
Towards An Effective and Efficient Approximation Algorithm for Advanced
Computer Vision Applications based on Two-Dimensional Dynamic

Programming

Alfredo Cuzzocrea
DIA Dept., University of Trieste and ICAR-CNR, Italy

alfredo.cuzzocrea@dia.units.it

Enzo Mumolo
DIA Dept., University of Trieste, Italy

mumolo@units.it

Giorgio Mario Grasso
CSECS Dept., University of Messina

Italy
gmgrasso@unime.it

Gianni Vercelli
DIBRIS Dept., University of Genova, Italy

gianni.vercelli@unige.it

Abstract

The Dynamic Programming Algorithm (DPA) was devel-
oped in the fifties. However, it is sometimes still used nowa-
days in various fields because it can easily find the global
optimum in certain optimization problems. DPA has been
applied to problems of one, two or three dimensions. When
the dimension of the problem solved by DPA is equal to one
the complexity of the algorithm is polynomial but if the size
is greater than one, the complexity becomes NP complete.
In such cases a practical implementation of the algorithm is
possible only using some approximation. In this paper we
present a novel approximation of the two-dimensional Dy-
namic Programming Algorithm (2D-DPA) with polynomial
complexity. We then describe a parallel implementation of
the algorithm on a recent Graphics Processing Unit (GPU).

1 Introduction

In this paper we describe an approximation of the two-
dimensional Dynamic Programming algorithm (2D-DPA)
and its implementation on a GPU device with CUDA ar-
chitecture. It is well known that the the two-dimensional
dynamic programming algorithm is NP-complete. Hence,
approximate versions are required for its execution. The
approximation we propose here has a polynomial complex-
ity.

The dynamic programming algorithm (DP) is based on
the principle of optimality of Richard Bellman [3] and it is
an elegant method for finding the global solution to certain
optimization problems. Although the optimization problem

with dynamic programming was originally formulated as a
continuous variational problem, later it was first discretized
and then solved as a combinatorial problem (namely dis-
crete) optimization [1]. The application of the dynamic pro-
gramming algorithm requires that an optimization problem
is formulated as a series of simpler problems. The global
optimum is obtained by the sequence of local optima. A
classic example is to align two sequences of symbols, which
has found application in speech recognition [21] and bioin-
formatics [30].

DP has been applied to various problems of pattern
recognition and computer vision [1, 9]. Although there are
many other optimization techniques, DP is an ideal tech-
nique to solve many discrete optimization problems such
as inventory management, scheduling of activities or pack-
aging of objects. Recently Buchanan and Fitzgibbon [4]
describe an algorithm that processes multiple hypotheses
for tracking mobile objects with dynamic programming. In
[31, 15] methods for computing the disparity map of stereo
images with dynamic programming are described. Further-
more, the elastic comparison between images as described
for example by Uchida [29] is a typical application of the
two-dimensional dynamic programming.

While DPA was originally used as a method to efficiently
solve optimization problems, [3], Angel [2] uses the ana-
lytical DP to smooth iterpolated data. Serra and Berthod
[22] and Munich and Perona [19] use the DP algorithm
for aligning non-linear one-dimensional patterns. Most re-
cently, Uchida et al. [25] use DPA for tracking objects.

The algorithm of DP (and its extension, the stochas-
tic programming, namely the Hidden Markov Models) is a
classic technique for recognizing the spoken voice [21] and
for the recognition of printed characters [17].

1

84

DOI reference number: 10.18293/DMS2016-031

Many researchers have extended one-dimensional dy-
namic programming algorithms (1D-DP) to the two-
dimensional case. The comparison of images by two-
dimensional DPA has been described for example in [16,
26], but the authors have met the computational difficulties
due to the NP completeness of the problem [14].

To address this computational difficulty, different ap-
proximation strategies have been proposed, with the aim of
arriving at a solution with polynomial complexity but with
a lower level of optimization. The approximation type de-
scribed in [13] limits the flexibility of the correspondences.
Another approximation strategy consists in the partial omis-
sion of the mutual dependence between four adjacent pixels,
such as the tree representation described in [18].

All elastic comparison algorithms between patterns are
based on dynamic programming as a method of combinato-
rial optimization. A recent overview by Felzenszwalb et al.
[10] emphasizes that the use of dynamic programming as a
discrete optimization method is versatile, and arises in very
different low-level and high-level vision problems.

This paper is organized as follows. In Section 2 vari-
ous applications based on DPA implemented on CUDA ar-
chitecture are described. Section 3 describes dynamic pro-
gramming algorithms in one and in a two dimensions. In
Section 4 we describe a two-dimensional DPA approxima-
tion algorithm with polynomial complexity. This as an im-
provement of well-known argumentation that state that 2D-
DPA has an exponential complexity. Section 5 reports the
CUDA-based implementation of our proposed approximate
2D-DPA algorithm. Finally, in Section 6, we report con-
cluding remarks and hints on future work. An extended
version of this work appears in [7].

2 Related Work

The two-dimensional dynamic programming algorithm
requires a large number of computations. For this reason
many authors have implemented the algorithm in parallel
form on Graphics Processing Devices (GPU). The main
problem that have been considered is how to find the best
way to parallelize the 2D-DPA.

Many problems have been solved with the 2D-DPA al-
gorithm. For example, the problem of finding the dispar-
ity between stereo images, the problem to compute a dis-
tance between images using the so-called elastic matching
method, or several discrete numerical problems have been
addressed using the two-dimensional dynamic program-
ming algorithm. In 2007, a dynamic programming algo-
rithm to solve the problem of finding the disparity between
stereo images has been implemented on an ATI Radeon
X800 GPU, one of the first GPU devices [11]. In 2009,
Xiao et al. [32] address the problem of how to map the dy-
namic programming on a graphics processing unit. They

propose a fine-grained parallelization of a single instance of
the DP algorithm that is mapped to the GPU. In the same
year Congote et al. [6] compute the map of depth from
stereo images for three-dimensional display on a GPU using
dynamic programming. They use an NVIDIA GPU com-
mercially available in that year, in particular the model GTX
295, achieving an execution speed of 25 frames per second.
The heart of their work was the use of optimized algorithms
for a GPU execution with stable depth maps and little noise.
In 2010, Steffen et al., [23], describe their change to the
numerical software environment called Algebraic Dynamic
Programming consisting of different optimization problems
solved with dynamic programming. Their change has been
the implementation of the dynamic programming based al-
gorithms on a GTX 280 GPU. The authors report that the
speed-ups range, depending on the application, from about
6 to about 25. Stivala et al. [24] published an article in 2010
that shows how to parallelize any DPA on a multicore com-
puter with shared memory by means of a hash table with-
out using primitives for mutual exclusion lock. The authors
adopted this strategy: initially they create multiple threads
that compute top-down DP recursion storing the result in a
hash table with no spin-lock.

3 One- and Two-Dimensional DPA

Dynamic Programming is often explained using the edit
distance, which measures the number of insertions, dele-
tions and substitutions required for matching two sequences
of symbols [20]. In other words the edit distance is a way to
measure the similarity of two strings or to align two strings.
The edit distance has many applications, for example in
bioinformatics [8] or in natural language [12]. The edit dis-
tance algorithm is described as follows. Given two one-
dimensional sequences, A = (a1, a2, ..., ai, ..., aN) and
B = (b1, b2, ..., ..., bj ...bM), the path M 0 from the cell
(1, 1) to the cell (N,M) of the A � B space that gives the
minimum accumulated distance represents the mapping of
one sequence relative to the other. The path is formed by a
series of points in such a way that each point k of the path
corresponds to a pair of coordinates of the two sequences,
M 0

k = (ik, jk). The distance between the two sequences
is the sum of the local distances d(M 0

k) between the two
addressed elements of the sequences, aik , bjk , computed
along the path M 0, or

P|M 0|
k=1 kaik � bjkk, where |M 0| is the

length of the path M 0, namely the number of points k. The
distance k.k depends on the problem under examination.

The mapping between the two sequences is the path
along which the final accumulated distance is minimum. Fi-
nally, the distance between the two sequences is the mini-

85

mum accumulated distance:

D(A,B) =
min
M 0

P|M 0|
k=1 d(M 0

k)

|M 0| =

=
min
M 0

P|M 0|
k=1 d(ik, jk)

|M 0| =
min
M 0

P|M 0|
k=1 kaik � bjkk

|M 0| (1)

We note that the factor at the denominator is used to nor-
malize the distance in respect of the length of the optimal
path, which may be different. The optimization problem
described in (1) is solved by the dynamic programming al-
gorithm. In each point of the A�B space the accumulated
cost distance D(i, j) is updated using the recursion shown
in (2).

D(i, j) = min

8
<

:

D(i� 1, j � 2) + 2d(i, j � 1) + d(i, j)
D(i� 1, j � 1) + 2d(i, j)
D(i� 2, j � 1) + 2d(i� 1, j) + d(i, j)

(2)
where D(0, 0) = 2d(0, 0). The recursion (2) expresses

the optimality principle of dynamic programming. This
type of recursion is the symmetric form of dynamic pro-
gramming. It is important to remark that using the recur-
sion (2) the length of the optimal path length just mentioned
above, which is the normalization factor, is the sum of the
lengths of the sequences A and B, namely N + M . The
recursion reported in (2) is graphically shown in Fig. 1.

d(i,j)D(i-1,j)

D(i-1,j-1) D(i,j-1)

2

2

2

D(i-1,j-2)

D(i-2,j-1)

Figure 1. Graphical Representation of DP Re-

cursion

The recursion described in (2) can be implemented ac-
cording to the following pseudocode, where we call U, V,
W, the accumulated cost distances computed at the points,
respectively, D(i� 1, j � 1), D(i, j � 1) and D(i� 1, j).

for i = 0 to N

for j = 0 to M

{

Wval=score[j]; Wfree=free[j];

if((Wval+dij)<(Uval+2dij)) && Wfree)

if(Wval<=Vval)||(!free) {

Vval=Wval+dij;/

*

W

*

/

Vfree=0;

}

else {

Vval=Vval+dij; /

*

V

*

/

Vfree=0;

}

else {

if(Vval+dij)<(Uval+2dij) && Vfree)

{

Vval = Vval + dij;/

*

V

*

/

Vfree = 0;

}

else {

Vval=Uval+2dij;/

*

U

*

/

Vfree = 1;

}

score[j]=Uval; free[j]=Ufree;

Uval=val;

}

final distance = score[M]/(N + M);

As shown in the above pseudocode, after the recursion
(2) is applied to all the (i, j) points of the A � B space,
equation (1) becomes:

D(A,B) =
D(N,M)

N +M
(3)

where D(N,M) is the final distance between the two
one-dimensional sequences, namely the distance accumu-
lated to the point (N,M). The sum N +M at the denomi-
nator is the normalization factor.

It is important to remark that the constraints shown in
Fig.1 and represented by the Ufree, Vfree and Wfree vari-
ables of the above pseudocode cause that the optimum map-
ping path can not have two consecutive horizontal or verti-
cal movements. Thus, as stated in [21], unrealistic mapping
paths are avoided.

Since the path M 0 is the optimal mapping between the
two sequences, it can be used to align one sequence onto
the other, which can be performed by inserting or removing
a point of one sequence according to the horizontal or ver-
tical moves. This operation is called warping. The goal of
the warping is to stretch or shrink one sequence to make it
identical to the other.

We now extend the derivation of a distance between two
one-dimensional sequences given above to the derivation of
a distance between two two-dimensional sequences, namely
the images, X = {x(i, j)} and Y = {y(u, v)}. For that, we
introduce a mapping plane M”, M” = {m(k, l)}, which
maps the two images from the first row of the two images
to the last row of the two images. Each of the elements of
M” correspond to a pair of coordinates of pixels of the two
images, namely M”k,l = m(k, l) = ((i, j)k,l, (u, v)k,l).
Similarly to the one-dimensional case, a distance between
the two images can be defined as reported in (4).

D(X,Y) =
min
M”

P
k

P
l d(M”k,l)

|M 00| =

=
min
M”

P
k

P
l kx(i, j)k,l � y(u, v)k,lk

|M”| (4)

86

where, as before, |M”| is a normalization factor.
The plan M” that solves equation (4) is a mapping be-

tween the two images. Using the mapping M” one can
stretch and shrink an image for overlapping it onto the other
one. Similarly to the one-dimensional case this operation is
called warping between images.

However, it has been shown that the optimization de-
scribed in (4) is NP-complete. As previously mentioned,
many authors have developed 2D-DPA algorithms using
various approximation strategies to make them computa-
tionally tractable. The algorithm developed by Levin and
Pieraccini in 1992 has a complexity of O(N4N), assuming
that N is the height and width of the images [16]. Uchida
et.al described in [27] and in [28] a two-dimensional dy-
namic programming algorithm with O(N39N) complexity.
Uchida and Sakoe described in [29] various elastic match-
ing algorithms proposed so far, seven of which are based on
dynamic programming.

In the following section we describe an algorithm with a
complexity of O(N4).

4 Approximate Two-Dimensional DPA

In this Section, we provide the main contribution of our
research, i.e. the approximate 2D-DPA.

The algorithm proposed here for the mapping of images
is based on the one-dimensional DPA described in Section
3. Consider an image as a vector whose elements are the
rows of pixels of the image itself. Let us indicate with x(i, :
), y(i, :) the i-th row of pixels of the images X , Y . The X ,
Y images are thus described as reported in (5).

X = [x(1, :), x(2, :), ..., x(i, :), ..., x(N, :)]T

Y = [y(1, :), y(2, :), ..., y(j, :), ..., y(N, :)]T
(5)

In (5) the images are assumed for simplicity of the
same size. The idea of this paper is to apply the one-
dimensional DPA algorithm on the two sequences X and
Y . We remark that each element of these sequences is
an entire row of pixels. The i� th row of X is x(i, :
) = (xi,1, . . . , xi,n, . . . , xi,N) and the j� th row of Y
is y(j, :) = (yj,1, . . . , yj,m, . . . , yj,N). The distance be-
tween two elements of X , Y or, in other terms, the distance
between two rows of pixels is again performed with one-
dimensional DPA. The application of (1) to x(i, :), y(j, :)
becomes (6).

d(x(i, :), y(j, :)) =
min
M 0

P|M 0|
l=1 d(M 0

l)

|M 0| =

=
min
M 0

P2N
l=1 kxi,nl � yj,mlk

2N
(6)

On the other hand, the application of 1 to X , Y results
in (7). In this case the map M 0 is between all the rows of X
and Y . As before, |M 0| is the length of the path of the M 0

map.

D(X,Y) =
min
M 0

P
k d(M

0
k)

|M 0|
=

min
M 0

P
k d(x(i, :), y(j, :))

|M 0|
(7)

Substituting (6) in (7) we obtain the final expression re-
ported in (8).

D(X,Y) =
min
M 0

P
k

min
M0

P
l d(M

0
l)

2N

2N
=

=
min
M 0

{
P2N

k=1 min
M 0

P2N
l=1 kxi,nl � yj,mlk

4N2

(8)

Clearly, the two min operators represent the fact that for
computing the optimum path between images with DPA,
other optimum paths between the rows are computed with
DPA. Recall that we assumed the images are N ⇥N pixels,
then the length of the optimal path between the two images
is 2N . Local distances at any point in this process are ob-
tained with other 1D-DPA with paths length equal to 2N .
The total length is the sum of 2N along the long path 2N ,
giving the term 4N2 at the denominator of (8).

The algorithm is approximated since it is not guaranteed
that the warping function is continuous. In fact, the one-
dimensional DPA aligns the rows independently of each
other. This means that the algorithm can be successfully
applied if the difference between the two images is some-
how limited.

5 CUDA-based Implementation of Approxi-
mate 2D-DPA

Our approximate realization of 2D-DPA is the following:
we compute a 1D-DPA between each row of an image and
each row of the other image. A matrix of distances between
rows is then computed. On this matrix another 1D-DPA is
applied. This process is described by equation (7). In Fig. 2
we show how the distance matrix is computed: between i-th
row of the first image and the j-th row of the second image
a 1D-DPA is computed to fill the (i,j) matrix element.

Let us look at Fig.3. It represents a matrix of threads.
The elements xi,0, . . . xi,3 is the i�th row of the X image,
assuming that its length is 4, and the elements yi,0, . . . , yi,3
is the j�th row of the Y image.

Each cell of the matrix computes the DPA recursion.
Thus, the accumulated distance at cell (3, 3) is the distance
between the two rows. In Fig.3 we indicate with arrows the

87

Figure 2. Approximate Mapping Between Two

Images

i=2

j=2 (i-1,j)

(i-2,j-1) (i-1,j-1)
(i,j-1)

(i-1,j-2)

Figure 3. A Matrix of Threads

element (2,2). The corresponding element is indicated with
a black square. it is obvious from the DP recursion that
the computation of the accumulated distance D(2, 2) can
be performed only if the distances in the elements whose
coordinates are marked between round brackets are already
available. This means that the only possible sequence of
elements that can be computed in parallel, i.e. simultane-
ously, is the sequence of elements drawn in black in Fig.3.
The parallel computation of elements to the final (M,N)
point thus proceeds according to diagonal sequences of ele-
ments as depicted in this figure.

Fig. 4, shows how the algorithm can be mapped on the
GPU. In this figure, on the vertical axis, a series of image
rows, each with 4 elements, are reported. The horizontal
models are processed one at a time, from left to right. The
figure shows the situation relating to the third horizontal el-
ement. The figure shows that all cells drawn black in the
Fig. 4 can be computed simultaneously.

From the above it is evident that the parallel implemen-
tation is implemented taking account of all models at once.
This is accomplished with a single while cycle explor-
ing the number of iterations required to complete the matrix
minimum, whose size is equal to DimX + dimy- 1, where
DimX and dimy are the width and height of the matrix.

Since now all of the comparisons matrices are considered

simultaneously, the number of iterations needed to complete
the calculation is the size of the larger matrix.

Figure 4. Simplified Representation of the Map-

ping af the Algorithm on GPU – each black cell

represents a thread; horizontal and vertical pat-

terns will be image rows

The following pseudocode shows how we call the kernel.

for (r=0;r<N;r++) {

for (iter=0;iter<=N;iter++) {

1D-DPA<<N, iter+1>>>(r,iter, d_cell, ...);

}

for (iter=N-1;iter>=1;iter--) {

1D-DPA<<<N,iter>>>(r,iter, d_cell, ...);

}

}

The rows of an image are indicated by the variable r,
which is reported in the outer loop. The one-dimensional
dynamic programming used to compute the distance from
one row to the other is carried out in the inner loops. The
first inner loop creates a thread for each block, the second
creates two threads, the third creates three threads and so
on, up to N .

At this point it is important to point out three things.

• first, to prevent the transfers of images from the Host,
which would slow down the calculation, all the images
are initially loaded in the global memory of the GPU

• second, the operation realized by the above pseudo
code computes the matrix of local distances between
all the rows of the two images. These distances are
used in a final dynamic programming to calculate the
distance between the two images as shown by (7).

• the third observation is that if we want to perform the
warping between the two images, in addition to the

88

computation of the distance between the two images,
we have to recover the mapping plane between the two
images. This is achieved by backtracing last initial
cell. This means that when calculating the dynamic
programming all the information about the algorithm
choices must be stored in appropriate data structures.
These data structures are used during the backtracing.

In fact, the matrix d cell is a super-matrix that con-
tains all the matrices of the individual comparisons. The
matrix d cell is a three dimensional matrix with indices
x, y, z necessary to specify how to make comparisons. The
main difference in the code of the function 1D-DPA is the
mapping of the block indexes in the three-dimensional co-
ordinates of the matrix. Of course in addition to storing
the decisions taken by the algorithm when processing the
distance matrix we must also store those taken during the
confrontation between the lines.

In the following we report the pseudocode of the kernel
that runs the 1D-DPA algorithm between the lines of the
two matrices on the GPU.

__global__ void 1D-DPA(int nrtemp, float

*

d_pdati, float

*

d_cell, ...)

{

int z=blockIdx.x/N;

int y=blockIdx.x \% N;

int x=d_x[blockIdx.x];

int i=y + x

*

N + (d_FrCum[z]

*

N);

float dxy, Uval, Vval, Wval;

char Wfree, Vfree;

if ((d_checkflag[i]==1) || (y==0 && x==0)) {

if ((y==0) && (x==0)) {Uval=0; Vval=1000; Wval

=1000; Wfree=0; Vfree=0; }

else if ((y==0) && (x!=0)) {

Uval=1000;

Vval=1000;

Wval=d_cell[i-N];

Wfree=d_bWfree[i-N];

Vfree=0;

}

else if ((y!=0) && (x==0)) {

Uval=1000;

Vval=d_cell[i-1];

Wval=1000;

Wfree=0;

Vfree=d_bWfree[i-1];

}

else {

Uval=d_cell[i-N-1];

Vval=d_cell[i-1];

Wval=d_cell[i-N];

Wfree=d_bWfree[i-N];

Vfree=d_bWfree[i-1];

}

dxy=d(z,nrtemp,x,y,d_pdati);// distance between

pixels

if (((Wval+dxy) < (Uval+2

*

dxy)) && (Wfree==1)

)

if ((Wval <= Vval) || (bfree==0)) {

Vval=Wval+dxy; // choose W

d_bWfree[i]=0;

}

else {

Vval=Vval+dxy; // choose V

d_bWfree[i]=0;

}

else {

if(((Vval+dxy) < (Uval+2

*

dxy)) && (

Vfree==1)){

Vval=Vval+dxy; // choose V

d_bWfree[i]=0;

}

else {

Vval=Uval+2

*

dxy; // choose U

d_bWfree[i]=1;

}

}

d_cell[i]=Vval;

if (x<d_nftemp[z]-1) {

d_checkflag[i+1]=1;

d_checkflag[i+N]=1;

d_x[blockIdx.x]=d_x[blockIdx.x]+1;

}

else if (x==d_nftemp[z]-1 && y<N-1) {

d_checkflag[i+1]=1;

}

else if (x==d_nftemp[z]-1 && y==N-1) {

d_res[z]=Vval;

}

}

}

There are other important points to consider.

• Recall that when a kernel is started, all the threads exe-
cute the same code. However not all of the threads can
execute simultaneously, but only those for which the
input data have been already computed. So we have
to solve this kind of synchronization. The solution that
was adopted in this work is simply to use Boolean vari-
ables, in particular the variables dcheckflag[], which
are set equal to true when the data are available, and
false otherwise.

• The second observation is related to the use of the flag
Wfree and V free. These flags are used to impose
a path that can not have two consecutive horizontal or
vertical movements. These paths are in fact considered
incorrect.

6 Conclusions and Future Work

In this paper we describe an approximation of the two-
dimensional dynamic programming algorithm in order to
make it computationally feasible. The algorithm has been
mapped on a recent GPU device. A first example of appli-
cation of the algorithm can be the automatic analysis of the
inclination of handwritten characters. Finding the degree
of inclination could be used to infer the physical or men-
tal state of the writer. This work will continue to develop
other types of mapping the 2D-DPA on the CUDA archi-
tectures in order to reduce the execution time. On the other
hand, another research direction consists in enriching the
proposed framework with innovative features such as adap-
tiveness (e.g., [5]) and support for big data processing (e.g.,
[33]).

89

References

[1] A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dy-
namic programming for solving variational problems in vi-
sion. PAMI, 12(9), 1990.

[2] E. Angel. Dynamic programming for noncausal problems.
IEEE Trans. on Automatic Control, 1981.

[3] R. Bellman. Bynamic Programming. Princeton University
Press, 1957.

[4] A. Buchanan and A. W. Fitzgibbon. Interactive feature track-
ing using K-D trees and dynamic programming. In 2006 IEEE
(CVPR 2006), 17-22 June 2006, New York, NY, USA, pages
626–633, 2006.

[5] M. Cannataro, A. Cuzzocrea, and A. Pugliese. XAHM: an
adaptive hypermedia model based on XML. In Proceedings
of ACM SEKE 2002, Ischia, Italy, July 15-19, 2002, pages
627–634, 2002.

[6] J. Congote, J. Barandiarán, I. Barandiaran, and O. E. Ruiz.
Realtime dense stereo matching with dynamic programming
in CUDA. In XIX Spanish Computer Graphics Conference,
CEIG 2009, pages 231–234, 2009.

[7] A. Cuzzocrea, E. Mumolo, D. Pirrò, and G. Vercelli. An effi-
cient cuda-based approximate two-dimensional dynamic pro-
gramming algorithm for advanced computer vision applica-
tions. In IEEE SMC 2016, Budapest, Hungary, October 9-12,
2016, 2016.

[8] C. Di Neil and P. Pevzner. An Introduction to Bioinformatics
Algorithms. MIT Press, 2004.

[9] P. F. Felzenszwalb and R. Zabih. Dynamic programming and
graph algorithms in computer vision. PAMI, 33(4), 2011.

[10] P. F. Felzenszwalb and R. Zabih. Dynamic programming and
graph algorithms in computer vision. IEEE Trans. Pattern
Anal. Mach. Intell., 33(4):721–740, 2011.

[11] M. Gong and Y.-H. Yang. Real-time stereo matching us-
ing orthogonal reliability-based dynamic programming. IEEE
TRANSACTIONS ON IMAGE PROCESSING, 16(3):879–
884, 2007.

[12] C. J. Hopfe, Y. Rezgui, E. Métais, A. D. Preece, and H. Li,
editors. 15th International Conference NLDB 2010, Cardiff,
UK, June 23-25, 2010. Proceedings, LNCS 6177. Springer,
2010.

[13] D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deforma-
tion models for image recognition. IEEE Trans. Pattern Anal.
Mach. Intell., 29(8):1422–1435, 2007.

[14] D. Keysers and W. Unger. Elastic image matching is np-
complete. Pattern Recognition Letters, 24(1-3):445–453,
2003.

[15] C. Lei, J. M. Selzer, and Y. Yang. Region-tree based stereo
using dynamic programming optimization. In 2006 IEEE
(CVPR 2006), 17-22 June 2006, New York, NY, USA, pages
2378–2385, 2006.

[16] E. Levin and R. Pieraccini. Dynamic planar warping for op-
tical character recognition. In Proceeding of ICASSP, pages
149–152, 1992.

[17] C. Liu, S. Jäger, and M. Nakagawa. Online recognition of
chinese characters: The state-of-the-art. IEEE Trans. Pattern
Anal. Mach. Intell., 26(2):198–213, 2004.

[18] V. Mottl, S. Dvoenko, and A. Kopylov. Pattern recogni-
tion in interrelated data: The problem, fundamental assump-
tions, recognition algorithms. In 17th International Confer-
ence ICPR 2004, Cambridge, UK, August 23-26, 2004., pages
188–191, 2004.

[19] M. E. Munich and P. Perona. Continuous dynamic time
warping for translation-invariant curve alignment with appli-
cations to signature verification. In ICCV, pages 108–115,
1999.

[20] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[21] H. Sakoe and S. Chiba. Readings in speech recognition,
chapter Dynamic programming algorithm optimization for
spoken word recognition, pages 159–165. Morgan Kaufmann
Publishers Inc., 1990.

[22] B. Serra and M. Berthod. Subpixel contour matching us-
ing continuous dynamic programming. In CVPR 1994, 21-23
June, 1994, Seattle, WA, USA, pages 202–207, 1994.

[23] P. Steffen, R. Giegerich, and M. Giraud. GPU Paralleliza-
tion of Algebraic Dynamic Programming, pages 290–299.
Springer Berlin Heidelberg, 2010.

[24] A. Stivala, P. J. Stuckey, M. G. de la Banda, M. V.
Hermenegildo, and A. Wirth. Lock-free parallel dynamic
programming. J. Parallel Distrib. Comput., 70(8):839–848,
2010.

[25] S. Uchida, I. Fujimura, H. Kawano, and Y. Feng. Ana-
lytical dynamic programming tracker. In Computer Vision
- ACCV 2010, Queenstown, New Zealand, November 8-12,
2010, pages 296–309, 2010.

[26] S. Uchida and H. Sakoe. A monotonic and continuous two-
dimensional warping based on dynamic programming. In
ICPR 1998, Brisbane, Australia, 16-20 August, 1998, pages
521–524, 1998.

[27] S. Uchida and H. Sakoe. A monotonic and continuous two-
dimensional warping based on dynamic programming. In
Proc. 14th ICPR, pages 521–524, 1998.

[28] S. Uchida and H. Sakoe. An efficient two-dimensional warp-
ing algorithm. IEICE Trans. Inf. and Syst., 1999.

[29] S. Uchida and H. Sakoe. Survey of elastic matching tech-
niques for hanwritten character recognition. IEICE Transac-
tions Inf. and Sist., pages 1781–1790, 2005.

[30] A. Vajdi, N. Haspel, and H. Banaee. A new DP algorithm for
comparing gene expression data using geometric similarity.
In IEEE BIBM 2015, Washington, DC, USA, November 9-12,
2015, pages 1157–1161, 2015.

[31] O. Veksler. Stereo correspondence by dynamic programming
on a tree. In IEEE (CVPR 2005), 20-26 June 2005, San Diego,
CA, USA, pages 384–390, 2005.

[32] S. Xiao, A. M. Aji, and W. Feng. On the robust mapping
of dynamic programming onto a graphics processing unit. In
IEEE ICPADS 2009, Shenzhen, China, December 8-11, 2009,
pages 26–33, 2009.

[33] B. Yu, A. Cuzzocrea, D. H. Jeong, and S. Maydebura.
On managing very large sensor-network data using bigtable.
In IEEE/ACM CCGrid 2012, Ottawa, Canada, May 13-16,
2012, pages 918–922, 2012.

90

