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Abstract—Traffic microscopic traffic simulation models have 
become extensively used in both transportation operations and 
management analyses, which are very useful in reflecting the 
dynamic nature of transportation system in a stochastic manner. 
As far as the microscopic traffic flow simulation users are 
concerned, the one of the major concerns would be the 
appropriate calibration of the simulation models. In this paper a 
parameter calibration method of microscopic traffic flow 
simulation models based on orthogonal genetic algorithm is 
presented. In order to improve the capacity of locating a possible 
solution in solution space, the proposed method incorporates the 
orthogonal experimental design method into the genetic 
algorithm. The proposed method is applied to an arterial section 
of Ronghua Road in Beijing. Through comparing with the 
parameter calibration method based on genetic algorithm, the 
advantage of the proposed method is shown. 

Keywords-Microscopic traffic flow simulation model; 
Parameter calibration; Orthogonal genetic algorithm; VISSIM  

I.  INTRODUCTION  
Traffic simulation has become an important and popular 

tool in modeling transport system, with the progress of 
simulation technologies [1]. Traffic simulation models could be 
divided into three categories, including microscopic, 
macroscopic, mesoscopic simulation models. Microscopic 
simulation models simulate traffic at a level of individual 
vehicles [2]. Car-following and lane-changing models are the 
two fundamental components in microscopic simulation 
models. Macroscopic simulation models simulate 
transportation network section-by-section rather than tracking 
individual vehicles. Mesoscopic traffic simulation models 
combine the properties of the microscopic and macroscopic 

simulation models.  For the traffic simulation models, the 
simulation results depend on the initial choice of the model [3] 
and the success of the calibration process [4].  

The calibration of traffic microscopic simulation models is 
defined as the process of finding optimal parameters to match 
the field data so model will accurately represent field measure 
or observed traffic condition [5]. The optimization task 
involves comparing and minimization differences of selected 
indicators, e.g., travel time and queuing length [4], delays [6], 
travel time distribution [7], saturation flow rates [8] and 
emission [9], between the calibration model and the ones 
counted and measured in local traffic network.  

Calibrating traffic model of bigger special and time scopes 
of a traffic network needs deal with a larger number of input 
parameters and calculating processes. In order to decrease time 
consumption, artificial intelligent techniques are applied into 
the calibration of traffic microscopic simulation model. Genetic 
algorithm (GA) has become the most common used calibration 
algorithm for input parameters of the simulations [5, 10-13], 
since Cheu et al., firstly used GA calibrating FRESIM model 
[14]. Other intelligent algorithms are also used in the 
calibration of traffic simulation, e.g., perturbation stochastic 
approximation (SPSA) scheme [15], particle swarm 
optimization (PSO) [16], and neural network approach [4]. 
These methods automate the calibration process to a certain 
degree and it was generally reported that they improve 
simulation performance over the default model parameter 
values. 

Microscopic simulation is a complex system that all 
parameters work together to influence its modeling results. In 
calibrating such a complex model, users could get trapped in 
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the local optima of the objective function, due to the high 
dimension and numerous local optima. This paper focuses on 
the above question of GA when calibrating the driving 
behavior model parameters in VISSIM.  

The exposition of this paper is as follows: the next section 
implements the orthogonal genetic algorithm (OGA). Some 
studies have found that applying an experimental design 
method (orthogonal design) into GA may overcome the 
limitation mentioned above [17-18]. The third section gives the 
procedure of calibrating the microscopic traffic flow simulation 
model based on OGA. The fourth section applies OGA 
calibration method to the calibration of a signal intersection in 
Beijing, and comparing with the GA and orthogonal design 
method respectively. The final section summarizes the paper. 

II. CALIBRATION METHOD BASED ON OGA 
The proposed calibration method employs an orthogonal 

genetic algorithm. This section contains a brief overview of the 
VISSIM calibration parameters set, and the fundamentals of the 
OGA, including the structure of chromosome, fitness function 
and orthogonal crossover decoding. 

A. Selection of Parameters 
In this paper, a microscopic traffic flow simulation, 

VISSIM, is selected as the basic platform for the parameter 
calibration. VISSIM models the psychophysical driver 
behavior and attempts to capture both the physical and the 
human components of traffic [19]. Parameters of two driving 
behavior models are in considered in this paper: the car-
following model and the lane-changing model. After parameter 
sensitivity analysis, i.e., one-way Analysis of Variance 
(ANOVA)[20], four parameters are selected as the calibration 
parameters. Table 1 lists the calibration parameter set, 
including default value, the minimum and maximum value. 

TABLE 1 CALIBRATION PARAMETER SET 

Parameters (xj) Unit Default  
Value 

Min  
（uj） 

Max 
（vj） 

x1 Average standstill 
distance 

m 2 0.5 3 

x2  Additive part of desired 
safety distance 

NA 2 0.5 3 

x3 Multiple part of desired 
safety distance  

NA 3 1 6 

x4  Maximum deceleration m/s2 4 2 6 
 

B. The Structure of Chromosomes 
Supposing Pi (xi1, …, xiN) is the ith chromosome, xij is the 

jth parameter value in the ith chromosome. ∀ i=1,2, …, M, 
j=1, 2,…, N=4. M is the total number of chromosomes and N 
is the number of parameters to be calibrated. [l, u]= [(l1, …, lN), 
(u1, …, uN)] defines the feasible solution space and the 
corresponding domain of xj is [lj, uj] (e.g., the domain of x1 is 
[0.5, 3] as listed in Table 1). In this paper, parameters to be 
calibrated are coded into chromosomes, which quantized by 
orthogonal design. We quantize the domain [lj, uj] of xj into Q 
levels, where the design parameter Q is odd.  

Algorithm 1 shows the procedure of constructing 
chromosome. Firstly, we calculate M, where M= QJ，J is the 

smallest positive integer fulfilling log( ( 1) 1)
log

N Q
J

Q
− +

≥ . 

Secondly, we construct the orthogonal array ( )N
ML Q  

corresponding to the chromosome. Each element aij of the 
orthogonal array ( )N

ML Q  represents the levels numbers in 
orthogonal design, aij∈{0,1,...,Q-1} , ∀ i=1,2, …, M, j=1, 2,…, 
N. Finally, the corresponding parameter value ijx  of aij in 
feasible solution pace [lj, uj] is calculated by the equation as 
shown in follows: 

 
1

j j
ij j ij

u l
x l a

Q
−

= + ×
−

， 0 1ija Q∀ ≤ ≤ −  （1） 

Algorithm 1: Constructing chromosomes 
 
Step 1. Calculating the number of chromosome, M=QJ. J is 

the smallest positive integer fulfilling log( ( 1) 1)
log

N Q
J

Q
− +

≥ . 

Step 2. Construct the orthogonal array ( )N
ML Q  

(1) Construct the basic columns： 
      for k=1 to J do 

            
1 1 1

1

kQj
Q

− −
= +

−
 

           for i=1 to JQ do 

               1

1
ij J

ia
Q −

« »−
= « »

¬ ¼
 mod Q 

           end for 
      end for 
(2) Construct the non-basic columns: 

for k=2 to J do 
1 1 1

1

kQj
Q

− −
= +

−
 

for s=1 to j-1 do 
for t=1 to Q-1 do 

( 1)( 1) ( )j s q t s ja a t a+ − − + = × + mod Q 
end for 

end for 
     end for 

                 (3) Selecting the first N columns to construct the 
chromosome encoding array ( )N

ML Q  
Step 3. Calculate ijx  to construct chromosome using (1). 
 

C. Fitness Function 
The fitness function is a combination of the root mean 

absolute square error (RMASE) of travel time (TT) and 
maximum queue length (MQL) and between the VISSIM 
output and field data. The fitness function takes the form of 
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where 
E1 = the RMASE of TT 
E2 = the RMASE of MQL 
T= the number of detector station; 

s
ntd = the simulation model output of tth sensor 
o
ntd = the field data of tth sensor station. 

D. Adaptive orthogonal crossover operator 
For each pair of parents (denoted by P1(x11, x12, x13, x14) and 

P2(x21, x22, x23, x24)), performing the adaptive orthogonal 
crossover operation with the probability of crossover pc. 
Adaptive orthogonal crossover algorithm is shown in 
Algorithm 2. 0σ  is the similarity threshold of each dimension 
between two parents .  
 
Algorithm 2: Constructing chromosomes 

 
Step 1. Calculating the number of similar dimension using 

1, 2, 0(| | )j jb Num x x σ= − >  

Step 2. Constructing orthogonal array ( )b
EL F = [ ]ts E ba × , 

with b factors and F levels, using Algorithm 1.  
Step 3. Generating E chromosomes as the potential 

offspring, ,1 ,2 ,3 ,4( , , , )t t t t tP x x x x′ ′ ′ ′ ′ , ∀  t=1,2,…,E. 
for t=1 to E do 

s=1 
for j =1 to 4 do 

if 1 2 0| |j jx x σ− ≤  

1 2

2
j j

tj

x x
x

+
′ =  

else if 1 2 0| |j jx x σ− >  

1 2 1 2
1 2

max( , ) min( , )
min( , )

1
i i i i

tj i i ts
x x x x

x x x a
F

−′ = +
−

 

s= s+1 
end if 

end for 
end for 

Step 4. Calculating the fitness values corresponding to 
each potential offspring and selecting the chromosome 
corresponding to the max fitness value as the offspring of two 
parents P1 and P2. 

In this paper， 0σ =0.005 and F=2. 

Start

Creating initial 
population 

Evaluating of fitness 
function

Is Stopping 
criteria met?

Adaptive crossover 
operation  

Mutation operation 

Generating offspring

Output final result

Stop

Y

N

 
Figure 1 Calibration procedure 

 

III. CALIBRATION PROCEDURE 
 

We develop the parameter calibration program using VB 
language. The details of overall algorithm are as follows (see 
Fig. 1). 

Step 1：Initialization 
Executing Algorithm 1 to generate M potential parents 

(e.g., levels Q = 9 and M = QJ = 92 = 81). The microscopic 
simulation traffic simulation model VISSIM is run with the M 
parameter group as the input file successively. Then M fitness 
values corresponding to the potential parents are calculated. 
Sort the potential parents in a descending sort order, according 
the fitness values. Select the first I := 50 parents as the 
potential initial population P0. In order to keep the individual 
distributing uniformly, we select D := 10 chromosomes 
randomly from the D potential initial population as the initial 
population, denoted by Pgen=1. 

Step 2：Adaptive crossover operation 
For an arbitrary pair of parents, adaptive crossover 

operation is performed with the probability of crossover Pc 
(e.g., Pc =0.75) using algorithm in Algorithm 2 and generate 
offspring population Cgen. 

Step 3：Mutation operation 
Each chromosome in Pgen would undergo mutation 

operation with the probability of mutation pm (e.g., pm = 0.1). 
The mutation operation is as follows: (1) randomly generating 
an integer j∈ [1, N] and a real number z∈[lj, uj]; (2) replacing 
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the jth component of the chosen chromosome by z to get a new 
chromosome. The mutation operation generates a new 
population denoted by Ggen. The fitness values corresponding 
to each new chromosome in Ggen are calculated by running 
VISSIM model. 

Step 4：Selection operation 
In order to maintain the population diversity, we sort the 

population (Pgen + Cgen + Ggen ) in a descending sort order 
according the fitness values , then select the first *70%D« »¬ ¼
chromosomes and randomly select *70%D D− « »¬ ¼  
chromosomes from the rest of (Pgen + Cgen + Ggen ) to 
constructing the next population Pgen+1. 

Step 5：Check stopping rules 
Supposing the max fitness values of iteration gen is max

genF . 
If gen = the maximum number of iterations or 

-1
max max| | 0.005gen genF F− ≤ , the program stops. Otherwise, go to 

Step 2 and gen = gen+1. 
 
 

 
Figure 2 The location distribution of detector stations 

 

IV. CASE STUDY 
A signal intersection constructed by the Ronghua middle-

road and the Rongjing road in Beijing is selected as the test bed. 
The intersection locates at the arterial section of Beijing 
economic-technological development area. The location and 
map are shown in Fig. 2. Field data were gathered at evening 
peak period (18:15-19:15) in July 25, 2011. The traffic 

volumes were video-taped by four cameras, which were located 
at the Station 5-Station 8 in Fig. 2, respectively. We recorded 
the maximum queue length at the entrance (i.e., Station 5-
Station 8 in Fig. 2) into the intersection every signal cycle and 
use the mean of the above queue length as the hourly maximum 
queue length. The travel time was collected by floating cars. 
Fig. 2 shows the start and end points of travel time collection 
detectors, e.g., the Northwest-bound travel time collection is 
from Station 2 to Station 4, the Southeast-bound travel time 
collection is from Station 4 to Station 2. 

The traffic model used is VISSIM Version 5.30. After 
building the VISSIM model, we apply the OGA to the 
parameter calibration. The default size of initial population 
D is 10. When the difference of maximum fitness values of 
two consecutive iterations is no more than 0.005 or the 
maximum number of iterations is 50, the program stops. 
Table 2 lists the relative errors of traffic volumes between 
VISSIM output results and field data at four entrances 
respectively, which shows that the values are all no more 
than 2.21%. 

 

TABLE 2  VOLUME CALIBRATION OF THE INVESTIGATED 
INTERSECTION 

 
Simulation 

Results
（vehicle/h） 

Field Data 
（vehicle/h） 

Relative 
Error 

Northeast-bound 1173 1170 0.26% 
Southwest-bound 486 497 2.21% 
Southeast-bound 1766 1782 0.9% 
Northwest-bound 525 528 0.57% 

 

The proposed method is compared with calibration with 
the GA method and the orthogonal design method. In GA-
based parameter calibration experiments, the fitness 
function, the size of initial population and the stopping 
rules are consistent with the OGA-based parameter 
calibration experiments. In the orthogonal design method, 
level number Q is 9, and the weight coefficient is 0.5. In the 
orthogonal design experiments, the parameter set is 
quantized by orthogonal design. The level number Q is the 
same with the OGA and the GA. The orthogonal array is 
constructed using Algorithm 1. Using the QJ = 81 parameter 
groups as the VISSIM input data and selecting the 
maximum fitness value as the final output results. 

We compare the maximum fitness values corresponding 
to four methods (i.e., default value, OGA, GA and the 
orthogonal method). The RMASE of travel time, RMASE 
of maximum queue length and fitness values are listed in 
Table 3. The maximum fitness value of OGA is 19.43, 
which is much bigger than that of other methods. 
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TABLE 3 COMPARATIVE ANALYSIS OF THE FITNESS FUNCTION 
VALUE 

Methods Parameter 
values 

TT MQL Weight  Fitness RMASE RMASE 
Default [2,2,3,-4] 0.0607 0.3372 0.5 5.03 

OGA [1.125,0.5, 
2.25,-2.75] 0.0225 0.0805 0.5 19.43 

GA [1.2,2.6, 
1.33,-6] 0.0287 0.1380 0.5 11.99 

Orthogonal 
method 

[0.5,0.813, 
1.625,-5] 0.0430 0.1378 0.5 11.06 

 

Calculate the average errors for maximum queue length 
and travel time, respectively. The formula is as follows: 

 
04

0
1

| |
0.25

s
nt nt

i
t nt

d d
d

ε
=

−
= ∑   {1,2}n ∈  （4） 

where, 
1ε = the average errors of TT 

2ε = the average errors of MQL  
s
ntd =simulation output of tth entrance 
0
ntd = field data of tth entrance 

t=1, 2, 3, 4 represent four entrance, i.e., northeast-bound, 
southwest-bound, southeast-bound and northwest-bound. 

Fig. 3 and Fig. 4 represent the relative error of each access 
respectively. The relative error of the proposed method is less 
than that of other methods. Meanwhile, the relative error of 
travel time is higher than that of queue length, because 
investigators collect the queue length according to estimating 
the length of vehicles. It is obviously that the error must be 
existed. 

 

 
Figure 3 Comparison of TT relative error 

 

 
Figure 4 Comparison of MQL relative error 

 

Fig.5 shows the comparison of convergence performance 
between the OGA-base calibration method and the GA-based 
calibration method. The former method stops when the 
iteration count is 10. Otherwise, the GA-based calibration 
method stops when iteration count is 40. To the OGA-base 
calibration method, it is obviously that constructing initial 
population consumes the most part of consuming time, 
because the program needs to run VISSIM 92 = 81 times to 
generate the output results. So we count the number of running 
VISSIM. Throughout the procedure, the proposed method runs 
VISSIM 238 times, and the later method runs 400 times.   

Considering how the weight coefficient value impacts the 
calibration results. Fig.6 shows the profile of the fitness values 
versus weight coefficient values (i.e., weight coefficient value 
= 0, 0.2, 0.5, 0.8, and 1.0, respectively). The figure shows that a 
significant correlation exists between the fitness value and the 
weight coefficient values. The bigger the weight coefficient 
value is, the bigger the fitness value is. Considering the case of 
weight coefficient = 1.0, which means taking travel time into 
account indicator only, the fitness value is 62.70. Maximum 
queue length may reduce the fitness value, because field data 
collection exist big error. 

GA 
OGA

The Iteration Count

Th
e 

Fi
tn

es
s V

al
ue

Figure 5 Comparison of convergence rate between two algorithms 
 

59



 
Figure 6 Comparison of the fitness value versus weight coefficient 

 

V. CONCLUSION 
This paper focuses on the automatic calibration method of 

traffic micro-simulation. A parameter calibration method based 
on orthogonal genetic algorithm is proposed. The first step, the 
process and the pseudo code of the OGA-based micro-
simulation calibration method are given. The second step, we 
apply the proposed method to a signal intersection in Beijing. 
In the case study, the microscopic traffic flow simulation model 
VISSIM is selected. We compare the OGA method with the 
GA method and the orthogonal design method, respectively, 
i.e., the maximum fitness value, the relative errors of TT and 
MQL, the number of iteration. Experiment results show that the 
OGA outperforms the GA and the orthogonal design method in 
calibration. This paper also analyzes how the weight coefficient 
impacts the calibration results. A significant correlation exists 
between the fitness value and the coefficient values. 
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