 

and RPe of the remaining blocks are taken as the AVo, AVe, RPo 

and RPe of the entire GLI. Next, the candidate set of white 

pixels can be judged and generated by: 
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The pixels with the top 10% brightness in the set are 

selected as the final white pixels. After that, all white pixels 

are adjusted. The first step is to compute the reference values 

of each white pixel in the three channels, i.e., the mean gray 

values of the three channels rRV, gRV, and bRV. Next, the gain of 

each channel can be calculated by:  
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Based on the results of formula (5), the color values of the 

three channels of the GLI are modified by the framework 

shown in Figure 1. The pixels with color values surpassing the 

threshold can be identified by: 
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For a GLI taken in a variable environment, if a single 

channel has a low gray value, then the mean gray value of that 

channel must be low, and the gain of that channel must be large. 

Through the abovementioned processing, the weak single-

channel features could be compensated for. 

 
 

Figure 1. Color correction framework 

  

If the GLI has a small overall brightness, the Y value after 

color restoration will be relatively high, pushing up the overall 

brightness of the image. This will interfere with the judgement 

of candidate white pixels. To solve the problem, this paper 

introduces the attenuation offset parameter matrix ψ to 

quantify the dynamic threshold to a fixed range. The ψ 

depends on the photoelectric imaging environment. Based on 

this matrix, the Y, Cb and Cr of the original parameters are 

quantified again through the following derivation process: 
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First, the attenuation of each color in the low illumination 

image is considered. Let ∫ωγd(τ)dτ, ξd, and ηd be the vector 

integral, scattering coefficient, and attenuation coefficient of 

the light scattered into the sensor from all directions, 

respectively. The value of ∫ωγd(τ)dτ is positively proportional 

to ξd. Since the global background light is a function of 

wavelength, we have: 
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where, lk and Sx are constants. Let ξ(μd) be the reference 

wavelength scattering coefficient. Then, the linear relationship 

between scattering coefficient ξd and wavelength μ can be 

expressed as: 
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Further, it can be derived that the global background light is 

proportional to ξd and inversely proportional to ηd: 
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The color channel with the smallest attenuation in the low 

illumination environment is defined as channel o. Based on the 

color attenuation of channel o, the attenuation ratio of any 

other color channel can be deduced as:  
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The relationship between the attenuation ratios of the three 

channels can be expressed as:  
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Let W be the color space conversion matrix. According to 

the image transmission and display rules of the International 

Telecommunication Union (ITU), the RGB-YCbCr color 

space conversion can be expressed as: 
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The color space conversion matrix can be obtained based on 

the three-channel attenuation formulas: 
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Combining formulas (13) and (14):  
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The color transformation of the original GLI can be 

expressed as: 
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Substituting formula (16) into formula (15): 
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The attenuation offset parameter matrix ψ can be derived by:  
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For the color channel with the least attenuation in the low 

illumination environment, the attenuation coefficient is 

assumed to satisfy ηd
=ηo. After this treatment, the single 

channel of the original GLI with a relatively low gray value 

can be compensated for, thereby balancing the gray value 

distribution across the three channels. The GLI color transform 

is illustrated in Figure 2. 

 

 
 

Figure 2. GLI color transform 

 

 

3. COLOR RESTORATION AND ENHANCEMENT  

 

This paper designs a CNN to restore and enhance the color 

of corrected low illumination GLIs. In this way, the authors 

achieved ideal effects of color restoration and clarity 

enhancement, while solving the difficulty of manual feature 

design in landscape design renderings. The proposed network 

consists of a color restoration module and a color enhancement 

module. 

 

3.1 Color restoration 

 

The architecture of the color restoration module is 

illustrated in Figure 3. In the color restoration module, the 

convolutional kernel is of the size 3×3. The convolution 

operation is expressed as g3×3. For the color channels, the 

number of convolutional filters is denoted by i, belonging to 

{1:32}. Each channel of the input GLI LSP is processed by the 

convolutional layer to obtain a false color mapping SUt: 
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Figure 3. Architecture of color restoration module 

 

Through the false color correction of each SUt, it is possible 

to obtain the enhanced false color mapping RFt. Let function 

F be global average pooling. Then, the mean, i.e., the gray 

value, of the three channels can be calculated by: 
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The single-channel mean of SUt can be calculated by:  
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Let SDt/DTi be the gain coefficient; D be the number of 

color channels of SUt; i∈{r,g,b} be the serial number of a 

color channel; N and M be the space size. Then, the false color 

mapping can be expressed as: 
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3.2 Color enhancement 

 

To fully integrate the GLI outputted by the color restoration 

module into the color enhancement module, this paper 

introduces an adaptive instance normalization module to the 

constructed model. The mean and standard deviation of the 

feature map f of the color enhancement module are calculated, 

and then normalized by the said module. Let F* and Q* be the 

height and width of the feature map f, respectively. Then, the 

calculation results can be expressed as: 
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where, θ=0.00001. The affine transformation parameters Φ* 

and χ* can be obtained through convolution of the color 

restored GLI. The feature map normalized by the color 

enhancement module is subjected to affine transformation. In 

this paper, an adaptive instance normalization module with 

color restoration function is added to the residual block to 

improve the color enhancement effect. The adaptive instance 

normalization module operates on a pixel-by-pixel basis: 

Based on Φ* and χ*, the feature points of the entire image are 

restored pixel by pixel. Let λd and ρd be the mean and standard 

deviation of feature map f of color channel d, respectively. 

Then, we have: 
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3.3 Loss function 

 

To generate a more realistic enhanced GLI and achieve the 

learning objective of the neural network, this paper adopts the 

minimum absolute error (MAE) as the loss in the color 

restoration module and the color enhancement module. Let B 

be the input clear GLI; a be the input low-illumination GLI; 

g(a) be the processed image; f(a) be the image outputted after 

color restoration. Then, the loss function can be expressed as: 
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(26) 

 

The two terms in the MAE loss function are of equal 

importance. They are eventually merged into the total loss for 

backpropagation. 

To minimize the percentual feature difference between the 

enhanced image and the real image, this paper introduces the 

perceptual loss function based on the pre-trained VGG16 

network. The VGG16 training can enhance the visual 

authenticity of the GLI. Let Ψi(g(a)), Ψi(f(a)) and Ψi(B) be the 

feature maps of g(a), f(a), and B, respectively; Xi, Yi, and Zi be 

the number of channels, height, and width of the feature map, 

respectively. Then, the perceptual loss function can be 

expressed as: 
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To better restore the color details and design structure of 

GLIs, this paper uses the gradient loss functions in the 

horizontal and vertical directions to train the constructed 

neural network. The gradient losses in the two directions GRr 

and GRf can be respectively calculated by: 
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Let ϕ be the adjustment parameter of the loss function. Then, 

the total loss of the color restoration and enhancement neural 

network for GLIs can be given by:  

 

frNETMAET GRGRLossLossLoss +++= 
 

(30) 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify the effectiveness of the proposed GLI color 

restoration algorithm, the performance of the modified 

dynamic threshold algorithms with and without ψ were 
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quantified and analyzed. Table 1 presents the results of color 

cast detection based on equivalent circle, and evaluation 

results of GLI color quality. 

The results show that the modified dynamic threshold 

algorithm with ψ outperformed that without ψ in GLI color 

restoration, evidenced by the relatively good restored color 

quality of all three types of GLIs (landscape architecture, 

landscape plants, and landscape water system). Despite a few 

color offsets in some images, the modified dynamic threshold 

algorithm with ψ perform excellently in the overall color 

restoration of GLIs. After enlarging the restored images, it can 

be found that some details of sculptures and artificial 

landscapes were better restored, and the color of water 

surfaces involving reflection/deflection was expressed 

accurately without over-exposure, after the modified dynamic 

threshold algorithm was coupled with ψ. 

 

Table 1. Qualified evaluation of GLI color restoration 

 
 Landscape architecture Landscape plants Landscape water system 

Comparative 

images 

Original 

image 

Without 

ψ 

With 

ψ 

Original 

image 

Without 

ψ 

With 

ψ 

Original 

image 

Without 

ψ 

With 

ψ 

Test results 1.253 1.362 1.045 4.263 0.8526 1.074 8.256 1.627 1.362 

Evaluation results 0.3628 0.5284 0.6281 0.4812 0.4628 0.5326 0.4158 0.4785 0.5529 

The histogram equalization simulation was carried out on 

GLIs captured in a low illumination environment. Figure 4 

displays the histogram changes of the images before and after 

equalization. 

 

 
(1) Before equalization 

 

 
(2) After equalization 

 

Figure 4. Histograms before and after introducing MAE loss 

and perpetual loss 

 

Based on the principle of the color restoration and 

enhancement model and Figure 4, the CNN-based image 

enhancement of GLIs can be regarded as an approximate 

calculation process from continuous state to discrete state. As 

shown in Figure 4, the quantization error was small after 

introducing MAE loss and perpetual loss. As a result, there 

was a certain difference in the gray levels outputted by 

different gray pixel values after mapping. This effectively 

prevents the problems of traditional image enhancement 

methods: the merge of grayscales and the color information 

loss of GLIs. It can be intuitively seen from Figure 4 that, 

before introducing the MAE loss and perceptual loss, the 

pixels in the enhanced image were discretely distributed, and 

the histogram failed to retain the shape of the original image; 

after the two losses were introduced, the grayscale was 

uniformly distributed across the interval, and the histogram 

matched the shape of the original image. 

The restoration of the color information of the output GLI 

is greatly affected by the gain and offset of different values. 

By changing the size of the affine transformation parameters, 

it is possible to control the degree of color information 

restoration. Under the same experimental environment, a 

series of simulations were conducted with our algorithm, 

single-scale Retinex, and multi-scale Retinex. The color 

restoration results of these algorithms are compared in Figure 

5. 

 

 
 

Figure 5. Experimental results of color recovery of different 

algorithms 

 

Figure 5 clearly displays that the GLI processed by our 

algorithm was much clearer, better in quality, and higher in 

brightness and contrast than that handled by single-scale 

Retinex, or multi-scale Retinex. By contrast, the image 

processed by single-scale Retinex had a low contrast, and that 

processed by multi-scale Retinex, and multi-scale was too 

white. The two contrastive algorithms fail to output realistic 

enhanced images that conform to our visual perception. 

Tables 2-4 compare the quality of the GLIs enhanced by 

different algorithms. All three algorithms managed to enhance 

the color effect of the original GLIs. However, our algorithm 

was superior than the two traditional color enhancement 

algorithms, in terms of discrete entropy, clarity and contrast, 

and effectively improved the readability of low illuminance 

GLIs. 
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Table 2. Discrete entropy metric of each algorithm 

 
Objects Lawns Trees Pools Roads Rockeries 

Original image 5.326 5.625 5.124 5.826 5.392 

Single-scale Retinex 5.842 7.362 6.495 7.152 7.025 

Multi-scale Retinex 6.114 7.285 6.295 7.025 7.952 

Our algorithm 6.174 7.025 6.385 6.119 6.258 

Objects Flowers Sculptures Benches Fences Landscape stones 

Original image 5.482 5.112 5.386 5.924 5.628 

Single-scale Retinex 7.114 7.258 7.062 6.258 7.385 

Multi-scale Retinex 7.415 7.228 6.958 7.151 7.335 

Our algorithm 6.745 6.185 7.284 5.296 7.118 

 

Table 3. Clarity metric of each algorithm 

 
Objects Lawns Trees Pools Roads Rockeries 

Original image 0.316 3.048 0.859 0.527 0.524 

Single-scale Retinex 1.328 6.582 2.748 2.563 2.162 

Multi-scale Retinex 1.428 7.259 2.748 2.625 2.147 

Our algorithm 1.002 6.285 2.115 1.172 0.851 

Objects Flowers Sculptures Benches Fences Landscape stones 

Original image 0.263 0.485 0.274 0.857 1.864 

Single-scale Retinex 0.748 1.625 1.147 3.265 5.185 

Multi-scale Retinex 0.859 1.285 1.759 2.185 7.629 

Our algorithm 0.952 1.425 0.852 3.625 5.362 

 

Table 4. Contrast metric of each algorithm 

 
Objects Lawns Trees Pools Roads Rockeries 

Original image 0.041 0.362 0.148 0.015 0.026 

Single-scale Retinex 0.057 0.085 0.485 0.152 0.263 

Multi-scale Retinex 0.396 1.258 0.248 0.152 0.263 

Our algorithm 0.544 0.984 0.557 0.421 0.442 

Objects Flowers Sculptures Benches Fences Landscape stones 

Original image 0.014 0.025 0.041 0.074 0.085 

Single-scale Retinex 0.525 0.142 0.824 0.148 0.362 

Multi-scale Retinex 0.048 0.157 0.748 0.596 0.724 

Our algorithm 0.413 0.154 0.799 0.642 0.821 

 

 

5. CONCLUSIONS 

 

This paper designs a novel method for color enhancement 

of low illumination GLIs. To achieve the ideal effects of color 

recovery and clarify enhancement, the authors detailed how to 

restore the color of GLIs based on modified dynamic threshold, 

and constructed a CNN for restoring and enhancing the color 

of low illumination GLIs, which overcomes the difficulty of 

manual feature design in landscape design renderings. 

Through experiments, the performance of the modified 

dynamic threshold algorithms with and without ψ were 

quantified and analyzed. According to results of color cast 

detection based on equivalent circle, and evaluation results of 

GLI color quality, the modified dynamic threshold algorithm 

with ψ outperformed that without ψ in GLI color restoration. 

In addition, the histogram changes of the GLIs before and after 

introducing the MAE loss and perceptual loss were recorded. 

The results show that, after the two losses were introduced, the 

grayscale was uniformly distributed across the interval, and 

the histogram matched the shape of the original image. Finally, 

the color restoration results of different algorithms were 

compared. The comparison further confirms that our algorithm 

was superior than the two traditional color enhancement 

algorithms, in terms of discrete entropy, clarity and contrast, 

and effectively improved the readability of low illuminance 

GLIs. 
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