
1

Distributing the User Interface Logics along
Actionable Components: the EFESTO Approach

Giuseppe Desolda1, Carmelo Ardito1, Maristella Matera2, Maria Francesca Costabile1
1Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro

Via Orabona, 4 – 70125 – Bari, Italy
{giuseppe.desolda, carmelo.ardito, maria.costabile}@uniba.it

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
P.zza L. da Vinci, 32 – 201233 – Milano

maristella.matera@polimi.it

Abstract — Developing interactive systems is a very tough task. In
particular, the development of user interfaces (UIs) is one of the
most time consuming aspects in the software lifecycle. Software
development is more and more moving toward composite
applications. In this paper, we present a mashup model that
enables the integration at the presentation layer of specific UI
components. As application of this model, a mashup platform has
been developed that allows non-technical end users to create
component-based interactive workspaces via the aggregation and
manipulation of data fetched from distributed online resources,
also enabling the collaborative creation and use of distributed
interactive workspaces. It is shown in this paper how the
developed platform permits the rapid prototyping of interactive
applications enabling the access to Web services and APIs.

Keywords - Human-Centric Service Composition; Mashup
Model.

I. INTRODUCTION
The development of user interfaces (UIs) is one of the most

time consuming aspects in the creation of interactive systems.
Proper reuse mechanisms for building UIs have become
evident, especially as software development is more and more
moving toward composite applications [1]. To respond to this
need, in this paper we propose a mashup model that enables the
integration at the presentation layer of “Actionable UI
components”, which are components equipped with both data
visualization templates and a proper logic consisting of
functions to manipulate the visualized data. The goal of the
model is to reduce the effort required for the development of
interactive workspaces [2], by maximizing the reuse of UI
components.

In our approach, UI components not only constitute “pieces”
of UIs that can be assembled together into a unified workspace;
each single component can be set to provide views over the
huge quantity of data exposed by Web services and APIs
available online or by any data source, even personal or locally
provided. With respect to the original definition of UI
components [3, 4], we promote the notion of Actionable UI
component, which also include UI Components that provide
varying functions to allow end users to manipulate the
contained data.

Our approach can be positioned into the research context
related to facilitating the access to data sources through visual
user interfaces, a problem that has been attracting the attention
of several researchers in the last years [5, 6]. An ever-
increasing number of resources that provide content and
functions in different formats through programmatic interfaces
is available. The efforts of many research projects have thus
focused on letting laypeople, i.e., users without expertise in
programming, to access and exploit the available content [7, 8,
9]. With this respect, the reuse of easily programmable UI
components is a step forwards the provision of environments
facilitating the End-User Development (EUD) of service-based
interactive workspaces [10]. In general, EUD refers to the
involvement of end users in the software development process,
in order to modify and even create software artifacts [10, 11,
12]. EUD activities range from simple parameters setting to
integration of pre-packaged components, up to extending the
system by developing new components. Such a reuse is typical
of Web mashups [1], a new class of applications that can be
created by integrating components at any of the application
stack layers (presentation, business logics, data).

The very novelty introduced by mashups is the possibility to
synchronize components equipped with a UI at the presentation
layer, for example by means of event-driven composition
techniques. Thanks to the possibility of reusing and
synchronizing ready-to-use UI components, the mashup has
resulted into an effective paradigm to let end users, even non-
experts in technology, compose their interactive Web
applications. In the last two decades, several mashup tools
characterized by different composition paradigms have been
proposed. One of the pioneers (even if it is not available
anymore) was Yahoo!Pipes [8] that, in the attempt to better
support end users, provided a visual editor to access services
and operators visualized as visual modules that could be
combined into a canvas pane by means of ‘pipes’ through drag
and drop actions. A different paradigm was implemented in
NaturalMash, which allows users to express in natural language
what service(s) to use and how to synchronize them [7].
However, problems related to the use of a natural language still
remain. A different mashup technique avoids the use of APIs
and enables data integration allowing users to act directly on
the Web page UI elements, which are considered interactive
artefacts that can be combined through a set of mashup

129

DOI reference number: 10.18293/DMS2016-034

2

Figure 1. Mapping between some Last.fm attributes and the fields of the map user template (circle 2).

operations [13]. The inconvenience of this approach is that it is
difficult to generalize due to the heterogeneity of web pages.
Other mashup tools and mashup techniques are described in
[1]. Moreover, a recent article surveys web service composition
techniques and tools [14].

In the last years we have been working extensively on
mashup platforms that, by exploiting end-user development
principles, address the creation of component-based interactive
workspaces by non-technical end users via the aggregation and
manipulation of data fetched from distributed online resources
[2, 15], also enabling the collaborative creation and use of
distributed interactive workspaces [16]. The platform prototype
keeps improving on various aspects, based on field studies
performed with real users that are revealing new requirements
and features useful to foster the adoption of mashup platforms
in people daily activities. Based on these experiences, in which
we observed people creating easily their interactive
applications, in this paper we aim to stress the importance of
such platforms as tools for the rapid prototyping of interactive
applications enabling the access to Web services and APIs. In
particular, the main contribution of this work is a model for UI
component mashup that other designers and developers can
adopt to develop mashup platforms as tools to easily create
interactive workspaces whose logic is distributed across
different synchronized components.

The paper is organized as follows: Section II illustrates the
main functionality offered by the platform for the creation of
interactive workspaces. Section III highlights how the
supported modus operandi is made possible thanks to some
abstractions, and in particular to the notion of actionable UI
components, around which the whole platform design has been
conceived. In particular, we stress how the adoption of such
conceptual elements leads to the notion of distributed User
Interface, as an interactive artefact that can be assembled
according to lightweight technologies and that leverages on the
logics of self-contained actionable UI components. Section IV
is about Domain-Specific Languages (DSLs) we introduced to
describe the main elements of a mashup platform that can
guide the dynamic instantiation and execution of the distributed

UIs. Section V complements Section III by providing some
technical details on how the model elements are implemented
in the EFESTO platform architecture. Section VI concludes the
paper and outlines future work.

II. THE EFESTO PLATFORM
This section describes the most important features of our

mashup platform, called EFESTO by showing how it is used to
create a mashup. The platform name was inspired by Efesto, a
god of the Greek mythology, who realized magnificent magic
arms for other Greek gods and heroes. Analogously, the
EFESTO platform aims to provide end users with powerful
tools to accomplish their tasks. In order to get the reader’s
attention, such features are written in bold in this section and
formalized in the model reported in Section III.

A. Mashup of Data Sources
In order to describe how EFESTO works, a scenario is

reported in which Alan uses the platform to create a mashup
that satisfies his information needs. Alan is a non-technical
user, i.e., he does not know programming language and he is
not familiar with technical terms of computer science.

Alan is going to organize his summer holidays, but he did
not yet decide whether to go to Paris or Rome. Regardless the
destination, Alan would like to attend at least a concert during
his holidays. Thus, he uses EFESTO to create a new
application (mashup) that retrieves and integrates information
about music events, possibly coming from different sources,
and presents the results through a visual representation he
selects. Specifically, Alan starts looking for pertinent services
among those registered in the platform. A wizard procedure
guides him to make a selection from a popup window where
services are presented by category (e.g., videos, photos, music,
social). Alan clicks on the music category and, among the
music services shown, he selects Last.fm, a service that
provides information on music events of a specific singer.
EFESTO provides different visual templates, called User
Interface Templates (UI Template), that the user can select in

3

1
2

130

3

Figure 2. UI Component originated from Last.fm data source visualized as a map and joined with Google Images to show pictures of each city event.

order to display the results of the application he is creating.
Alan actually selects a map as UI Template, since he wants to
visualize the retrieved music events geo-localized in a map.

Among the different data attributes of the Last.fm dataset,
Alan has to select those he is interested in, i.e., those that will
be considered by the application he is creating. EFESTO
enables Alan to make this selection by direct manipulation of
elements shown in the user interface of his workspace. In fact,
all Last.fm data attributes are visualized in a panel on the left
(see Figure 1, circle 1). To make the attributes more
understandable, the system also shows some example values.
Alan wants his application to consider latitude and longitude of
the location where a music event will be performed, so that this
location will be visualized in the resulting map. Thus, Alan
drags & drops the latitude and longitude Last.fm attributes into
the respective fields (called Visual Renderers [4]) of the map
UI template (Figure 1, circle 2). Alan wants also to visualize,
when required, additional details about a musical event. For
this, among the available UI templates for text layout (Figure 1,
circle 3), he chooses a table with three rows and one column,
since he wants to visualize three more attributes, namely title,
start date and city. To make this possible, he selects each of
these three attributes from the left panel (Figure 1, circle 1) and
drops it in the visual renderers of the UI template (highlighted
in yellow in Figure 1, circle 2).

 After performing this mapping phase, Alan saves the
mashup in the platform. From now on, this mashup is a UI
Component in the user workspace, which is immediately
executed in the Web browser. This UI Component is called
“Last.fm” (by default, it takes the name of the source service
but the user can rename it) and is represented as a map, as
shown in the central panel in Figure 2. By typing “Vasco
Rossi” in the search box (thus making a query), the results set

of forthcoming events of this singer are visualized as pins on
the map. The map is shown with a proper zoom level so that all
the retrieved events are visualized. This zoom level can
obviously be varied by the user. By clicking on a pin
representing a music event, details of that event (i.e., the
attributes title, start date and city) are shown.

Alan can later update the created mashup by integrating data
coming from other data sources through union and join data
mashup operations [15]. Since a non-technical user is not
familiar with union and join operation, EFESTO let the user
perform such operations, again, through wizard procedures and
drag&drop actions. For example, Alan wants to retrieve more
music events than those provided by Last.fm. He then
integrates Last.fm with Eventful (another service retrieving
music events). Technically, this is a union operation. Alan acts
directly on the Last.fm UI component previously created by
clicking on the gearwheel icon in the toolbar (pointed by circle
1 in Figure 2) and choosing the “Add results from new source”
menu item. A wizard procedure now guides Alan in choosing
the new service, Eventful in this example, and in performing a
new mapping between the Eventful attributes and the UI
template already used in the previous mashup. The newly
created mashup (UI Component) is shown in the same fashion
reported in Figure 2 but now, when queried with an artist name,
this UI Component visualizes results gathered both from the
Last.fm and Eventful services.

Another data integration operation available in EFESTO is
the join of different sources; it is useful to satisfy user’s desire
of further integrating the mashup with new data available in
other services. For example, Alan would like to show images
of the location where music events are held. Last.fm does not
provide such images but Alan can retrieve them from Google
Images. Technically, this operation is a join between the

1

131

4

Last.fm city attribute and Google Images. EFESTO supports
Alan in a very simple way. Alan clicks on the component
gearwheel icon and choses the “Extend results with new data”
menu item. A new wizard procedure guides him while
choosing (a) the service attribute to be extended (City in this
example), (b) the new data source (Google Images) and (c)
how to visualize the Google Images results. From now on,
when clicking on the city name in the map info window,
another window visualizes the Google Images pictures related
to the selected city, as shown in the right panel of Figure 2.

Another operation available in EFESTO is the change of
visualization for a given UI component. Alan, in fact, during
the interaction with Last.fm, decides to switch from the map UI
template to the list UI template (see the result in Figure 3,
circle 1). To perform this action, he clicks on the gearwheel
icon in the Last.fm toolbar and chooses the “Change
visualization” menu item. A wizard procedure guides Alan to
(a) choose a UI template (list in this case), and (b) drag&drop
the Last.fm attributes onto the UI template, as already
described with reference to Figure 1.

B. A polymorphic data source
Despite the wide availability of data sources and

composition operations, sometimes users can still encounter
difficulties while trying to accommodate different needs and
desires. Let us suppose, for example, that during the interaction
with EFESTO Alan wants to get details about the artists of the
music events, such as genre, starting year of activity and artist
photo. Among those services registered in the platform, Alan
does not find any that satisfy this new information need. Thus,
he should go to the Web for a usual (manual) search for the
specific information. However, it might happen that, even on
the Web, there are no APIs providing such information.

In order to overcome this drawback, EFESTO provides a
new polymorphic data source that exploits the wide
availability of information structured in the Linked Open Data
(LOD) cloud. It is called polymorphic because, when it is
composed with another source S, it is capable of modifying its
set of attributes depending on the source S, in order to better
fulfil the users’ needs. In contrast, the standard data sources
(YouTube, Wikipedia, etc.) provide the same set of attributes
independently of the composing source S. Lack of space
prevents us to provide more details about the creation of the
polymorphic data source. The interested reader may refer to
[17]. DBpedia has been chosen as initial LOD cloud thanks to
the vast amount of information it provides.

Thus, Alan can join the Last.fm artist attribute with the
DBpedia-based polymorphic data source. The platform now
shows a list of attributes related to the musical artist class
(available in the DBpedia ontology), and Alan enriches the
current UI Component with the attributes genre, starting year
of activity and artist photo. Henceforward, Alan can find a list
of upcoming events and also visualize artist’s information
when clicking on the artist’s name. What has been described
also shows why the DBpedia-based data source is called
“polymorphic”. In fact, differently from pre-registered data
sources (e.g., Google Images) that provide a pre-defined,
invariable set of attributes, the system provides users different

attributes of the data of the DBpedia-based data source; such
attributes are automatically selected depending on the attribute
in the origin data source it is bound to. For example, if the
Alan’s join starting point is the attribute city, attributes like
borough, census, year, demographics would be provided by the
DBpedia-based data source.

C. Task-Enabling Containers
 Our field studies [2, 16] revealed that mashups generally

lack data manipulation functions that end users would like to
exploit in order to “act” on the extracted contents, e.g.
functions that allow to perform tasks such as collecting&saving
favourites, comparing items, plotting data items on a map,
inspecting full content details, organizing items in a mind map
in order to highlight relationships. In this section, we remark
another very innovative feature of EFESTO: it offers tools that
enable specific tasks, allowing users to manipulate the
information in a novel fashion, i.e., without being constrained
to pre-defined operation flows typical of pre-packaged
applications.

In order to perform more specific and complex sense-
making tasks, a set of Tools are available in the left-panel of
the workspace (see Figure 3, circle 4). These Tools are added
to the workspace by clicking the corresponding icon. Let us
describe an example of their usage with reference to our
scenario. Alan is looking for hotels in Rome located nearby the
places where upcoming musical events will be held. According
to his strategy, he is more interested in finding a good hotel and
then look for possible musical events to attend. First, he adds
the Hotel data source into his workspace (see Figure 3, circle 5)
and then performs a search by typing “Rome” in the Hotel
search bar. After including the Comparing tool in the
workspace, Alan drags&drops inside it the first five hotels from
the Hotel UI component. The Comparing tool supports Alan in
the identification of the most convenient hotels, which are now
represented as cards providing further details, such as average
price, services and category (see Figure 3, circle 2).
Afterwards, he drags&drops three hotels from the Comparing
tool inside the Locating tool (Figure 3, circle 3) in order to
visualize them as pins on the map. Finally, Alan performs a
search on the Last.fm data source by using “Rome” as keyword
and then moves all the results, i.e. the upcoming musical
events, inside the Locating container. The map now shows pins
indicating both the hotels and the upcoming musical events in
Rome. Alan can now easily identify which musical events are
close to the hotels he has previously chosen. However, it could
happen that Alan adopts a different strategy. He wants to first
identify upcoming musical events and then the hotels nearby.
He starts by retrieving musical events with Last.fm (see Figure
3, circle 1) and then moves some events inside the Comparing
tool in order to choose the best ones based on musical genre
and artists. Afterwards, he drags&drops some of the compared
events inside the Locating tool and finally adds into this tool
the hotels returned by the Hotel data source.

As shown in the previous example, the tools provided in
EFESTO allow users to interact with information within
dedicated containers, which enable specific tasks. Thus, we
call them Task-Enabling Containers (TECs). To create such
flexible environments, a model has been presented in [18] that

132

5

permits easy transition of information between different
contexts; this model implements some of the Transformative
User eXperience (TUX) principles described in [19, 20].

Figure 3. Use of some tools available in EFESTO to manipulate mashup data.

III. MODEL FOR UI COMPONENT MASHUP
The main contribution of this paper is a model highlighting

the most important components that make a mashup tool an
environment where UIs can be built by reusing and
synchronizing the logic of different pieces of UI. The goal is to
provide designers and software engineers with a model that
guides them during the development of mashup platforms for
non-programmers. The proposed model refines and extends the
one presented in [4], where the authors defined the modelling
abstractions on which their composition paradigm is based. Our
model has been iteratively refined by adding further
components starting from requirements we gathered

during our research, e.g., a different way to integrate service
data by means of more powerful data mashup operations join
and union, the integration of some Transformative User
eXperience principles [19, 20], and the polymorphic data
sources based on Linked Open Data. The new model is
depicted in Figure 5. In the following, we report the definitions
of the most salient concepts that contribute to the notion of
distributed UIs.

Definition 1. UI Component. It is the core of the model
since it represents the main modularization object the user can
exploit to retrieve and compose data extracted from services. It
supplies a view according to specific UI Templates (see
Definition 2) over one or more services whose data can be
composed by means of data mashup operations and also allows
the interaction with services data and functions thanks to its
own UI (see Figure 4). In addition, two or more UI components
can also be synchronized according to an event-driven
paradigm: each of them can implement a set E of events that
the user can trigger during the interaction with its user
interface, and a set A of actions activated when events are
performed on others UI components.

Definition 2. UI Template. It plays two fundamental roles
inside the UI component: first, it guides the users in
materializing abstract data sources by means of a mapping

between the data source output attributes and the UI template
visual renderers; second, at runtime, it displays the data source
according to the user mapping. A UI Template can be
represented as the triple

uit =< type, VR>

where type is the template (e.g., list, map, chart) selected by the
user while VR is a set of visual renderers, i.e., UI elements that
act as receptors of data attributes.

Definition 3. Actionable UI Component (auic). In addition
to visualizing Web service data, auic also supply task-related
functions for manipulation and transformation of data items
retrieved from a source along user-defined task flows [18].

An auic can be defined as a pair:

auic = <TF, uit>

where TF is the set of functions for manipulation and
transformation of data, while uit is a UI templates used to
visualize data according to user’s task.

Definition 4. Event-driven Coupling. It is a
synchronization mechanism among two UI components that the
users define according to an event-driven, publish-subscribe
integration logic [3]. In particular, the users define that, when
an event is triggered on a UI component, an action will be
performed by another UI component. This enables reusing the
logic of single UI components, still being able to introduce
some new behaviour for the composite UIs.

Figure 4: Example of UI Component that shows musical events on Google

Maps.

More in general, given two UI Components uici and uicj, a
coupling is a pair:

c=< uici (<output>), uicj (<input>)>

Definition 5. Presentation Template. It is an abstract
representation of the workspace defining the visual
organization of the UICs included in the interactive workspace
under construction. For example, the UI components can be
freely located or can be constrained to a grid schema, where in
each cell only one UI Component can be placed.

1

2

3

4 5

133

6

x
Figure 5: The mashup model.

Definition 6. UI Mashup. A UI Mashup is the final
interactive application built by the end users by means of the
integration of different UI components within a workspace. It
can be formalized as the tuple:

UI_Mashup =< UIC, C, PT, AUIC>,

where UIC is the set of UI Components integrated into the
workspace, C is the set of couplings the users established
among UIC, PT is the workspace template chosen to arrange
the UIC and AUIC is the set of Actionable UI Components to
manipulate data extracted from UIC.

The following definitions are reported to clarify how actionable
UI components are instantiated by means of data extracted
from data sources.

Definition 7. Data Component. It is an abstract
representation of the resource that can be used to retrieve data.
In particular, dc is a triplet:

dc=<t, I, Out>

where t indicates the type of resource, for example REST Data
Source or Polymorphic Data Source in our model, I indicates
the set of input parameters to query the resources, Out indicates
the set of output attributes. Data can be retrieved from data
sources and aggregated through the following operations:

Definition 8.a Selection. Given a data component dc, a
selection is a unary operator defined as:

σC (dc) = {r ∈ dc | result r satisfies condition C}.

where r is a result obtained by querying the data component dc
and C is a condition used to query dc.

Definition 8.b Join. Given a couple of data components dci
=< epi, qi , A> and dcj =< epj, qj , B>, a Join is a binary operator
defined as:

dci |><|ai dcj = {(a1, …, an, σC (dcj)) | C: qj = ai }

Definition 8.c Union. Given a couple of data components
dci =< epi, qi , A> and dcj =< epj, qj , B>, a Union is a binary
operator defined as:

dci U dcj = { x | x ∈ dci or x ∈ dcj }

The result of the applying one or more operations is a data
mashup, i.e., the composite result set whose rendering and
manipulation is possible by means of UI components and Task-
Enabling Containers.

Definition 9. Data Mashup. It is the results of the
integration of data extracted by different data components. It is
a pair:

dm =< DC, O >

where DC represents the set of data components involved in
the composition; O is the set of operations (e.g., join and union)
performed between data components in DC.

Data mashup represents an important advance w.r.t. the
original model presented in [4] where data mashup was
conceived just as a visual aggregation of different data sources
by means of union and merge sub-templates. In that case, the
result of the data mashup could not be reused with other UI
templates. In our model, the data mashup is a new integrated
result set published as a new data source. This new data source
can be used in the platform as a new source that can be
visualized by using UI templates.

IV. PLATFORM DESCRIPTORS
In order to make the previous abstractions concrete in the

implemented platforms, we defined some Domain-Specific
Languages (DSLs) inspired to EMML [21]. New languages
were adopted instead of EMML because the composition logic
implemented in the EFESTO refers only to a small sub-set of
the composition operators available in EMML. Each of these

134

7

new languages allow us to define internal specifications of the
main elements (e.g., UI components, service, UI template) that
can guide the dynamic instantiation and execution of the
distributed UIs.

In Figure 6Errore. L'origine riferimento non è stata
trovata. it is reported an example of our XML language
specifying a UI component that renders a data mashup
consisting in a union between two services (YouTube and
Vimeo) and a join of the unified services with a third service
(Wikipedia). In the XML file, the tag unions has two children,
services and shared. The services tag summarizes the unified
services. Each service is reported in a service tag. In particular,
the service tag has the attribute name that indicates the name of
the data source. This value is used by the mashup tool to
retrieve the source details to perform the query. The shared tag
describes the alignment of the attributes of the unified data
sources. For example, it has two children called
shared_attribute, each of them with two children attribute that
represent the service attributes that are mapped in a UI
template.

Figure 6: An example of UI component descriptor codified with our XML

language.

Each service reported in the service tag is detailed in a
separate service descriptor XML file. In Figure 7Errore.
L'origine riferimento non è stata trovata., the YouTube
service descriptor is reported: inside the root tag called service,
there are the tags source, inputs, params, attributes and flags.
The first three nodes represent all the information useful to
query a data source. The fourth node, attributes, describes the

instance attributes. The last node, flag, is introduced to solve
the heterogeneity problem of the data sources. In fact, the
remote web services typically send the results by using JSON
file but the list of results if formatted in different ways (e.g.
inside a JSON array).

Figure 7: An example of service descriptor codified with our XML language.

Another XML descriptor introduced in our model regards
the UI Template. In Figure 8, the list UI Template has been
reported. It is characterized by a set of sub-UI templates
(different types of lists). In particular, the root node, template,
has an attribute name that indicates the template name. The
root has a set of children that describe different alternatives to
visualize the UI template.

Figure 8: An example of list UI template descriptor codified with our XML

language.

The UI template descriptor is linked with the VI schema
through the XML mapping descriptor. An example of mapping
is reported in Figure 9. In this descriptor, the root node,
mappings, has two attributes: templatetype and templatename.
The first one recalls the name of a UI Template (e.g. list), the
second one the name of its sub-template (list_A).

Figure 9: An example of mapping descriptor

135

8

V. FROM THE MODEL TO THE PLATFORM ARCHITECTURE
The model presented in Section III guides designers and

software engineers in developing mashup platforms targeting to
non-programmers. That model highlights the main concepts of
a mashup platform without emphasizing technical aspects. In
this section, we report a high-level overview of the architecture
of the EFESTO mashup platform, in order to illustrate how it
implements the mashup model.

The architecture is characterized by tree-layers (Figure 10).
On top there is the UI layer whose main feature is a visual
language that allows end users to perform mashups without
requiring technical skills. Such language is based on UI
Components that use UI Templates and Actionable UI
Components to allow users to visualize and manipulate data
extracted from remote sources. UI layer runs in the user’s Web
browser and communicates with the Logic and Data layer that
run on a remote Web server.

The Logic Layer implements components that translate the
actions performed by end users at the Interaction Layer into the
mashup executing logic. In particular, the Mashup Engine is
invoked each time an event, requiring the retrieval of new data
or the invocation of service operations, is generated. The Event
Manager, instead, manages the UI Components coupling. In
particular, when users define a synchronization between two UI
Components A and B, it instantiates a listener that waits for an
event on A that, when triggered, causes the execution of an
action on B, according to the coupling defined by the user.

The Data Layer stores the XML-based descriptors
described in Section IV into proper repositories. In addition, at
this layer there are the remote data sources that reside on
different Web servers.

Figure 10. An high-level overview of the EFESTO three-layer architecture

VI. CONCLUSION
This paper discusses some abstractions that can promote

mashup platforms as tools to easily create (i.e., even by end
users) interactive workspaces whose logic is distributed across
different components that are however synchronized with each
other. One of the main contributions of mashup development is
the introduction of novel practices enabling integration at the
presentation layer in a component-based fashion - an aspect
that was never investigated before. Some papers, indeed,
discuss and motivate the so-called UI-based integration [4, 22,
23] as a new component-based integration paradigm that
privileges the creation of full-fledged artifacts, also equipped
with UIs, in addition to the traditional service and data
integration practices that instead mainly act at the logic and
data layers of the application stack. Along this direction, this
paper highlights how interactive artifacts can be composed by
reusing the presentation logics (i.e., the UIs) and the execution
logics of self-contained modules, the so-called UI Components
and Actionable UI Components, providing for the visualization
of data extracted by data sources and for data manipulation
operations through task-related functions.

The paper capitalizes on the experience gained in the last
years by the authors in the development of prototypes of
mashup platforms, but it also aims to propose a systematic
view on concepts and techniques underlying mashup design
and on the way such concepts materialize into composition
paradigms and architectures of corresponding development
tools, independent of specific approaches and technologies and,
thus, of more general validity. Our current work is devoted to
enrich the EFESTO platform by means of tools for actionable
components and to customize the platform to other application
domains, so that further validation studies will be performed.

I. REFERENCES
[1] Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures.

Springer (2014)
[2] Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M.,

Piccinno, A., Picozzi, M. (2014). User-Driven Visual Composition of
Service-Based Interactive Spaces. In Journal of Visual Languages &
Computing 25(4), 278-296

[3] Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.
(2007). A framework for rapid integration of presentation components.
In: Proc. of WWW '07. Banff, Alberta (Canada). May 8-12. pp. 923-932

[4] Cappiello, C., Matera, M., Picozzi, M. (2015). A UI-Centric Approach
for the End-User Development of Multidevice Mashups. In ACM
Transaction Web 9(3), 1-40

[5] Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A. (2008). Ad-
Hoc Usage of Web Services with Dynvoker. In Mähönen, P., Pohl, K.,
Priol, T. Towards a Service-Based Internet - ServiceWave 2008. (Vol.
5377, pp. 208-219)

[6] Krummenacher, R., Norton, B., Simperl, E., Pedrinaci, C. (2009).
SOA4All: Enabling Web-scale Service Economies. In: Proc. of ICSC
'09. Berkeley, CA (USA). 14-16 September. pp. 535-542

[7] Aghaee, S., Pautasso, C. (2014). End-User Development of Mashups
with NaturalMash. In Journal of Visual Languages & Computing 25(4),
414-432

[8] Pruett, M.: Yahoo! pipes. O'Reilly (2007)
[9] Hirmer, P., Mitschang, B. (2016). FlexMash–Flexible Data Mashups

Based on Pattern-Based Model Transformation. In Daniel, F., Pautasso,
C. Rapid Mashup Development Tools - Rapid Mashup Challenge in
ICWE 2015. (Vol. 591, pp. 12-30)

[10] Fischer, G. (2009). End-User Development and Meta-design:
Foundations for Cultures of Participation. In Pipek, V., Rosson, M.B., de

136

9

Ruyter, B., Wulf, V. End-User Development - Is-EUD 2009. (Vol. pp. 3-
14)

[11] Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-User
Development: The Software Shaping Workshop Approach. In
Lieberman, H., Paternò, F., Wulf, V. End User Development - Is-EUD
2006. (Vol. 9, pp. 183-205)

[12] Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.: End-User
Development. Vol. LNCS 6654, Springer-Verlag, Berlin / Heidelberg,
2011 (2011)

[13] Daniel, F. (2015). Live, Personal Data Integration Through UI-Oriented
Computing. In: Proc. of ICWE '15. Rotterdam, the Netherlands. 23 – 26
June 2015. pp. 479-497

[14] Lemos, A.L., Daniel, F., Benatallah, B. (2015). Web Service
Composition: A Survey of Techniques and Tools. In ACM Computing
Survey 48(3), 1-41

[15] Desolda, G., Ardito, C., Matera, M. (2015). EFESTO: A platform for the
End-User Development of Interactive Workspaces for Data Exploration.
In Daniel, F., Pautasso, C. Rapid Mashup Development Tools - Rapid
Mashup Challenge in ICWE 2015. (Vol. 591, pp. 63 - 81)

[16] Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M.,
Picozzi, M. (2014). Creation and Use of Service-based Distributed
Interactive Workspaces. In Journal of Visual Languages & Computing
25(6), 717-726

[17] Desolda, G. (2015). Enhancing Workspace Composition by Exploiting
Linked Open Data as a Polymorphic Data Source. In Damiani, E.,
Howlett, J.R., Jain, C.L., Gallo, L., De Pietro, G. Intelligent Interactive
Multimedia Systems and Services (KES-IIMSS '15). (Vol. pp. 97-108)

[18] Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015).
Making Mashups Actionable Through Elastic Design Principles. In
Díaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, I., Boden, A. End-User
Development - Is-EUD 2015. (Vol. LCNS 9083, pp. 236-241)

[19] Latzina, M., Beringer, J. (2012). Transformative user experience:
beyond packaged design. In interactions 19(2), 30-33

[20] Beringer, J., Latzina, M. (2015). Elastic workplace design. In Designing
Socially Embedded Technologies in the Real-World. (Vol. pp. 19-33)

[21] Viswanathan, A. (2010). Mashups and the enterprise mashup markup
language (EMML). In Dr. Dobbs Journal

[22] Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.
(2007). Understanding ui integration: A survey of problems,
technologies, and opportunities. In Internet Computing, IEEE 11(3), 59-
66

[23] Yu, J., Benatallah, B., Casati, F., Daniel, F. (2008). Understanding
Mashup Development. In IEEE Internet Computing 12(5), 44-52

137

