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Abstract -With the development of human motion cap-
ture, realistic human motion capture data has been widely
implemented to many fields. However, segmenting motion
capture data sequences manually into distinct behavior is
time-consuming and laborious. In this paper, we introduce
an efficient unsupervised method based on graph partition
for automatically segmenting motion capture data. For the
N-Frame motion capture data sequence, we construct an
undirected, weighted graph G=G(V,E), where the node set
V represent frames of motion sequence and the weight of the
edge set E describes similarity between frames. In this way,
behavioral segmentation problem on motion capture data
may be transformed into graph cut problem. However, the
traditional graph cut problem is NP hard. By analyzing the
relationship between graph cut and spectral clustering, we
apply spectral clustering to the NP hard problem of graph
cut. In this paper, two methods of spectral clustering, t-
nearest neighbors and the Nystrom method, are employed to
cluster motion capture data for getting behavioral segmen-
tation. In addition, we define an energy function to refine
the results of behavioral segmentation. Extensive experi-
ments are conducted on the dataset of multi-behavior mo-
tion capture data from CMU database. The experimental
results prove that our novel method is robust and effective.

Keywords: motion capture data, behavioral segmenta-
tion, graph cut, spectral clustering

I. INTRODUCTION
Human motion capture, once associated with producing

special effects for film and television production, entertain-
ment games and virtual reality, is common today in diverse
applications ranging from health care to consumer electron-
ics. The data of human motion capture can be extensive-
ly applied in many fields, such as producing realistic an-
imation movies [1][2],physical rehablitation [3][4]and er-
gonomic analysis[5]. However, the cost of capturing mo-
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tion data is very high. It’s necessary to better reuse motion
capture data. Motion capture data sequence is usually com-
prised of multiple types of behaviors. The present work sug-
gests that automatic segmentation of human motion capture
data into distinct behavior based on statistical properties of
the motion can be an efficient and quite robust alternative to
hand segmentation. This paper focuses on efficient and ro-
bust technique which can be able to automatically segment
motion capture data sequence into distinct behaviors, as de-
picted in Figure 1. The main contributions of this paper can
be concluded as follows:

(1) Constructing N-Frame motion capture data sequence
into an undirected, weighted graph G=G(V,E), which is
based on the similarity of data frames. According to this
way, we transform motion capture data segmentation prob-
lem into the problem of graph cut.

(2) We employ an algorithm, which can automatically
extract the number of behavior and cluster centers, to the
motion capture data. It’s based on an unsupervised cluster
method. We consider the cluster numbers as the behavior
numbers for motion capture data sequence.

(3) Analyzing in detail for graph cut method and spectral
clustering, we transform this NP hard problem into eigen-
values and eigenvectors in spectral space. Two methods
of spectral clustering, t-nearest neighbors and the Nystrom
method,are employed to cluster motion capture data for get-
ting behavioral segmentation.

(4) For the clustering fragments, we define energy func-
tion and use dynamic programming to refine the results of
behavioral segmentation for motion capture data.

Figure 1: Behavior segmentation. Segmenting motion capture data into distinct be-
havior.
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The remainder of this paper is organized as follows.
Firstly, we introduce works of predecessors for motion seg-
mentation in Section II. In Section III, how to calculate sim-
ilarity of motion capture data frames is adopted. The de-
tails for identifing behavior’s clusters centers for original
motion capture data sequences are presented in Section IV.
In Section V, we analyze in detail for the relationship be-
tween graph cut and spectral clustering. Then, transform-
ing this NP hard problem of graph cut into spectral cluster-
ing problem. In this way, realizing behavioral segmentation
for motion capture data sequence. Details of energy func-
tion for refining the results of behavioral segmentation is
represented in Section VI. In section VII, we introduce the
experiments, which are conducted on the dataset of multi-
behavior motion capture data from CMU database. Finally,
we provide the discussion and conclusion for this behavior
segmentation method in Section VIII.

II. RELATED WORK
Temporal segmentation is related to numbers of different

fields such as data mining [6][7], behavior recognition [8]
and so on. Researchers have proposed several techniques to
segment motion capture data into distinct behaviors. Maybe
they focus on different perspectives and concerns, their pur-
pose is to establish efficient and robust segmentation meth-
ods for motioncapture data. The methods can be general-
ly categorized into several types: classifier, clustering, ma-
chine learning and dimension reduction and so on.

Supervised learning methods generally formulize seg-
mentation motion capture data as a classification prob-
lem, where classifiers are trained from a carefully select-
ed training set. In other words, Its mean that they are
usually applying example segments or pre-computed tem-
plates and matching them to test sequences. Muller et
al.[9]constructed motion templates to behaviors segmenta-
tion. Lv et al. [10]defined Hidden Markov Models (HMM)
to realize human Motion capture data segmentation. Sup-
port Vector Machine(SVM) which is based on an annota-
tion training database to segment motion capture data was
constructed by Arikan et al. [11]. However, these method-
s relied on the training set and they would fail to pick up
the segments whose corresponding behaviors were not con-
tained in the training set.

It’s natural for researchers to use another technique to
overcome this limitation, which can be named as unsuper-
vised learning methods. In these methods, motion capture
data segmentation is located by clustering motion frames.
zhou et al.[12]used aligned cluster analysis (ACA) to tem-
porally cluster poses into motion primitives which were
then assigned to different behavior classes. ACA extends
standard kernel k-means clustering: the cluster means in-
clude a number of features and a dynamic time warping
(DTW) kernel is used to achieve temporal invariance. How-

ever, ACA method needs users determine the cluster num-
ber with respect to temporal constraint. In order to over-
come this limitation, zhou et al. [13] derived an unsuper-
vised hierarchical bottom-up framework, which is called
hierarchical aligned cluster analysis (HACA) to realize seg-
mentation. HACA provided a crude method to find a low-
dimensional embedding for the time series. HACA is ef-
ficiently optimized with a coordinate descent strategy and
dynamic programming.

The researchers tried to solve the dilemma of non-
learning way to behavior segmentation. Balazia et.al [14]
introduced an unsupervised key-pose detection algorithm
for segmentation of motion capture data and this proposed
algorithm partition motions at the level of gestures. Bar-
bic et al. [15] chose segments using an indication of in-
trinsic dimensionality from Principal Component Analysis
(PCA). Its based on the observation that simple motions ex-
hibit lower dimensionality than more complex motions. As
an extension of the traditional PCA, Barbic et al. defined
a proper probability model for PCA which is named proba-
bilistic PCA (PPCA). We can easily know that the direction-
s outside the subspace were discarded, whereas they were
modeled with noise in PPCA.

III. SIMILARITY MEASURE OF
MOTION CAPTURE DATA

A. Distance of Frames

This paper employs the human skeleton model which has
31 joints, as illustrated in Figure 2. For every frame, it has
62-dimensions, which includes root position vector, root
orientation vector and other joints’ direction vector. The
ith frame’s pose consists of all joints rotation angle in the
ith frame expect the root position vector and the root ori-
entation vector which including 6-dimensional. Each pose
pi = {ai,1, ai,2, ai,3 . . . ai,56} is represented as a point in
56-dimensional,which ai,j is one of an Euler angle. The
velocity vi of the ith frame is computed by the Euclidean
distance between pi and pi+1.

Figure 2: Human Skeleton Model
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vi =

(q
(ai+1,1 � ai,1)

2 + . . .+ (ai+1,56 � ai,56)
2 i 6= n

vi�1 i = n
(1)

Calculating the distance by:

di,j = ↵d(pi, pj) + �d(vi, vj) (2)

Where d(vi, vj) is the difference of velocity between the
ith frame and the jth frame and d(pi, pj) is the weighted
difference of joint orientations. The weights of ↵ and � are
set to 0.5. The term of d(pi, pj) is given by:

d(p
i

, p
j

) = ||p
i,0 � p

j,0||2 +
mX

k=1

w
k

||log(q�1
j,k

q
i,k

)||2 (3)

In (3), p
i,0, pj,0 2 R3 are the global translational positions of the

figure at frame i and j, respectively; m is the number of joints;
and q

i,k

, q
j,k

2 S4 are the orientations of joint k and frames i and
j, respectively. The log-norm term represents the geodesic norm
in quaternion space. w

k

describes the weight of k-th joint. Lee
et al [16] set the weights manually. While the weights of unim-
portant joints are set to zero, the weights of important joints, such
as shoulders, elbows, hips, knees, hips and so on, are set to one.
For different joint, it’s well known to occupy different role. In this
way, there will be a larger error. Wang et al [17] compute a set
of optimal weights for the cost function using a constrained least-
squares technique, where the weights are calculated in two ways:
through a cross-validation study and a medium-scale user study. In
order to reduce the error, we use the optimal weights proposed by
Wang and Bodenheimer, which are shown in table 1.The weights
of remaining joints are set to zero. According to this, we can get
a distance matrix Dn⇤n , where n is the length of the original mo-
tion capture data sequence. Apparent that d

ij

= d
ji

(i 6= j) and
d
ij

= 0(i = j).

B. Frame Kernel Matrices

In general, there are several methods which are used to indicate
the similarity of frames for motion capture data. There are sever-
al different formulas to define it. In order to better construct the
similarity matrix, we optimized the novel representation method
of frames similarity. Calculating the similarity of frames by:

w
ij

= e
(�

dist2ij
2�i�j

)
(4)

It’s time-consuming to get an optimum parameter �
i

for this
function by multiple experiments. In order to determine the value
of parameter �

i

, a parameter construction method of neighborhood
adaptive scale [18] is introduced:

Table 1: Joints with non-zero weights.

Joints Weight
Right and Left Hip 1.0000

Right and Left Knee 0.0901
Right and Left Shoulder 0.7884

Right and Left Elbow 0.0247

�
i

=
1
k

KX

m=1

D
iim =

1
k

KX

m=1

||i� i
m

|| (5)

Setting the k that the average number of neighbors is around
1% of the total frame number for every motion capture data se-
quences. The distance matrix between frames is computed by (2).

IV. IDENTIFY CENTERS OF
BEHAVIORAL CLUSTERS

In order to automatically extract the number of motion cate-
gories for motion capture data sequence, we use this algorithm,
which has good effect for any data points shape. As always, this
algorithm has its basis only in the distance between data points.
It’s able to detect non-spherical clusters and automatically find the
correct number of clusters.

This algorithm has its basis in the assumption that cluster cen-
ters are surrounded by neighbors with lower local density and that
they are at a relatively large distance from any point with a higher
local density. It’s clear that the same motion behavior with suf-
ficient similarity. We consider every motion capture data frame
as a high-dimensional point. For each high-dimensional point, we
should compute two quantities: its local density ⇢

i

and its distance
�
i

from points of higher density.
Rodriguez et al. [19] introduce two methods for computing

local density:
⇢
i

=
X

j2Is\{i}

X(d
ij

� d
c

) (6)

X(x) =

⇢
1
0

x < 0
x � 0

(7)

d
c

is a cut-off distance. ⇢
i

describes the number of points, which
the distance with i is smaller than d

c

. Obviously, ⇢
i

is discrete.
We can see that formula ⇢

i

has a significant limitation of dif-
ferent motion capture data points with the same local density. In
order to avoid this limitation, we calculate ⇢

i

by:

⇢
i

=
X

j2Is\{i}

e
�(

dij
dc

)
2

(8)

Which is satisfied with more data points of the distance with i s-
maller than d

c

and the bigger ⇢
i

. �
i

is measured by computing
the minimum distance between point i and any other points with
higher density:

�
i

= min
j:⇢j>⇢i(dij) (9)

The motion capture data frames which are satisfied the condi-
tions of cluster centers should have the larger ⇢ and �. Computing
↵ = ⇢ ⇤ � and choosing the larger ↵ , which are more likely to
become cluster centers. Because of the magnitude of ⇢ and � is
uniform, it needs to be normalized.

In order to extract cluster centers, we observe the discrete
derivative �

i

= |↵
i

� ↵
i�✓

| , where ✓ must be enough to avoid
noise in the data. For{↵

i

}N
i=1 , we calculate the average �

i

and
standard derivation "

i

of all data �
i

. So we extract the point as
cluster center when �

i

> 3"
i

. we automatically extract cluster
numbers k and cluster centers {c1, c2, c3, . . . , ck} for motion cap-
ture data sequences. In this way, we extract k as the number of
behavior for motion capture data sequence.
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V. BEHAVIORAL SEGMENTATION
BASED ON SPECTRAL CLUSTERING
Yuan et al.[20] proposed a graph partition model with tempo-

ral constraints to perform temporal segmentation problem. As we
all know, the problem of motion capture data segmentation is typ-
ical temporal data segmentation. So we base on graph partition
theory to segment motion capture data. Giving a N-Frame mo-
tion capture data sequence {f1, f2, f3, . . . , fN}, we construct an
undirected, weighted graph G=G(V,E). Each node in the set V de-
scribes a frame and frames is connected by edges. The similarity
between frames represents the weight of each edge. This problem
for Segmenting motion capture data can be restated as follows: we
want to find a partition of the graph such that the edges between
different sub-graphs have a very low weight (which means that
points in different clusters are dissimilar from each other) and the
edges within the same group have high weight (which means that
points within the same cluster are similar to each other).

A. Building Graph for Motion Capture Data

For the N-frame motion capture data sequence, we con-
struct G(V,E) as an undirected graph with vertex set V =
{f1, f2, f3, . . . , fN}. In the following we assume that the graph
G is weighted. Each edge between two vertices f

i

and f
j

carries a non-negative weight w
ij

� 0. The matrix W =
(w

ij

)
i,j=1,2,3,...,N represents the weighted adjacency matrix of

the graph. When w
ij

= 0 means that the vertices f
i

and f
j

are not
connected by an edge. Because of G is an undirected graph, we
define w

ij

= w
ji

. The degree of a vertex f
i

2 V is defined as:

d
i

=
NX

j=1

w
ij

(10)

We construct the degree matrix D, which is defined as the diag-
onal matrix with the degrees d1, d2, d3, . . . , dN on the diagonal.
Defining an indicator vector I = (I1, I2, I3, . . . , IN )

0
2 RN as

the vector with entries I
i

= 1 if I
i

2 F (F means subset of vertices
F ⇢ V ) and I

i

= 0 otherwise.
For two disjoint sets F1, F2 ⇢ V , we define:

W (F1, F2) =
X

i2F1,j2F2

w
ij

(11)

Considering two different ways of measuring the size of the subset
F
c

⇢ V .
< 1 > |F

c

| = the number of vertices in F
c

;
< 2 > vol(F

c

) =
P

i2Fc

d
i

.

Intuitively, |F
c

| measures the size of F
c

by its number of ver-
tices, while vol(F

c

) measures the size of F
c

by summing over the
weights of all edges attached to vertices in F

c

. The nonempty sets
F1, F2, F3, . . . , Fk

form a partition of the graph if F
ci

\ F
cj

= ;
and F1 [ . . . [ F

k

= V .

B. Construt Graph Laplacians
For the undirected graph G(V,E), we define its Laplacian ma-

trix:
L = D �W (12)

The Laplacian matrix satisfies the following properties:
< 1 > L has m non-negative, real-valued eigenvalues 0 =

�1  �2  . . .  �
m

;
< 2 > For every vector I 2 RN , we have I

0
LI =

1
2

NP
i,j=1

w
ij

(I
i

� I
j

)2.

The proof of it as follows:

I
0
LI = I

0
(D �W )I =

NX

i=1
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i

I2
i

�
NX

i,j=1

I
i

I
j

w
ij

=
1
2
(

NX
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d
i

I2
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� 2
NX

i,j=1

I
i

I
j

w
ij

+
NX

j=1

d
j

I2
j

)

=
1
2

NX

i,j=1

w
ij

(I
i

� I
j

)2

(13)

For N-Frame motion capture data sequence {f1, f2, . . . , fN},
we consider every frame as data point for the undirected graph. It
is generally known that several popular constructions to transform
data points with pairwise similarities w

ij

or pairwise distances d
ij

into a graph. When constructing similarity graphs the goal is to
model the local neighborhood relationships between data points.

Considering two different ways of constructing similarity
graph:

< 1 > t-nearest neighbor graphs: The goal is to connect vertex
F
i

with vertex F
j

if F
j

is among the t-nearest neighbors of F
j

.
We set the t that the average number of neighbors is around 2% of
the total number for every motion capture data sequences.

< 2 > The fully connected graph: we use the Gaussian simi-
larity function, which is defined in (4). The parameter � controls
the width of the neighborhoods.

C. Apply Spectral Clustering to Graph Cut

a. Relationship Between Graph Cut and Spectral
Clustering

For this undirected and weighted graph, the mincut approach
simply consists of choosing a partition F1, F2, F3, . . . , Fk

which
minimizes:

cut(F1, F2, F3, . . . , Fk

) =
1
2

kX

i=1

W (F
i

, F̄
i

) (14)

Where F̄ for the complement of F . Introducing the factor 1/2 for
notational consistency, otherwise we would count each edge twice
in the cut. In order to make the weight of cuts edges, which are
minimum, it’s to make the above objective function minimum.

There are two most common objective functions to encode this
are RatioCut, which is defined by Hagen et al.[21], and the nor-
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malized cut (Ncut), which is proposed by Shi et al[22].

RatioCut(F1, . . . , Fk

) =
1
2

kX

i=1

W (F
i

, F̄
i

)
|F

i

|

=
kX

i=1

cut(F
i

, F̄
i

)
|F

i

|

(15)

Ncut(F1, . . . , Fk

) =
1
2

kX

i=1

W (F
i

, F̄
i

)
vol(F

i

)

=
kX

i=1

cut(F
i

, F̄
i

)
vol(F

i

)

(16)

Choosing a motion capture data sequence,which has two behavior,
and we analyze the relationship between graph cut and spectral
clustering.

The goal of us is to solve the optimization problem:

min
F⇢V

RatioCut(F, F̄ ) (17)

Defining the vector I = (I1, I2, I3, . . . , IN )
0
2 RN and getting

I
i

=

( p
|F̄ |/|F |

�
p

|F |/|F̄ |
if
if

f
i

2 F
f
i

2 F̄
(18)

According to the property of Laplacian matrix, which is

I
0
LI = 1

2

NP
i,j=1

w
ij

(I
i

� I
j

)2, we can get:
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1
2
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w
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✓ X
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w
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✓
�

s
|F̄ |
|F | �

s
|F |
|F̄ |

◆2◆

= cut(F, F̄ )
� |F |+ |F̄ |

|F | +
|F |+ |F̄ |

|F̄ |
�

= |V | ⇤RatioCut(F, F̄ )

(19)

In other words, we can get that the optimization problem and
the Laplacian matrix has a big relationship. It’s easy to extend to
k subgraphs.

Because of these constraint conditions:

NX

i=1

I
i

=
X

i2F

s
|F̄ |
|F | �

X

i2F̄

s
|F |
|F̄ |

= |F | ⇤

s
|F̄ |
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s
|F |
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(20)

I
0
⇤ 1 =

NX

i=1

I
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= 0 (21)

||I||2 =
NX
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I2
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= |F |⇤

s
|F̄ |
|F | + |F̄ | ⇤

s
|F |
|F̄ |

= N (22)

We can get the new optimization problem:

min
I2R

N
I
0
LI

subject to I
0
⇤ 1 = 0, ||I|| =

p
N

(23)

Assuming that LI = �I , at the moment, � is eigenvalues and
I is L

0
s eigenvectors. Multiplying from the left and the right by

I
0

for LI = �I , we can get I
0
LI = �I

0
I (where I

0
I = N ).

Because of N is constant, minimizing the formula I
0
LI can be

replaced by minimizing �. For the Normalized cut, we define the
cluster indicator vector I = (I1, I2, I3, . . . , IN )

0
2 RN by:

I
i

=

( p
vol(F̄ )/vol(F )

�
p

vol(F )/vol(F̄ )

if
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f
i

2 F
f
i

2 F̄
(24)

Likely the RatioCut, we can get:

I
0
LI =

1
2

NX

i,j=1

w
ij

(I
i

� I
j

)2

=
1
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✓ X

i2F,j2F̄

w
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vol(F̄ )
vol(F )

+
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vol(F )
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✓
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vol(F )

vol(F̄ )

◆2◆

= cut(F, F̄ )(
vol(F ) + vol(F̄ )

vol(F )
+

vol(F ) + vol(F̄ )

vol(F̄ )
)

= vol(V ) ⇤NCut(F, F̄ )

(25)

vol(V ) is a constant. The goal of us is to solve the optimization
problem:

min
F⇢V

NCut(F, F̄ ) (26)

It’s equal to min
I2R

N
I
0
LI . In order to deal with this optimization

problem, we calculate the Laplacian matrixs minimum eigenval-
ue. However, the smallest eigenvalue of L is 0 with eigenvector
1. The Rayleigh-Ritz theorem can be used to solve this problem.
The solution of this problem is given by the vector I which is the
eigenvector corresponding to the second smallest eigenvalue of the
Laplacian matrix L . So we can approximate a minimizer of Ra-
tioCut or Ncut by the second eigenvector of L . Extending to k
clusters, we compute the eigenvalues of the Laplacian matrix and
sort them according to order from small to big. Eigenvectors cor-
responding to eigenvalues are also sort in increasing. Extracting k
eigenvectors as what we want. In this way, we succeeded in con-
verting the graph cut, which is a NP problem, into the Laplacian
matrix eigenvalues (eigenvectors) problem.

b. Apply Nystrom Method to Spectral Clustering

The Nystr
..

om method[23], which uses a sub-matrix of the
dense similarity matrix: This method is a technique for finding an
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approximate eigendecomposition. Here, we denote by W , which
is a N*N similarity matrix. Assume that we randomly select sam-
ple l << N points from the data. The matrix A represent the l⇥ l
matrix of similarities between the same points, B be the l⇥(n� l)
matrix of affinities between the l sample points and the (n� l) re-
maining points, C contains the similarities between all (n � l)
remaining points and O be the (n⇥ l) matrix consisting of A and
BT . We can get rearrange the similarity matrix W such that:

W =


A
BT

B
C

�
and O =


A
BT

�
(27)

For the Nystr
..

om method, it use matrix A and B to approxi-
mate similarity matrix W.

W ⇡ W̃ = OA�1OT

=


A B
BT BTA�1B

�
=


A
BT

�
A�1 ⇥A B

⇤ (28)

Where the matrix C is now replaced by BTA�1B. The matrix A
makes eigendecomposition and we can get A = U

A

⌃
A

UT

A

, where
⌃

A

contains the eigenvalues of A and U
A

are the corresponding
eigenvectors. According to the Nystr

..

om method, we can get :

⌃̃ = (
N

l
)⌃

A

, Ũ =

r
l

N
OU

A

⌃�1
A

(29)

Moreover, the similarity matrix W has the eigendecomposition:

W̃ = Ũ⌃̃ŨT (30)

For the Laplacian matrix L , we normalize it by:

L = D �W

= D� 1
2 (D �W )D� 1

2 = I �D� 1
2WD� 1

2

(31)

Where D is the diagonal matrix with D
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=
NP

j=1
W
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.

Computing the rows sums of W̃ :
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A B
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�
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1
l

1
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�
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a
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+BTA�1b
l

�
(32)

Where a
l

, b
l

represents the row sums of A and B, b
N�l

denotes the
column sum of B and~1 means a column vector of ones. According
to this, we can get:
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where D1 is l ⇤ l and D2 is (N � l) ⇤ (N � l). For the similarity
matrix W, we want to show it can be diagonalized. Supposing that

U =
⇥
A BT

⇤
T

A� 1
2 V ⌃� 1

2 , we can get:
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⇥
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2 [A B]}

= U⌃UT

(34)

Multiplying from the left by V ⌃
1
2 and from the right by ⌃

1
2 V T

for the unitary matrix, we can get:
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Because of this property, we reduce the computational complex-
ity and we require only the first k eigenvectors of the Laplacian
matrix. Calculating the first k columns of U via

U =


Ã

B̃T

�
Ã� 1

2 (V
N

):,1:k(⌃
� 1

2 )1:k,1;k (36)

Then we normalize U along its rows to get Ũ .

Ũ
ij

=
U

ijqP
k

r=1 U
2
ir

, i = 1, 2, . . . , N, j = 1, 2, . . . , k (37)

c. K-means Step for Normalized Matrix Ũ

Defining {u}N
j=1 is the vectors corresponding to Ũ

0
s rows.

we have extracted cluster numbers k and cluster centers
{c1, c2, c3, . . . , ck} by the method, as introduced in the Section 4.
Through the corresponding relationship between normalized ma-
trix Ũ and the clusters centers, we update the cluster centers, when
they correspond to same frames. K-means[24] algorithm aims at
minimizing the objective function know as squared error function
given by:

J(C̃) =
kX

i=1

X

ũj2Ci

||u
j

� c̃
i

||2 (38)

Where 0C
i

0 is the number of data points in ith cluster. Accord-
ing to assign the points to the cluster center whose distance from
the cluster center is minimum of all the cluster centers.
Algorithmic steps for k-means: Let Ũ = {u1, u2, . . . , uN

} be the
elements to be clustered and C̃ = {c̃1, c̃2, . . . , c̃k} be the sets of
corresponding centers:
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1) Getting k cluster centers C̃ = {c̃1, c̃2, . . . , c̃k};
2) Calculate the distance between each element to be clustered

and cluster centers;
3) Assign each element to be clustered to the cluster center

whose distance from the cluster center is minimum of all the clus-
ter centers;

4) Recalculate the new cluster center using: c̃
i

= 1
Ci

CiP
j=1

ui ,

Where 0C
i

0 is the number of data points in ith cluster.
5) Recalculate the distance between each element to be clus-

tered and new obtained cluster centers;
6) Stop the iteration until no elements was reassigned, other-

wise repeat to step 3).
According to this step and analysis, we can get the N-Frame

motion capture data sequences categories information.

D. Behavioral Segmentation Based On Spectral
Clustering

We have introduced the method of t-nearest neighbor graphs
in Section 5.B. According to this, it can be easily to find that this
method is useful to reduce the store of dense similarity matrix. In
this way, the dense similarity matrix is represented by the sparse
similarity matrix. The algorithm of cluster, which uses the sparse
similarity matrix, as follows:
Algorithm 1: clustering uses the sparse similarity matrix.

Input: N-Frame motion capture data {f1, f2, f3, . . . , fN}, ev-
ery frame is regarded as high-dimensional data point and k: num-
ber of desired clusters.

1) Construct similarity matrix W 2 RN⇥N ;
2) Modify W to be the sparse matrix S;
3) Compute the Laplcian matrix by L = I �D� 1

2 SD� 1
2 ;

4) Compute the K eigenvectors of L and construct U 2 RN⇥k;
5) Normalize U along its rows to get Ũ . Ũ

ij

=
UijpPk
r=1 U

2
ir

, i = 1, 2, . . . , N, j = 1, 2, . . . , k

6) Use k-means algorithm to cluster N rows of Ũ into k groups,
which mean action segments for motion capture data sequences.

In subsection 5.C-b , introducing the Nystrom method, which
can be used to cluster for motion capture data sequence.
Algorithm 2: Clustering uses the Nystrom method.

Input: N-Frame motion capture data {f1, f2, f3, . . . , fN}, ev-
ery frame is regarded as high-dimensional data point; number of
samples l, which is determined by 2% the number of motion cap-
ture data, k: number of desired clusters and {c1, c2, c3, . . . , ck}:
cluster centers, which are determined by the algorithm.

1) Construct A 2 Rl⇥l and B 2 Rl⇥(N�l). The matrix A
represent the matrix of similarities between the same points, B be
the matrix of affinities between the sample point.

2) Calculate D = diag(


a
l

+ b
l

b(N�l) +BTA�1b
l

�
).

3) Calculate Ã = D
� 1

2
l⇥l
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2
l⇥l

, B̃ = D
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2
l⇥l

BD
� 1

2
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4) Construct A+A� 1
2BBTA� 1

2 . calculate eigendecomposi-
tion V

N

⌃
N

V T

N

for it and ensure the eigenvalues are in decreasing
order.

5) Calculate U =


Ã

B̃T

�
Ã� 1

2 (V
N

):,1:k(⌃
� 1

2 )1:k,1;k as the

first k eigenvector of the Laplacian matrix.
6) Normalize U along its rows to get Ũ .Ũ

ij

=
UijpPk
r=1 U

2
ir

, i = 1, 2, . . . , N, j = 1, 2, . . . , k

7) Use k-means to cluster N rows of Ũ into k classes.
Two methods of these can realize clustering motion capture da-

ta sequence into motion fragments.

VI. REFINE BEHAVIORIAL
SEGMENTATION RESULTS

According to temporal reverting, we can get S =
{s1, s2, s3, . . . , s

k

0 } for N-Frame motion capture data sequence,
where s

i

represents the subsequence after clustering and tem-
poral reverting. Setting the single representation G =
{g

ci}
c2{c1,c2,...,ck},i=1,2,...,N . g

ci=1 if f
i

belongs to class c, oth-
erwise g

ci=0.
According to extensive experiments, we can find that cluster-

ing and temporal reverting for motion capture data can lead some
error. We define energy function to reduce noise and realize be-
havior segmentation. Because of the temporal property, behavior
segmentation points locate in adjacent motion subsequences. For
each motion subsequence, we only calculate it for belonging to the
former one or the last one. The energy function is defined by:

F (S,G) =
X

i,j21,2,...,k
0

kX

ci=1

g
cidist(si, sj) (39)

Where s
i

represents motion subsequences for motion capture data
after clustering and temporal reverting. Pavel Senin [25] provid-
ed the good resolution for calculating the distance for temporal
sequences, which is named dynamic time warp (DTW).

DTW (s
i

, s
j

) = dist(s
i

, s
j

)

= argmin{
X

f

i
0 2si,fj

0 2sj

||f
i

0 � f
j

0 ||} (40)

Dynamic programming is applied to deal with behavior segmenta-
tion. The formula is defined as follows:

J(S
0
) = min{J(S

0
� 1) +min{F (S

0
� 1, G)}} (41)

In this way, we can realize behavior segmentation. After clus-
tering, long action subsequences can be considered as independent
behavior and we use the energy function to deal with error sub-
sequences. Where s

i

represents action subsequences for motion
capture data after clustering and temporal reverting. The Figure 3
shows an example of two motion capture data sequences aligned
by DTW.

VII. EXPERIMENTS
In order to prove the feasibility and effectiveness of this

method, we use the Carnegie Mellon University motion capture
database [CMU][26], whose data were captured with a Vicon op-
tical motion capture system of 12 MX-40 cameras at 120HZ. Ex-
tensive experiments are conducted on the dataset of multi-behavior
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(a) (b)

Figure 3: The result of two motion capture data sequences aligned by DTW, which
is demonstrated in 2-dimensional space. (a) represents original sequences and (b)
shows aligned result.

motion capture data from CMU database. each motion capture da-
ta sequence is the combination of roughly several natural actions
(walking, running, punching, jumping and so on.).

The greatest advantage of our method for behavior segmenta-
tion is automatic and without human intervention. For arbitrary
motion capture data, which contains several behaviors, we can re-
alize behavior segmentation. Figure 4 shows the segmentation re-
sults obtained through PPCA, GMM, our methods (t-nearest and
Nystrom method) and manual segmentation. In every chart, x-axis
represents the motion frames and y-axis defines methods abbrevia-
tion. Each chart contains five small bars. From the top downwards,
each bar represents the results of behavior segmentation by PPCA,
GMM, t-nearest neighbors to cluster, Nystrom method applied to
cluster and manual segmentation. The first four methods use black
vertical line to represent the results of segmentation.

For the manual segmentation, it use black strip to represent
segmentation results. Since the continuity of behaviors and the re-
striction of human recognition, the human segmentation labels are
not single frame and they are a short sequence of frames. Manual
segmentation results are regarded as ground truth for segmentation
of motion capture data. Due to the continuity of motion, we think
that segmentation results located in the vicinity of ground truth are
segmentation successful.

According to experiments, we can find that our method not on-
ly can segment motion capture data, but also can mark the same
behavior segments. We use same color to mark the same behavior
segments. The experiments results are close to ground truth. That
as long as the segmentation results falling in this sequence are the
right points of segmentation. We compare these behavior segmen-
tation algorithms in the standard precision/recall framework.

(
precision = #reportedcorcuts

#reportedcuts

⇥ 100%

recall = #reportedcorcuts

#corcuts

⇥ 100%
(42)

where #reportedcorcuts indicates the reported correct cuts,
#reportedcuts is the total number of reported cuts and #corcuts rep-
resents the total correct cuts. The closer precision and recall are
to one, the more effective the algorithm is. Table 2 gives scores
of precision and recall for PPCA, GMM, t-nearest and Nystrom
method.

Table 2: Precision and recall scores for the PPCA,GMM,t-nearest and Nystrom
method

Behavior Methods Precision Recall
PPCA 80.83% 87.38%
GMM 54.00% 72.97%

t-nearest 90.09% 90.91%
Nystrom 92.79% 93.63%

VIII. DISCUSSION AND CONCLUSION
In this paper, we introduce a novel automatically method to

segment motion capture data. Firstly, we use a novel method to
extract cluster numbers k, which can be regarded as the number
of behavior contained, and cluster centers. This cluster algorith-
m is based on local density for input data. Then, we construct
undirected weighted graph, which uses motion capture data. In
order to deal with this NP hard problem, we analyze relationship
between graph cut and spectral clustering. According to this, the
problem of behavior segmentation for arbitrary motion capture da-
ta sequence is converted to spectral clustering problem. According
to the priori knowledge of behavior numbers and cluster centers,
the application of t-nearest neighbors and Nystrom method used
respectively to cluster for motion capture data sequence. Defining
energy function to refine segmentation for motion capture data.
These method can reduce computational complexity, save restore
space and improve calculation speed. Energy function, which is
defined by us, can reduce the error of segmentation results.

Although we have reduce the restore space for this method, it
takes up remarkable restore space. In future work, we should fur-
ther improve the calculate speed and reduce restore space. Mean-
while, to further study the effect of single behavior fragments on
the motion analysis and motion synthesis.
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