
Smart Home Control through
Unwitting Trigger-Action Programming

Daniela Fogli, Matteo Peroni, Claudia Stefini
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Brescia
Via Branze 38, Brescia, Italy

daniela.fogli@unibs.it, matteo.peroni89@gmail.com, claudiastefini@hotmail.com

Abstract—This paper describes ImAtHome, an iOS application for
smart home configuration and management. This application has
been built over the framework HomeKit, made available in iOS,
for communicating with and controlling home automation
accessories. Attention has been put on the design of the interaction
with such an application, in order to make the interaction style as
much coherent as possible with iOS apps and supporting users
without programming skills to unwittingly create event-condition-
action rules that, in other similar systems, are usually defined
through “if-then” constructs. The results of a user test
demonstrate that ImAtHome is easy to use and well accepted by
end users of different age and background.

Smart home; end-user develoment; rule-based programming

I. INTRODUCTION
The attention of research scholars and ICT companies is

more and more attracted by Internet of Things (IoT) [1] and
Ambient Intelligence (AmI) [2], as witnessed by recent
conferences, journal special issues and commercial
advertisements. These areas involve experts in several
disciplines – electronics, artificial intelligence, cloud
computing, network infrastructures, and software architectures,
just to name a few – who are called on to create and set up a
new generation of distributed multimedia systems sometimes
referred as “sentient multimedia systems” [3]. However,
research on new Human-Computer Interaction (HCI) paradigms
is fundamental as well, especially for making AmI
environments easy to use and possibly allow their inhabitants,
without computer programming knowledge, to install, configure
and modify them over time. Therefore, with a particular
attention to the smart home, End-User Development (EUD) [4]
approaches are being proposed, which are aimed at transforming
end users (household members) from passive consumers of
sensors, robots and smart devices scattered in the house to
active producers of new and possibly coordinated behaviors of
such hardware/software components [5].

The idea is indeed to provide the house inhabitants with
methods and tools to modify and adapt home behaviors to their
needs, in order to cope with the continuous request of user-
system co-evolution [3]. This could be achieved by providing
users with EUD tools that support them in creating simple
commands to be activated manually (e.g. “I am at home, please
switch the radio on”) or automatically (e.g. “At 7 a.m. rise
shutters and activate the coffee machine”).

From the analysis of the literature and commercial products
[6][7] it emerges the event-condition-action (ECA) rule-based
paradigm is the most used in user interfaces devoted to the
configuration and adaptation of smart homes by non-expert
developers and thus could be considered as a promising solution
to create EUD tools in this field. Such tools allow the user to
carry out a form of trigger-action (“if, then”) programming [8].
The user is thus guided in setting up the “if” and “then” parts of
a rule, by choosing them among lists (filtered-list metaphor),
virtual puzzle pieces (jigsaw composition) or components to be
put in a network (wired composition) [9].

This paper proposes a new interaction metaphor for rule
creation aimed at supporting users to perform trigger-action
programming in an “unwitting” manner, that is at helping them
create antecedent and consequent parts of the rules, without
requiring them to think in terms of “if-then” constructs like
computer scientists naturally do. To achieve this goal, the
proposed metaphor splits rule creation in two steps, namely the
definition of scenes followed by the definition of rules starting
from available scenes. Scenes are sets of device actions that can
be also manually activated by the user, thus becoming high-
level commands for the house. Rules are defined to make the
house able of activating itself some given scenes on the basis of
the occurrence of an event, possibly combined with one or more
conditions. The metaphor also encompasses a more guided but
easier way of defining events and conditions for triggering
rules. These ideas have been implemented in an iOS mobile
application, called ImAtHome. Terms such as “if”, “then” or
“do” never appear in ImAtHome, as well as it has been removed
the constraint of defining the consequent only after the
definition of the antecedent, often present in other similar
applications (e.g. IFTTT, Atooma, Tasker, and others).

Another important aspect, often neglected in scientific
literature, is the cost of transforming a traditional house into a
smart home. Current solutions usually require the interaction
with companies that provide global services for smart home
installation and maintenance or, alternatively, the acquisition of
home automation boxes (e.g., Zipabox, Zibase, Vera, and
eeDomus); the latter, in turn, require some “guru” in the family
(i.e. a software expert or someone interested in software
programming) capable of taking care of system installation and
personalization [10].

To overcome this problem, also in this case a smoother
approach to home automation is advocated: the idea is to allow

194

DOI reference number: 10.18293/DMS2016-017

end users to add gradually smart devices to their house,
according to emerging needs and economic possibilities. To this
aim, we have decided to develop our mobile application over
the framework for home automation made available in iOS,
namely HomeKit1. HomeKit is a framework for communicating
with and controlling the smart devices available in a house. It
provides the user with a way to automatically discover such
devices and configure them. It also makes available
functionalities for executing sets of actions to control groups of
devices, by possibly triggering them using Siri – the voice-
controlled virtual assistant available in iOS.

ImAtHome is thus built on top of HomeKit and proposes
itself as a hub application, able to manage all the devices
currently available in a smart home, as well as those that will be
acquired and included in the future. This paper presents the
design and implementation of ImAtHome, as well as a usability
study carried out with a group of 14 users of different age and
background.

The paper is organized as follows: Section II discusses
related works in the IoT and AmI fields, with particular
reference to the smart home and user interfaces for their
configuration and management. Section III describes the
HomeKit framework. Section IV illustrates the development
and the operation of the app ImAtHome. Section V provides
some implementation details, while Section VI discusses the
results of a usability evaluation with 14 users. Finally, Section
VII draws some conclusions and proposes hints for future work.

II. RELATED WORKS
The idea to enable users to program the behavior of their

smart home has been discussed in literature by several research
scholars (e.g., [11][12]). For example, in [11], the “Media
Cubes” programming language is proposed: it is based on the
physical arrangement of infrared remote cubes; they represent
abstract functions whose combination leads to the creation of
complex behaviors. In the e-Gadgets project [12], instead, a
visual editor is proposed, where end users can define “synaptic
associations” (cause-effect relationships) between smart
appliances available in a home.

More recently, the ECA rule-based paradigm has been
proposed in several approaches to EUD applied in IoT or AmI.
One of the most complete frameworks for AmI based on a rule-
based approach is that described in [13]; a subsequent work of
the same authors present three different graphical user interfaces
for rule creation [14], even though no usability study is reported.
In many cases, the proposed toolkits and languages require
users to have some expertise in computer programming and
hardware/software technologies. Barricelli and Valtolina have
delineated an extension of the ECA paradigm pairing it with the
use of formula languages [15]. Coutaz and colleagues [16] have
presented a programming environment, called SPOK, which
combines rule-based and imperative programming. Demeure et
al. [10] described a field study involving 10 households using
different home automation systems for a long period of time. In
all households, there was always only one member of the family
in charge of installing, configuring and managing home
behavior modification. This family member was always a male

1 https://developer.apple.com/homekit/

adult, knowledgeable in hardware/software technologies.
Therefore, the pure end user, neither expert in software
programming nor interested in it, seems practically excluded
from the use of such kinds of tools.

Dahl and Svendsen carried out a preliminary comparison
among three composition paradigms (filtered lists, wiring
composition and jigsaw puzzle composition) for rule creation
[9]. From it, filtered lists, where condition-action compositions
are obtained by selecting conditions and actions from respective
lists, resulted to be the most intuitive for readability; whilst,
jigsaw puzzle composition was considered by participants the
most playful and engaging type of interaction. The filtered lists
metaphor is recently adopted by several commercial and
research applications, such as IFTTT, Atooma, Tasker, Locale,
and others. Ur and colleagues [8] have proved that IFTTT has a
pretty usable interface to create rules, even though these can
contain only one event or condition, and only one action. Lucci
and Paternò [17] have compared Tasker, Locale and Atooma, all
allowing the user to create rules with complex antecedent and
consequent parts. In this study, Tasker resulted the best tool in
terms of expressiveness and Atooma resulted the easiest to use
by end users. The user study reported in [6] compared Atooma
and IFTTT in terms of usability and user preferences, by
considering both users with a background in computer science
and users without this background. The System Usability Scale
(SUS) [18] composite score indicated that Atooma has a higher
usability; moreover, users appreciated the user interface of
Atooma much more than that of IFTTT. A systematic literature
review in the IoT and AmI areas is presented in [7], focused on
the research works that present tools supporting EUD for smart
home configuration and management. From the papers selected
through the review, eleven tools have been identified and
examined. All tools are based on a rule-based paradigm: end
users are supported by visual interfaces to compose events
and/or conditions with actions, using structures like ‘if-
condition(s)-then-action(s)’ or ‘when-event(s)-then-action(s)’.
A qualitative comparison of a subset of these eleven tools is
then presented in [7], by considering the design principles for
smart home control discussed in [19]. From this analysis, Tasker
resulted to be the only tool able to satisfy most of the design
principles (six out of seven). However, as also underlined in
[17], Tasker appeared as more suitable to users with some
knowledge in computer programming than to actual end users.
In this paper, we propose a different approach to the creation of
ECA rules, which, on the one hand, is aimed to be powerful
enough for modeling a huge variety of home behaviors, and on
the other hand, would like to support users performing such
programming activity in an unwitting manner, as advocated in
[20].

Finally, IT companies such as Google, Apple, Samsung and
so on, are currently proposing their solutions in this field.
However, to allow controlling a variety of devices they may
require buying some specific hardware, as in the case of Google
Smart Home Media Center, or proprietary accessories as in the
case of Samsung. This has consequences on scalability and the
possibility for users to create their own rules. On the other hand,
Apple proposes HomeKit as a framework for communication
with accessories and provides some indications to build apps on
it. We have thus chosen to study HomeKit and develop an

195

application able to exploit it, but open to the interaction with
any kind of device compatible with this framework.

III. THE HOMEKIT FRAMEWORK
HomeKit is a framework made available in iOS for

communicating with and controlling connected home
automation accessories that support Apple's HomeKit
Accessory Protocol. Using HomeKit a developer can create
complex applications that allow managing the interaction with
accessories at a high level, without worrying about low-level
technical details. HomeKit is mainly a communication protocol
that supports the integration and interoperability of different
kinds of accessories.

A. User Interface Guidelines
The user interface of ImAtHome has been developed by

following the iOS guidelines for user interfaces and the
following more specific HomeKit User Interface Guidelines2:

• Setting up homes by defining three types of locations:
homes, rooms and zones (groups of rooms, such as
“upstairs”). Rooms, such as “kitchen” or “bedroom” are
the basic organizational concept and will contain the
accessories. At least one home must be specified; it will
include rooms, and will optionally contain zones. Users
must be supported in the creation, modification and
deletion of homes, rooms, and zones.

• Managing users, who, according to their privileges
(Admin or iCloud account holder) may carry out
different activities: setting up homes, adding
accessories, creating scenes or just adjusting the
characteristics of accessories.

• Adding and removing an accessory in an easy way,
also by means of automatic discovering of accessories.
Users must be supported in the configuration of the
accessory by assigning it a name, home, room and zone
(optional). Users must be able to easily identify the
accessory they are configuring.

• Facilitating the creation of scenes to adjust the
characteristics of multiple accessories simultaneously.
Each scene is therefore a set of actions on any number
of accessories.

• Siri integration to activate scenes with voice
commands. HomeKit allows Siri to recognize home,
room, and zone names; therefore, Siri can support
statements like “Siri, turn off the living room lights”.

• Using a friendly and conversational language, in
order not to intimidate the user with acronyms or
technical terms.

Furthermore, HomeKit supports the execution of rules
(called “triggers” in HomeKit), which are ways to activate a
scene based on conditional relationships concerned with time,
location, and the behavior of other accessories.

2https://developer.apple.com/homekit/ui-guidelines/

Therefore, an additional guideline in the HomeKit
Developer Guide suggests to help users set up triggers, by
facilitating as much as possible the creation of the conditional
relationships. In the design and development of ImAtHome we
have carefully considered this issue.

B. HomeKit Accessory Simulator
HomeKit Accessory Simulator is a tool that allows one to

simulate the presence of some accessories in the smart home.
Such accessories correspond to those ones that an app would
automatically discover in a home. HomeKit Accessory
Simulator builds a simulated wireless network to which all
accessories added by the developer are connected. Each
accessory may have a variety of characteristics to be controlled;
through the simulator, the developer can add a characteristic to a
class of accessories or a personalized characteristic to a single
accessory. Optional characteristics can also be removed. This
simulator has been very useful for setting up the
experimentation of ImAtHome.

C. Communication in ImAtHome through HomeKit
A variety of companies are developing accessories

compatible with HomeKit, such as conditioners, thermostats,
light bulbs, cameras, secure locks, carbon monoxide sensors,
and so on. As a consequence, several dedicated apps are being
developed to control such different devices. Actually, the Apple
Store contains at least one app for each accessory class
mentioned above and it may also happen that more than one app
for the same accessory class are available, usually developed by
different producers. The advantages given by the compatibility
with HomeKit are that accessories can be controlled through
Siri and may be included in the creation of a scene. However,
the main drawback is that each accessory keeps on being
controlled only by its corresponding app, according to the
architecture schematized in Figure 1. Therefore, scenes or rules
that involve different types of accessories cannot be created.

Figure 1. Communication with accessories through HomeKit.

196

The idea underlying ImAtHome is to exploit the common
communication protocol for interacting with many kinds of
accessories or combinations of them (see Figure 2). In other
words, ImAtHome proposes itself as a hub for controlling one’s
own smart home: all compatible accessories are made available
on the smartphone in a unique app, with the same interaction
style and the possibility to work in combination one another.

Figure 2. Controlling the smart home through HomeKit with ImAtHome.

IV. THE APPLICATION IMATHOME
The design and development of ImAtHome has been

performed according to a user-centered approach, by involving
users in the discussion and evaluation of paper mock-ups and
interactive prototypes throughout the software development
lifecycle. The following subsections illustrate the interaction
with ImAtHome to create homes, scenes and rules.

A. ImAtHome Interface Structure
The features made available by HomeKit have guided the

ideation of the app structure. First, the interface includes a
section, entitled “My home”, where the user can access or
define a new home (Fig. 3(a)) and its rooms (Fig. 3(b)). By
selecting the item “Add room...” in Fig. 3(b), the user can create
a room and associate it with a name and an icon among those
available (Fig. 4(a)). The new room, “Living room” in the
example, is thus added to the list of rooms previously defined
by the user (Fig. 4(b)). Accessories are similarly shown as a list
associated with a room. The user may bind accessories to rooms
inserting their configuration code by means of OCR technology.

Furthermore, the HomeKit database distinguishes between
action sets (scenes) and triggers (rules). Action sets may be
related to triggers through conditional relationships. Therefore
we have decided to add two different sections in the app, one
where the user can find or define her/his scenes (“Scenes”) and
the other devoted to the creation of rules (“Rules”). Scenes are
actually sequences of actions that the user may manually
activate; whilst rules represent automatic activation of one or
more scenes, under some specific conditions (that trigger the
rules).

The three sections are accessible through the bottom tab bar.

(a) (b)

Figure 3. Section “My home” on the left (a) and screen for adding a room to
the home on the right (b).

(a) (b)
Figure 4. Hierarchical navigation in section “My home”: screen for room

creation on the left (a) and list of rooms on the right (b).

197

(a) (b)
Figure 5. Section “Scenes” with the list of pre-defined scenes on the left (a)

and screen for scene creation on the right (b).

B. Scene definition and activation
The section “Scenes” presents a default list of void scenes

available in the HomeKit database, that is “Good morning”,
“I’m leaving”, “I’m home” and “Good night” (see Fig. 5(a)).
The user may complete them or create a new one by clicking the
‘+’ button in the right upper corner (as it is usually requested in
iOS apps to add a new object). In the new screen - Fig. 5(b), the
user can give a name to the scene (e.g., “Turn On Living Room”
to indicate a scene that turns on the lights in the living room)
and define a set of actions (in the example: “Turn On Sofa
Lamp” and “Turn On Main Lamp”) by setting the
characteristics of the accessories involved in each action. When
the new scene is saved, the list shown in Fig. 5(a) is updated.
Here the user can manually activate the created scene with a tap
or by pronouncing its name, thus giving control to Siri for scene
execution.

C. Rule creation
In ImAtHome, the user may decide to use the pre-defined or

user-defined scenes to create rules. Let us suppose that the user
would like to create a rule that switches on the lights of the
living room (the scene illustrated above) when she arrives at
home, but only if it is after 5 P.M. To this aim, she must access
the third section of the application and click on the ‘+’ button in
the right upper corner. As a consequence, the screenshot in
Figure 6(a) is shown. Here the message at the top tells the user
to choose among three options to trigger her scenes by “Time”,
“Position” or “Another accessory”. These ones correspond to
the three conditional relationships for triggering scenes, which
are supported in HomeKit. Selecting one of them allows

defining the “event” part of an ECA rule. However, differently
from the interaction with other tools, here the user does not need
to know that the “if” part of an “if-then” construct must be
created. In the example, the user selects the “Position” option.
As a consequence, a screen appears where the user

1) defines the details of an event related to her position; in
the example in Fig. 6(b) she selects “When I arrive”.
Then she taps on “Choose a position” and, as a
consequence, a map appears centered in the current
position of the user; if she is at home, she can simply
save that position, otherwise she may look for a specific
address through the search bar;

2) defines an additional condition (“after 5:00 P.M.” in
Fig. 6(c));

3) selects one or more scenes that must be activated. In the
example in Fig. 6(d), the user checks “Turn On Living
Room”.

Note that with steps (2) and (3) the user actually creates the
condition part and action part of an ECA rule respectively,
without being aware of it. Moreover, differently from other user
interfaces for ECA rule definition, ImAtHome requires to define
action sets (scenes) first, and then relate them to events and
conditions. This allows users to activate scenes manually if
needed and use them in several different rules.

V. IMPLEMENTATION
The implementation of ImAtHome has been carried out in

Swift, the programming language for iOS presented by Apple in
2014. As already mentioned, it has been built over the HomeKit
Application Programming Interface (API), which provides a
variety of classes for low-level interaction with home
accessories. On activation, ImAtHome creates an object of the
class HMHomeManager, made available by HomeKit to add or
remove a home to/from its database. For each home, HomeKit
creates a database on iCloud, which contains all its objects
(rooms and accessories in our case). This database is always
synchronized with the user’s iOS device; therefore, to show the
user the most recent data, the app ImAtHome continuously
monitors the database updates. In particular, ImAtHome
exploits HomeKit API to 1) discover the accessories available in
the environment compatible with the communication protocol,
and add them to the database associated to the home; 2) access
the properties of the accessories; 3) modify the current values of
the accessory properties, thus executing actions (e.g. switch on a
light in a given room with a certain lighting level and a specific
color). At a higher level, the app is organized in four groups of
classes: three main groups manage the behavior and appearance
of the three app sections respectively (My Home, Scenes and
Rules); whilst, the last group includes all other classes
supporting the operation of the main classes.

VI. SYSTEM EVALUATION
A user test has been carried out to evaluate the usability of

ImAtHome. The experiment has been conducted by using the
iPhone simulator included in the development environment and
the HomeKit Accessory Simulator. The Italian version of the
app has been used to facilitate the interaction with Italian
participants.

198

(a) (b)

(c) (d)

Figure 6. ECA rule creation in ImAtHome.

A. Methodology
The user test involved a total of 14 participants (8 males and

6 females). Their ages ranged as follows: 3 users in 20-24, 8
users in 25-35, and 3 users in 50-65 (average age equal to 33).
They held different education degree and represented varied
professional backgrounds. They included 8 students, 3 office
workers, 1 housewife, 1 unemployed and 1 retired. Twelve

participants held an Apple device. As to computer science
knowledge, 8 participants declared to have low or medium
knowledge, whilst 6 declared themselves as experts. Participants
were asked to carry out five tasks of increasing complexity: the
first two tasks devoted to the creation of a smart home, with
rooms and accessories; the third one for creating a scene; and
the last two tasks for defining a simple rule and a complex rule
respectively. No previous training was provided to the users.

During task execution, we collected quantitative data related
to execution time and percentage of task completion. Since a
think aloud protocol was adopted, comments of participants
were annotated as well. Then, after the test, we submitted to the
participants a post-questionnaire to gather opinions about their
experience of use and a SUS questionnaire [18] to obtain an
estimation of ImAtHome usability.

B. Quantitative Results
Table I reports the execution times of participants (with

average value and standard deviation) and the optimum
execution times of one developer. Execution times of
participants were always about 3 times the optimum time,
except for Task 3 that was the first task devoted to the creation
of a scene. The last task was the most complex in terms of
actions to perform, but its average execution time was less than
that of Task 4, thus demonstrating that ImAtHome is easy to
learn. In general, also considering that participants did not
receive any previous training on the application, execution times
are highly satisfactory. The percentages of task completion
reported in the last row of Table I confirm such positive results.

A further analysis on the time spent to carry out the tasks
was performed dividing the users in two groups: the former
including the 8 participants that declared to have low or medium
knowledge in computer technologies, the latter with 6
participants declaring themselves as experts. A t-test was
adopted to compare the execution times: no significant
difference was found between the two groups, demonstrating
once again that ImAtHome allows all kinds of users to easily
become “unwitting trigger-action programmers”.

C. Qualitative Results
Comments of the users gathered during test execution

highlighted some cosmetic problems that were easily solved
after the experiment. Most of the users made positive (and
sometimes enthusiastic) observations on the interaction process
adopted for creating homes and rooms and populating them
with accessories. Some difficulties were encountered in the
execution of Task 3, which required to create a scene for
switching off all the lights: before choosing the right way, a
participant tried at first to modify a pre-defined HomeKit scene;
another participant observed that the task was not easy to
understand, but he also admitted that he did not read the app
instructions first, which instead would have provided him with
useful examples; finally, one participant told us that it was not
clear when and where to save the scene. Fewer difficulties were
encountered in the creation of the first rule (Task 4): only one
user had been not able to combine an event (“when I move from
home”) with a condition (“if it is after 9.00 P.M.”). As already
mentioned, Task 5 was very successful, despite its complexity:
indeed, some participants commented that the interaction with
the app became familiar after few interactions.

199

TABLE I. TASK EXECUTION TIME AND COMPLETION PERCENTAGE

User
Tasks

Task 1 Task 2 Task 3 Task 4 Task 5

U1 02:00 01:48 02:30 03:43 04:54

U2 01:46 02:00 01:30 04:30 02:57

U3 00:40 01:16 01:00 04:30 02:25

U4 01:23 01:30 01:38 03:03 03:35

U5 01:27 01:47 01:55 03:00 02:30

U6 01:20 02:03 02:30 02:15 02:55

U7 00:38 01:03 01:44 01:40 01:53

U8 00:39 01:35 02:00 01:30 02:40

U9 01:23 01:30 01:17 05:34 04:06

U10 00:41 01:30 00:35 02:20 02:10

U11 01:40 01:59 03:10 02:10 03:00

U12 01:27 01:19 01:08 01:45 01:55

U13 01:30 02:47 01:10 04:10 04:12

U14 00:50 01:34 01:29 04:41 02:40

Avg. 01:15 01:42 01:41 03:12 02:59

SD 00:27 00:25 00:40 01:16 00:52

Opt. 00:30 00:50 00:18 01:00 1:00

%
Compl. 100% 100% 93% 93% 100%

D. Findings from post-questionnaire
The post-questionnaire included the following questions:

1. Did you find the interaction with the app pleasant and
funny?

2. If compatible accessories would be present in your
home, should you use ImAtHome?

3. Did you find the user interface coherent with the other
iOS apps?

4. Do you think that with some limited training
ImAtHome would be easier to use?

5. Did you find the language of the application easy to
understand?

Answers to the above questions were given on the
qualitative scale {“definitely no”, “no”, “fairly”, “yes”,
“definitely yes”}. We then translated the participants’
assignments to the 0-4 numerical scale and computed the
average values. The following results were obtained: Q1=3.07;
Q2=3.29; Q3=3.67; Q4=3.29; Q5=3.36. As to Q3 (related to
coherence), we gathered the answers of 12 out of 14
participants, since the remaining two participants did not hold
any Apple device. Participants that encountered some
difficulties in the execution of Tasks 3 and 4 asserted that, with
a limited training, the application became very easy to use.

E. SUS evalutation
The overall usability of ImAtHome was finally evaluated

through the SUS questionnaire, by providing an average
cumulative score of the 14 participants equal to 86.6, pretty
higher than the conventional threshold equal to 70, adopted for
declaring that a system is easy to use [18]. More precisely,
Figure 7 shows the SUS scores of all the 14 users; notice that
they are all (except one) above or equal the threshold.

Figure 7. SUS cumulative scores of the 14 users.

VII. DISCUSSION AND CONCLUSION
This paper has presented ImAtHome, an iOS application

that allows a home inhabitant, without any programming skills,
to control home automation accessories and create scenes and
rules for defining complex behaviors of a smart home. The
application is scalable, because if a new accessory, compatible
with HomeKit, is acquired, it will be automatically recognized
by the application and its services will be presented to the users
as it already happens for the other accessories. With respect to
other approaches proposed in the literature and available
commercial tools, ImAtHome allows the user both to manually
activate some sets of actions (scenes) or to use them within rules
to obtain automatic behaviors of the home. Furthermore, the
same scene, once created, can be used several times in different
rules; whilst, in other user interfaces based on the “if-then”
paradigms, antecedents and consequents of rules must be always
explicitly defined.

Integration with HomeKit allows ImAtHome to be used
through vocal commands. Indeed, Siri is able to recognize the
words associated with accessories and scenes. Therefore, vocal
commands can be used to change the characteristics of an
accessory and to activate pre-defined or user-defined scenes. An
interesting extension could be the creation of a parser for scene
and rule creation from the fragments of a vocal command.

As to future work, we are planning to extend the
experimentation. Beyond involving a higher number of users, it
would be interesting to compare “if-then” or “when-then”
interfaces of existing tools (e.g. IFTTT, Atooma, and Tasker)
with our “unwitting trigger-action programming” style. Not
only measures of user performance, but also users’ acceptance
and appreciation for the interaction style would represent useful
information for future development of these kinds of interfaces.

Another important issue is the extension of the application to
the case of multiple user control of a smart home. Indeed, as
underlined in [19], more than one person usually inhabits a

200

home and household activities may be collaborative or in
competition (such as TV control or music choice). Therefore,
we foresee a future where the collective and participatory
evolution of a sentient multimedia system takes place through
the simultaneous, but coordinated, intervention of all the
interested actors [3]. However, to achieve this goal, some
limitations of the current version of HomeKit must be
overcome. Currently, it allows associating one’s own apple
account with a new home, and thus add or modify accessories,
rooms, scenes and rules, but it does not allow other Apple
accounts to do these activities on the same home. In other
words, a home can be shared with other users, but a “guest” user
can only control the accessories and activate existing scenes;
whilst, she/he cannot actually modify the HomeKit database.

Under the hypothesis that future versions of HomeKit will
be released to cope with this issue, we have started to think
about the problems that would affect a multi-user approach to
smart home control. First, user profiling and permission control
should be supported; this would require a usable interface,
possibly based on suitable visual languages, like those proposed
in [21][22][23]. Second, a variety of social mechanisms, from
collaboration to competition, from delegation to reciprocity,
should be implemented to stimulate participation. To address
this problem, we have proposed the idea of a collaborative
application enriched with gamification techniques aimed at
motivating all household members to participate in the shaping
of their smart home [24][25]. Third, giving household members
the possibility to intervene simultaneously in accessory or scene
activation and in the creation of rules working on shared spaces
may lead to incoherencies and conflicts among rules; suitable
solutions must be carefully studied to address these problems.

REFERENCES
[1] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54(15), 2010, pp. 2787-2805.
[2] F. Sadri, “Ambient intelligence: A survey,” ACM Computing Surveys

vol. 43(4), 2011, pp. 1-66.
[3] F. Cabitza, D. Fogli, A. Piccinno, “Fostering participation and co-

evolution in sentient multimedia systems,” Journal of Visual Languages
and Computing, vol. 25(6), 2014, pp. 684-694.

[4] H. Lieberman, F. Paternò, V. Wulf, V. (eds.), End User Development.
Dordrecht, The Netherlands: Springer, 2006.

[5] F. Cabitza, D. Fogli, R. Lanzilotti, A. Piccinno, “End-User Development
in Ambient Intelligence: a User Study,” Proc. 11th Biannual Conference
on Italian SIGCHI Chapter (CHItaly), ACM, New York, NY, USA, 2015,
pp. 146-153.

[6] F. Cabitza, D. Fogli, R. Lanzilotti, A. Piccinno, “Rule-based Tools for the
Configuration of Ambient Intelligence Systems: a Comparative User
Study,” Multimedia Tools And Applications, DOI: 10.1007/s11042-016-
3511-2.

[7] D. Fogli, R. Lanzilotti, A. Piccinno, “End-User Development Tools for
the Smart Home: A Systematic Literature Review,” In: N. Streitz and P.
Markopoulos (Eds.): DAPI 2016, LNCS 9749, Springer International
Publishing Switzerland, 2016, pp. 1–11.

[8] B. Ur, E. McManus, M. Pak Yong Ho, M.L. Littman, “Practical trigger-
action programming in the smart home,” In: SIGCHI Conference on
Human Factors in Computing Systems, ACM, New York, NY, USA,
2014, pp. 803-812.

[9] Y. Dahl, R.-M. Svendsen, “End-User Composition Interfaces for Smart
Environments: A Preliminary Study of Usability Factors,” In A. Marcus
(Ed.), Design, User Experience, and Usability. Theory, Methods, Tools
and Practice, Vol. 6770, Berlin Heidelberg: Springer, 2011, pp. 118-127.

[10] A. Demeure, S. Caffiau, E. Elias, C. Roux, “Building and Using Home
Automation Systems: A Field Study,” In: Díaz, P., Pipek, V., Ardito, C.,
Jensen, C., Aedo, I., Boden, A. (eds.) End-User Development. LNCS,
vol. 9083, Springer International Publishing, 2015, pp. 125-140.

[11] A. F. Blackwell, “End-user developers at home,” Communications of the
ACM vol.. 47(9), 2004, pp. 65-66.

[12] I. Mavrommati, A. Kameas, P. Markopoulos, “An editing tool that
manages device associations in an in-home environment,” Personal and
Ubiquitous Computing, vol. 8(3-4), 2004, pp. 255-263.

[13] M. García-Herranz, P. A. Haya, A. Esquivel, G. Montoro, X Alamán,
“Easing the Smart Home: Semi-automatic Adaptation in Perceptive
Environments,” Journal of Universal Computer Science, vol. 14(9), 2008,
pp. 1529-1544.

[14] M. García-Herranz, P. A. Haya, X. Alamán, “Towards a Ubiquitous End-
User Programming System for Smart Spaces,” Journal of Universal
Computer Science, vol. 16(12), 2010, pp. 1633—1649.

[15] B. R. Barricelli, S. Valtolina, S., “Designing for End-User Development
in the Internet of Things,” In: Díaz, P., Pipek, V., Ardito, C., Jensen, C.,
Aedo, I., Boden, A. (eds.) End-User Development, vol. 9083, Springer
International Publishing, 2015, pp. 9-24.

[16] J. Coutaz, A. Demeure, S. Caffiau, J. L. Crowley, “Early lessons from the
development of SPOK, an end-user development environment for smart
homes,” Proceedings of 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct Publication (UbiComp),
Seattle, Washington, pp. 895-902, 2014.

[17] G. Lucci, F. Paternò, “Understanding End-User Development of Context-
Dependent Applications in Smartphones,” In S. Sauer, C. Bogdan, P.
Forbrig, R. Bernhaupt & M. Winckler (Eds.), Human-Centered Software
Engineering, vol. 8742, Springer Berlin Heidelberg, 2014, pp. 182-198.

[18] S. Borsci, S. Federici, M. Lauriola, M., “On the dimensionality of the
System Usability Scale: a test of alternative measurement models,”
Cognitive Processing, vol. 10(3), 2009, pp. 193-197.

[19] S. Davidoff, M. K. Lee, C. Yiu, J. Zimmerman, A. K. Dey, “Principles of
Smart Home Control,” In: Dourish, P., Friday, A. (eds.) UbiComp 2006:
Ubiquitous Computing. LNCS, vol. 4206, Springer, Berlin Heidelberg
2006, pp. 19-34.

[20] M. F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno, “End
users as unwitting software developers,” In Proceedings of the 4th
international workshop on End-user software engineering (WEUSE '08).
ACM, New York, NY, USA, 2008, pp. 6-10.

[21] M. Giordano, V. Loia, G. Polese, G. Tortora, “A system for user friendly
pervasive computing management,” In Proceedings of the 3rd
International Conference on Intelligent Environments (IE’07), Ulm,
Germany, September 2007, pp. 282-287.

[22] M. Giordano, G. Polese, G. Scanniello, G. Tortora, “A system for visual
role-based policy modelling,” Journal of Visual Languages & Computing,
vo. 21(1), 2010, pp. 41-64.

[23] L.Caruccio, V. Deufemia, C. D'Souza, A. Ginige, G. Polese, “A Tool
Supporting End-User Development of Access Control in Web
Applications,” International Journal of Software Engineering and
Knowledge Engineering, vol. 25(2), 2015, pp. 307-331.

[24] F. Benzi, F. Cabitza, D. Fogli, R. Lanzilotti, A. Piccinno, “Gamification
Techniques for Rule Management in Ambient Intelligence,” In: B. De
Ruyter, A. Kameas, P. Chatzimisios and I. Mavrommati (Eds.), Ambient
Intelligence, Springer International Publishing, 2015, pp. 353-356.

[25] D. Fogli, R. Lanzilotti, A. Piccinno, P. Tosi, “AmI@Home: a Game-
Based Collaborative System for Smart Home Configuration,” In:
Proceedings of International Working Conference on Advanced Visual
Interfaces (AVI '16), ACM, New York, NY, USA, 2016, pp. 308-309.

201

