
A Systematic Mapping on Visual Solutions to
Support the Comprehension of Software Architecture Evolution

Joao Werther1, Glauco de Figueiredo Carneiro2, Rita Suzana Pitangueira Maciel1

1Federal University of Bahia, BRA
2Universidade Salvador (UNIFACS), BRA

jwertherf@gmail.com, glauco.carneiro@unifacs.br, ritasuzana@dcc.ufba.br

Abstract

Context: Software visualization has the potential to sup-
port specialized stakeholders to understand the software ar-
chitecture (SA) evolution. To the best of our knowledge,
there is no guideline based on which visual solutions should
be applied to support the SA evolution comprehension and
how to use them. Goal: Analyze the use of visual solutions
for the purpose of comprehension with respect to software
architecture evolution from the point of view of software
architects and developers in the context of both academia
and industry. Method: We conducted a Systematic Map-
ping Study to achieve the stated goal. Results: The study
identified 92 papers published from January 2000 to De-
cember 2018 as a result of the search strings execution. We
selected 12 primary studies and identified a gap in terms of
a taxonomy to assist specialists in the development or clas-
sification of solutions to support the comprehension of soft-
ware architecture evolution using visual resources. Conclu-
sion: We observed that despite the relevance of the use of
visual solutions to support the comprehension of software
architecture evolution, only 12 studies have reported these
initiatives, suggesting that there is still room for the use of
different visual metaphors to represent its components, re-
lationships and evolution throughout the releases.

1. Introduction
Software evolution reflects changes undergone by the

software during its lifespan [1]. The study of software evo-
lution is essential to better support changes in software re-
quirements over time, keeping its integrity at a lowest pos-
sible cost [2][3][4]. Software Architecture (SA) is the de-
sign model used to build and evolve a software system [5].
Throughout the analysis of the software architecture, in high
level structure, it is possible to understand what dimensions
along which a system is expected to evolve [1]. The im-
portance of SA in software evolution process is that a soft-
ware built without an adaptable architecture normally will
degenerate sooner than others with a change-ready architec-
ture [1]. The evolution of a SA can be the result of changes
in the current SA to accommodate business demands, new
technologies and/or platform or other reason that impacts

the SA [6]. The comprehension of SA is essential for devel-
opment and evolution of software systems [7][8] and can
be supported by software visualization (SV) resources to
understand key SA characteristics regarding architectural
models and design decisions [7] [9].

To the best of our knowledge, there is no guideline to
support the use of visual solutions towards SA evolution
comprehension. For this reason, we conducted a Systematic
Mapping Study (SMS) to identify studies that focus on this
issue based on evidence provided by papers published in
peer-reviewed conferences and journals from January 2000
to December 2018. We initially found 92 papers as a result
of the applied search strings in specific electronic databases,
from which we considered 12 studies as relevant.

This paper is organized as follows. Section 2 discusses
related works and Section 3 presents the protocol of this
SM. The Section 4 presents the main results of this study,
also introducing the taxonomy proposed for visual solutions
to software architecture evolution and presenting the main
characteristics and features for each visual solution. The
Section 5 discusses about the answers to research questions.
Finally, Section 6 gives the conclusions of this work and
suggests future works.

2. Related Works
Software visualization has been used in different areas

of software engineering such as software architecture, soft-
ware evolution and software design [7][10]. In the follow-
ing paragraphs we highlight the importance of specific sec-
ondary studies that discussed the use of software visualiza-
tion to support the execution of activities targeting software
architecture. This is not an exhaustive list, it is rather an il-
lustrative set of relevant papers whose discussion motivated
the conduction of this systematic mapping.

Shahin, Liang and Babar [7] conducted a systematic re-
view to characterize how Visualization Techniques (VT)
have been used to represent SA in different application do-
mains. Results classified the VTs into four types, according
to its popularity: graph-based, notation-based, matrix-based
and metaphor-based, where graph-based and notation-based
VTs appear to be the most popular ones. However, the
graph-based was pointed as the most popular architecture
visualization technique in industry, largely employed. They

DOI reference number: 10.18293/DMSVIVA2019-008



concluded that VTs have been used to support SA activi-
ties for several purposes and highlighted the following as
relevant: (i) the understanding of architecture evolution;
(ii) the understanding of static characteristics of architec-
ture; and (iii) search, navigation, and exploration of archi-
tecture design [7]. Additionally, conclusion highlighted that
VTs have been applied to SA in a large range of domains,
highlighting “graphics software” and “distributed system”
as those that have been received the most attention in indus-
try. Finally, in the conclusion section, the authors argued
that SV is one of the increasingly popular ways to support
the understanding the rationale behind design decisions that
affect software architecture [7]. This paper focused on VT
to represent SA, not concerning about the evolution of SA
and its understanding.

Telea, Voinea and Sassenburg (2010) [10] performed
a survey regarding the use of visual tools for SA under-
standing from the perspective of stakeholders. They ana-
lyzed the results using software architecture visualizations
tools (AVTs) aiming to orientate industrial practitioners in
the adoption of tools and techniques according require-
ments and capabilities of each type. For this survey, they
defined three stakeholder types: a technical users (devel-
opers), project managers/lead architects, and consultants.
They concluded that the AVTs were more adequate for tech-
nical users and less adequate for consultants, according to
expectancy of each stakeholder [10]. Although this paper
explored the visual solutions for SA understanding, it did
not focus on SA evolution solutions.

Breivold, Crnkovic and Larson (2012) [1] conducted a
systematic review focusing on software architecture evo-
lution. The goal of the review was to get an overview
at the architectural level about existing approaches in the
analysis and improvement of software evolution, and also
examine the impacts on research and industry. The au-
thors identified five main categories of themes: (i) tech-
niques supporting quality consideration during software ar-
chitecture design, (ii) architectural quality evaluation, (iii)
economic valuation, (iv) architectural knowledge manage-
ment, and (v) modeling techniques [1]. The conclusion of
this study emphasized the need of development of methods,
process and/or tools to design architecture in a very large
systems involving many platforms, organizations and pro-
cesses, considering the amount and particularity of artifacts
produced and used during its lifecycle. This study also pre-
sented several useful conclusions for researchers and prac-
titioners, including considering the possibility to elaborate
new ideas beyond Lehman’s lays (about software evolution)
so long as it has practical value for evolution. Additionally,
this paper also reported the existence of few works for this
area and expected that happens more research works in the
future. [1]. Despite this article has studied the evolution of
SA, it did not emphasize on visual solutions to support the

comprehension of SA evolution.
Despite the large contribution of the aforementioned re-

lated works to the SA area, including SA evolution, they do
not focus on visual solutions to support the comprehension
of the SA evolution.

3. Research Design
We conducted a SMS to find evidence for the use of vi-

sual solutions to support the comprehension of SA evolution
during the software lifespan. A SMS is a form of a sys-
tematic literature review (SLR) with more general research
questions, aiming to provide an overview of the given re-
search [11]. We decided to conduct a SMS due to the po-
tential that this methodology has to reduce the analysis bias,
through the establishment of selection procedures [12].

3.1. Planning

We conducted this SMS based on a protocol comprised
of objectives of the review, criteria for considering papers,
research questions, selected electronic databases and its
search strings, selection procedures and exclusion, inclu-
sion and quality criteria to select the studies from which we
aim to answer the stated research questions [12]. The proto-
col of this SMS and related artifacts are available in a public
Github repository 1. The goal of this study is presented in
Table 1 according to the GQM approach [13].

Table 1: The Goal of this SMS according to the GQM Ap-
proach

Analyze the use of visual solutions
for the purpose of comprehension
with respect to software architecture evolution
from the point of view
of

software architects and devel-
opers

in the context of both academia and industry

The Research Question (RQ) is “How have researchers
and practitioners from the industry considered the use of
software visual solutions to support the comprehension of
software architecture evolution based on papers published
in the peer-reviewed literature?”. This research question is
in line with the goal of this review, and has been derived into
four specific research questions, as follows: Specific Re-
search Question 1 (SRQ1): What are the main visual solu-
tions to support the software architecture evolution compre-
hension? Specific Research Question 2 (SRQ2): What are
the purposes of each visual solution to support the software
architecture evolution comprehension? Specific Research
Question 3 (SRQ3): How the solutions designed to visually
support comprehension of software architecture evolution
can be classified? Specific Research Question 4 (SRQ4):

1https://github.com/dmsviva19saevolution/submission



Which visual forms are used to support comprehension of
software architecture evolution?

The motivation behind RQ is justified by the acknowl-
edgment that the comprehension of the software archi-
tecture evolution is required to tackle issues or improve-
ments related to the software architecture and its evolution
throughout releases [14] [5] [8] [7] [6] [2]. The specific re-
search questions have the goal to gather evidence to support
the answer of the stated RQ.

We considered the PICO criteria to define the search
strings, as shown in Table 2. The search strings are based
on this criteria for the selective process of papers for this
review.

Table 2: PICO Criteria for Search Strings

(P)opulation studies of software architecture in software engineering
(I)ntervention visual solutions to support the comprehension of

software architecture evolution
(C)omparison not applicable
(O)utcomes solutions (i.e., tools, techniques, environment, ap-

proaches, models or methodology) with focus on
visual resources to support software architecture
evolution; visual solutions to software architecture
evolution; use of visual resources to comprehension of
software architecture evolution

The formation of the search string applied in the elec-
tronic databases is shown in Tables 3 and 4. The Table 3
refers to major terms for the research objectives, built using
the PICO criteria. We also considered the use of alternative
terms and synonyms of these major terms. For example, the
term visualization can be associated with terms such as vi-
sual, visualizing and visualize. These alternative terms, as
shown in Table 4,are also included in the search string. We
built the final search string by joining the major terms with
the boolean “AND” and joining the alternative terms to the
main terms with the boolean “OR”. The focus of the formed
search strings is to focus on papers targeting the research
questions of this systematic mapping.

Table 3: Major terms for the research objectives

Criteria Major Terms
(P)opulation AND “software engineering” AND “software architec-

ture”
(I)ntervention AND “comprehension” AND “evolution”
(C)omparison Not Applicable
(O)utcomes AND “visual” AND “solution”

Table 5 presents the electronic databases from which we
retrieved the papers along with the respective search strings
used to retrieve the papers. Table 6 presents the criteria for
exclusion and inclusion of papers in this review. The OR
connective adopted in the exclusion criteria, means that the
exclusion criteria are independent, i.e., meeting only one
criterion is enough to exclude the paper. On the other hand,
the AND connective in the inclusion criteria, means that all

Table 4: Alternative terms from majors terms

Major Term Alternative Terms
“evolution” (“evolution” OR “evolve” OR “evolving”)
“comprehension” (“comprehension” OR “understanding” OR “under-

stand” OR “support” OR “analysis” OR “evaluation”
OR “examination” OR “explore” OR “exploring”)

“solution” (“tool” OR “environment” OR “technique” OR
“approach” OR “model” OR “methodology” OR
“solution”)

“visual” (“visualization” OR “visualizing” OR “visualize”
OR “visual”)

Table 5: Electronic Databases Selected for this SMS

Database and URL Search Strings
Scopus

www.scopus.com (“software architecture” AND (“evolution” OR “evolve” OR “evolv-
ing”) AND (“comprehension” OR “understanding” OR “understand”
OR “support” OR “analysis” OR “evaluation” OR “examination”
OR “explore” OR “exploring”) AND (“tool” OR “environment” OR
“technique” OR “approach” OR “model” OR “methodology” OR
“solution”) AND (“visualization” OR “visualizing” OR “visualize”
OR “visual”) AND “software engineering”)

ACM Digital Library
portal.acm.org (+“software architecture” +(“evolution” “evolve” “evolving”)

+(“comprehension” “understanding” “understand” “support” “anal-
ysis” “evaluation” “examination” “explore” “exploring”) +(“tool”
“environment” “technique” “approach” “model” “methodology”
“solution”) +(“visualization” “visualizing” “visualize” “visual”)
+“software engineering”)

Engineering Village
(Ei Compendex)

www.engineeringvillage.com
(“software architecture” AND (“evolution” OR “evolve” OR “evolv-
ing”) AND (“comprehension” OR “understanding” OR “understand”
OR “support” OR “analysis” OR “evaluation” OR “examination”
OR “explore” OR “exploring”) AND (“tool” OR “environment” OR
“technique” OR “approach” OR “model” OR “methodology” OR
“solution”) AND (“visualization” OR “visualizing” OR “visualize”
OR “visual”) AND “software engineering”)

IEEE Xplore
ieeexplore.ieee.org (“software architecture” AND (“evolution” OR “evolve” OR “evolv-

ing”) AND (“comprehension” OR “understanding” OR “understand”
OR “support” OR “analysis” OR “evaluation” OR “examination”
OR “explore” OR “exploring”) AND (“tool” OR “environment” OR
“technique” OR “approach” OR “model” OR “methodology” OR
“solution”) AND (“visualization” OR “visualizing” OR “visualize”
OR “visual”) AND “software engineering”)

inclusion criteria must met to select the paper under analy-
sis. Table 6 also presents the quality criteria used for this
review represented as questions that were adopted and ad-
justed from Dyba and Dingsoyr [15]. A critical examina-
tion following the quality criteria established in this table
was performed in all remaining papers that passed the ex-
clusion and inclusion criteria. All these criteria must met
(i.e., the answer must be YES for each one) to permanently
select the paper, otherwise the paper must be excluded. The
exclusion, inclusion and quality criteria were used in the se-
lection process as presented in Table 7. According to Table
8, at the end of the selection process, all the retrieved pa-
pers were classified in one of the three options: Excluded,
Not Selected and Selected.

3.2. Execution

The quantitative evolution of papers throughout the exe-
cution of this SMS is summarized in Figure 1. The figure
uses the PRISMA flow diagram [16] and shows the per-
formed steps and the respective number of documents for
each phase of the SMS, following the outline described in
Subsection 3.1.

Table 9 presents the effectiveness of the the search
strings showed in Table 5 considering the 92 retrieved pa-



Table 6: Exclusion, Inclusion and Quality Criteria

Type Id Description Connective
or Answer

Exclusion E1 Published earlier than 2000 OR
Exclusion E2 The paper was not published in a

peer-reviewed journal or confer-
ence

OR

Exclusion E3 The paper does not present a pri-
mary study

OR

Exclusion E4 The paper is not written in English OR
Exclusion E5 The paper has less than 3 pages OR
Inclusion I1 The paper must present an ap-

proach in the usage of visual solu-
tion to support the comprehension
of software architecture evolution

AND

Quality Q1 Are the aims of the study clearly
specified?

YES/NO

Quality Q2 Is the context of the study clearly
stated?

YES/NO

Quality Q3 Does the research design support
the aims of the study?

YES/NO

Quality Q4 Has the study an adequate descrip-
tion of the visual solution?

YES/NO

Quality Q5 Is there a clear statement of find-
ings by applying the visual solution
to support the comprehension of
software architecture evolution?

YES/NO

Table 7: Steps of the Selection Process

Step Description
1 Apply the search strings to obtain a list of candidate papers in

specific eletronic databases.
2 Remove replicated papers from the list.
3 Apply the exclusion criteria in the listed papers.
4 Apply the inclusion criteria after reading abstracts, introduction

and conclusion in papers not excluded in step 3.
5 Apply quality criteria in selected papers in step 3.

Table 8: Classification Options for Each Retrieved Paper

Classification Description
Excluded Papers met the exclusion criteria.
Not Selected Papers not excluded due to the exclusion criteria, but did

not meet the inclusion or quality criteria.
Selected Papers did not meet the exclusion criteria and met both

the inclusion and quality criteria.

pers. The electronic database that more contributed with
selected studies was the IEEE Xplore with five papers, cor-
responding to a search effectiveness of 18.5%. The twelve
selected papers represented 13.0% of all 92 retrieved pa-
pers.

The Figure 2 presents a overview of contribution of each
exclusion criterion in total of excluded papers. The exclu-
sion criterion that had more contribution was the E1 cri-
terion that says “Published date less than 2000”, account-
ing for 54% of excluded papers. Note that the E4 criterion
(“The paper is not written in english”) did not have any oc-
currence.

The Figure 3 presents graphics that provide a overview
of sources (electronic databases) distribution by papers sta-
tus. The papers status is according to Table 8. The Figure

Figure 1: Procedures and its results in the papers selection
process.

Table 9: Effectiveness of the Search Strings

Database Selected
Papers

Excluded
Papers

Not
Selected
Papers

Replicated
Papers

Total
Search
Results

Search
Effectiveness

ACM Digital
Library 2 2 13 1 18 11.1%

Engineering
Village 3 4 6 14 27 11.1%

IEEE Xplore 5 4 14 4 27 18.5%
Scopus 2 3 3 12 20 10.0%
TOTAL 12 13 36 31 92 13.0%

Figure 2: Contribution of exclusion criteria in total of ex-
cluded papers.

3a shows the selected papers distribution by source. The
“IEEE Xplore” had the major contribution for selected pa-
pers with 41% of occurrences. The “Engineering Village”



was the second with 25% of selected studies. The Fig-
ure 3b shows the not-selected papers distribution by source.
The “IEEE Xplore” leaded with 39% of not-selected papers,
close to “ACM Digital Library” with 36%. The Figure 3c
presents the excluded papers distribution by source. The
“Engineering Village” and “IEEE Xplore” databases had
the majors contributions with 31% of excluded papers each
one. The Figure 3d presents the distribution of all found
papers by source. The “Engineering Village” and “IEEE
Xplore” databases had the majors contributions, both with
29% of all papers found in its databases searches.

Figure 3: Overview of paper totalization by status and by
electronic databases.

4. Results
The Table 10 shows the list of 12 selected papers of this

systematic mapping. All papers are labeled as “S” followed
by the paper reference number through which the paper can
be reached at the end of this document. All the selected pa-
pers were published in conferences. Unfortunately, the re-
trieved papers from journals matched the exclusion criteria
(Step 3 of Table 7) or did not matched the inclusion criteria
(Step 4 of Table 7). For this reason, they were discarded
from this systematic mapping.

The paper S01 [3] describes a solution aimed at enhanc-
ing the comprehension of the software architectural evolu-
tion based on visual resources. This solution proposes the
use of efficient navigation and visualization of the history
of software architectural changes throughout releases, inte-
grating the use of evolution metrics with software visual-
ization techniques. This integration has the goal to support
both tracking and analysis of architectural changes from
past releases. The authors developed the so called Ori-
gin Analysis method to analyze software structural change.
This method supports the identification of possible origin
of function or file that appears to be new in a later release
of the software system, if it already existed in the system
elsewhere [3]. This method highlights the use of two tech-
niques in its implementation: Bertillonage Analysis and De-
pendency Analysis. The paper also performs a study of evo-

Table 10: Summary List of Selected Papers

Ref.
Label Title Conference Year

S01 An integrated approach for
studying architectural evolu-
tion [3]

IEEE Workshop
on Program Com-
prehension

2002

S02 An Approach based on Bi-
graphical Reactive Systems to
Check Architectural Instance
Conforming to its Style [17]

First Joint
IEEE/IFIP Symp.
Theoretical As-
pects of Software
Engineering
(TASE)

2007

S03 Exploring inter-module rela-
tionships in evolving software
systems [4]

European Confer-
ence on Software
Maintenance and
Reengineering
(CSMR)

2007

S04 The SAVE Tool and Process
Applied to Ground Software
Development at JHU/APL:
An Experience Report on
Technology Infusion [18]

IEEE Software
Engineering
Workshop (SEW)

2007

S05 Development of a methodol-
ogy, software-suite and service
for supporting software archi-
tecture reconstruction [19]

European Confer-
ence on Software
Maintenance and
Reengineering
(CSMR)

2010

S06 Evolve: tool support for archi-
tecture evolution [20]

International
Conference on
Software Engi-
neering (ICSE)

2011

S07 Model-Based Software Ar-
chitecture Evolution and
Evaluation [21]

Asia-Pacific Soft-
ware Engineer-
ing Conference
(APSEC)

2012

S08 ECITY: A tool to track soft-
ware structural changes using
an evolving city [22]

International
Conference on
Software Mainte-
nance (ICSM)

2013

S09 Run-time monitoring and real-
time visualization of software
architectures [23]

Asia-Pacific Soft-
ware Engineer-
ing Conference
(APSEC)

2013

S10 eCITY+: A Tool to Analyze
Software Architectural Re-
lations Through Interactive
Visual Support [24]

European Confer-
ence on Software
Architecture
Workshops

2014

S11 Towards the understanding
and evolution of monolithic
applications as microservices
[25]

Latin American
Computing Con-
ference (CLEI)

2017

S12 EVA: A Tool for Visualiz-
ing Software Architectural
Evolution [2]

International
Conference on
Software Engi-
neering (ICSE)

2018

lution of a real tool to demonstrate the use of BEAGLE, a
prototype implementation of this solution that works as an
integrated environment for studying software architecture
evolution, as a validation form of the Origin Analysis [3].
This paper does not discuss explicitly its limitations, even
though cites some of them.

The paper S02 [17] proposes a graphical technical de-
scription of the architectural instance of a software sys-
tem, and verify the compliance to its corresponding style.
This solution is based on the Bigraphical Reactive Systems
(BRS) to perform the verification with formal methods, and
uses an extended version of a Bigraph to describe the in-
stance. Besides supplying a visual method to specify ar-



chitectural instances and styles, the solution proposed can
enhance the ability to design evolving systems. Addition-
ally, the paper shows two study cases in order to prove the
effectiveness of this solution [17].

The paper S03 [4] proposes an approach based on the
visual representation of inter-module dependencies and re-
lationships between SA components and modules through-
out multiple versions of the software system. The Semantic
Dependency Matrix is a visualization technique that shows
dependencies between two modules with similar behavior
classes. The Edge Evolution Film Strip is a visualization
technique that presents the evolution of an inter-module re-
lations in a software system along its multiples versions.
These techniques were applied in two large open source
software systems, in reverse engineering context, to exem-
plify them. The paper also purposes a pattern language for
inter-module relationships. The studied examples are pro-
vided from an exploration prototype named Softwarenaut
[4].

The paper S04 [18] describes the NASA JHU/APL’s ex-
periences in using the SAVE (Software Architecture Visual-
ization and Evaluation) tool and process. The SAVE tool
addresses the understanding, maintenance and evolving is-
sues, allowing software architects to navigate, visualize, an-
alyze, compare, evaluate, and improve their software sys-
tems, all in only one environment. This tool can be also
used to develop a new architecture, compare with the cur-
rent one and still helps in change impact analysis, among
others features. The architecture comparison can also occur
between distinct software systems. The paper shows how
the SAVE tool has been successfully applied to the Com-
mon Ground software, a shared software architecture used
by NASA missions software systems, in order to avoid fur-
ther SA maintenance and evolution problems [18]. How-
ever, this paper does not discuss the limitations of its study.

The paper S05 [19] presents the description and goals of
the project titled “Development of a methodology, software-
suite and service for supporting software architecture re-
construction”, intended to develop a methodology and a
tool-set (environment) to do automatic architecture recon-
struction of software systems through visual resources uti-
lization. It also provides tracking of changes in architectural
components during software evolution. At the time this pa-
per was written (2010) the project was focused to systems
that has been built using Java or .NET technologies and deal
with SQL databases. This paper presents limitation of its
study, but only in a summarized way. It also shows details
of the current status (2010) of this project [19].

The paper S06 [20] introduces Evolve, a graphical mod-
eling tool that implements an ADL (Architectural Descrip-
tion Language) named Backbone that is focused on soft-
ware architecture evolution. Evolve supports definition and
evolution of SA using the Backbone, with particular atten-

tion to incremental change and unplanned change process-
ing, very common activities in the software development
and evolution process. Backbone provides constructs that
allow changes that may result in architectural anomalies
but Evolve is able to detect these anomalies. The paper
shows the main characteristics of Evolve and how it deal
with changes definition in SA, besides a brief use historic.
The Evolve tool, at the time the paper was published (2011),
was freely available for academic research and the produc-
tion of open source software under the GNU Affero General
Public License version 3.

The paper S07 [21] presents and proposes the develop-
ment of ARAMIS (Architecture Analysis and Monitoring In-
frastructure), an architecture meta-model based solution to
extract run-time architecture information and provide data
to generate new dynamic architecture views in real time.
The solution provides visual representations of the moni-
tored architecture at several abstraction levels, as well as
the availability of methods to evaluate this architecture [21].
This study does not present any type of implementation
(only technical description), despite presents some limita-
tions of the solution.

The paper S08 [22] introduces eCITY, a tool that helps
software architects and developers to understand the soft-
ware structure of their system. It allows the track of compo-
nents’ insertion, removal, or modification over system lifes-
pan and provides an interactive visualization that provides
an overview of changes. All of this implemented under a
city metaphor using animations to represent the transitions
of the architecture components and color coding to high-
light the evolution and changes of these components (Figure
4). The eCITY provides an overview of the entire system at
a desired point into its evolution process (life cycle), imple-
menting it under a city metaphor, allowing the user an inter-
active way to understand and explore these changes. eCITY
provides views to help the changes over time, like: Timeline
View, an administrative view that uses charts and color to
emphasize changes between software system versions; and
City View, a city layout using animations to represent the
transitions of the architecture components and color coding
to highlight the evolution and changes of these components,
as shown in Figure 4. The eCITY tool works with compile-
time information, not providing dynamic views [22]. The
eCITY was originally designed as an Eclipse plug-in. This
paper also presents a summary of a conducted user study to
emphasize its usefulness.

The paper S09 [23] describes the implementation results
of some core characteristics of ARAMIS, previously pro-
posed in S07 [21]. ARAMIS is a approach for evolution and
evaluation of software systems that relies on a infrastruc-
ture of run-time monitoring to manage the behavior of the
system, in several abstraction levels. In this paper, a proto-
type of ARAMIS was developed focused only in reconstruc-



Figure 4: eCITY: a City View [22]

tion of object-level interactions. The prototype uses aspect-
oriented techniques to extract and gather the run-time archi-
tectural information, and the XMPP (Extensible Messaging
and Presence Protocol) to distribute the gathered informa-
tion for visualization in real-time, through specialized com-
ponents, as we can see in Figure 5. The evaluation of this
process, according to prototype results, shows that ARAMIS
can easily be used to demonstrate the behavior of the run-
time monitored systems [23].

Figure 5: ARAMIS: a Prototype Overview [23]

The paper S10 [24] presents eCITY+, an improved ver-
sion of eCITY, presented in S08 [22], now combining
the stable city layout and the Hierarchical Edge Bundling
(HEB), an useful technique to help the implementation of
3D visualization with the use of animation. The eCITY+ is
a later version of eCITY tool presented in S08 [22], owning
characteristics similar from its predecessor. The eCITY+
tool primarily differs from its earlier version in the use of
HEB to highlight changes in both the hierarchical structure
as well as the inter-dependencies between software compo-
nents. The eCITY+ tool, as its predecessor, performs anal-
ysis of software architecture relationships through interac-
tive visual support, using the city metaphor to provide an

overview of the entire system [24]. The eCITY+ also was
consciously developed as a plug-in to traditional SA main-
tenance tools.

The paper S11 [25] describes a technical solution to
modernize monolithic applications into microservices using
software visualization to support the comprehension of evo-
lution process. This conceptual solution can provide a mod-
ernization process that uses a legacy system and generates
a set of visual diagrams that help architects and developers
to understand the system, also suggesting ways of code par-
titions for transforming into micro-services. The paper has
focus only in an understanding stage of modernization, not
in transformation stage [25]. The authors analyzed a large
Java EE application to validate this solution.

The paper S12 [2] introduces EVA (Evolution Visualiza-
tion for Architectures), a visual tool to help software archi-
tects understand the evolution of architecture and therefore
track and analyze architectural changes. This tool can visu-
alize and explore architectures of software systems with a
long life cycle, including stages of its evolution. EVA pro-
vides three main views: Single-Release Architecture View,
that shows the architecture of only one software system ver-
sion, as shown in Figure 6a; 3-D Architecture-Evolution
View, that depicts architectures of multiple software system
versions in a single compositional view, as shown in Fig-
ure 6b; and Pairwise Architecture-Comparison View, that
presents the architectural differences between two software
system versions, as shown in Figure 6c. EVA allows its
users to assess the impact of design decisions, as well as
its rationale, which have influenced in the software archi-
tecture. As we can see in Figure 6, EVA uses color coding
to distinct packages or groups of code level entities. The
work is currently (2018) focused on showing the explicit
reasons behind the architectural changes, in order to assist
the rationale of tracking design during the software lifespan
[2]. This article presents limitations of its study, but does
not discuss them explicitly. The EVA tool was developed in
Phyton and is available in a GitHub repository.

Unfortunately, we could not find any taxonomy to clas-
sify solutions that support the comprehension of SA evo-
lution using visual resources. Then, to improve the under-
standing of these visual solutions previously described, we
propose a taxonomy with the goal to classify their main
characteristics, properties and features. Next, we present
the taxonomy and the corresponding classification of each
of the selected visual solutions in this SMS.

4.1. Taxonomy for Visual Solutions to Support SA Evo-
lution Comprehension

In this subsection, we present the resulting taxonomy
of visual solutions to support the comprehension of soft-
ware architecture evolution. We argue that the concepts
presented in this taxonomy are key to understand the char-



Figure 6: Three Types of Visualization of EVA [2]

acteristics of visual solutions and therefore to answer the re-
search questions of this secondary study. We used the soft-
ware visualization taxonomy proposed by Price, Baecker
and Small (1993) [26] and the framework purposed by Gal-
lagher, Hatch and Munro (2008) [27] as references. The
first focused on software visualization, whereas the latter fo-
cused on software architecture. For this reason, we adopted
them as references to propose the new taxonomy. Accord-
ing to Sulr et al. [11], a taxonomy is consisted of a number
of dimensions (e.g., visualization form) with their attributes
(e.g., 2D Elements, Color Coding). Each visual solution
from the selected papers from this SMS can pertain to one
or more attributes from a specific dimension, as we will de-
scribe in the following paragraphs.

As can be seen in Table 11, the Category dimension
is related to the type of proposed visual solution to sup-
port the comprehension of SA evolution. It is comprised
of four attributes: Description, Technique, Tool and Envi-
ronment. The Description attribute classifies the solution
or its core idea as a main concept or a technical descrip-
tion of a visual solution. The Technique attribute informs
whether the visual solution proposes the use of a technique,
such as specialized procedures or processes. The Tool at-
tribute means the solution presents or proposes a tool , or
its development, to assist specialized users of software ar-
chitecture to develop, or maintain software systems. The
Environment attribute indicates that the solution explicitly
presents or proposes an environment, i.e., an integrated set
of tools to help software architecture specialized users in
the development or maintenance of software systems. The
value of this dimension for each solution is mandatory and
it may have more than one attribute signalized.

The Stage dimension has four attributes. The Concep-
tual attribute indicates that the solution is still represented
and referenced as a concept, not having any implementa-
tion. The Project attribute indicates that the solution has
been under development as a project. The Prototype at-
tribute means the solution is a prototype of the solution.
Finally, the Stable Release attribute is related to the status
of the solution as already in production as a stable release.
The value of this dimension is also mandatory and only one
attribute can be signalized for each solution.

The Visualization Form dimension defines the visual

characteristics of the output of the solution [26]. It is char-
acterizes by eight attributes as follows. The 2D Elements
attribute indicates that the solution uses 2D elements, such
as 2D charts, diagrams, shapes, windows, figures and lines.
The 3D Visualization attribute indicates that the solution
uses 3D resources for visualization. The Animation attribute
means the solution uses resources of animation in the visual
representations. The Bigraphs attribute marks the use of
bigraphs in the visual solution. The Visual Metaphor at-
tribute indicates the use of one or more visual metaphors
in the visual representations to enhance the SA evolution
understanding. The Color Coding attribute means the so-
lution adopts a specific color system to represent the data.
The Tree-based attribute is used to characterize solutions
that use visual structures based on trees. The UML-based
indicates that the solution uses UML diagrams as a form of
visual representation.

The Static Representation dimension shows what ar-
chitectural information can be extracted and represented be-
fore run-time [27]. It has two associated attributes: Static
Visualization and Recovery. The Static Visualization at-
tribute means the solution displays data exclusively related
to static structure of the software system. The Recovery at-
tribute indicates that the solution supports the retrieval of ar-
chitectural data from specific sources. This dimension may
have no attributes flagged.

The Dynamic Representation dimension shows what
architectural information can be extracted and represented
during run-time [27]. The Dynamic Visualization attribute
means the solution displays data extracted during its execu-
tion (run-time). The Events Monitoring indicates if the so-
lution perform the catch events during its execution. These
events can be identified and associated with SA elements
and thereby support the comprehension of specific scenar-
ios of software architecture evolution. The Live attribute
points out that the SA data is gathered in a real time fash-
ion as the solution is executed [26] [27]. The Post-mortem
attribute means the SA data to be gathered is produced in
a post-mortem fashion by the solution, i.e., generated by its
previous execution [26] [27]. This dimension may have no
attributes flagged.

The Architectural Tasks dimension is related with fea-
tures of the visual solution that support stakeholders to per-
form tasks that to some extent focuses on the software ar-
chitecture and its evolution [27]. It has nine attributes as
follows. The Anomalies attribute indicates that the solution
supports the identification of anomalies, violations and in-
consistencies occurrences related to SA. These occurrences
can also influence the Comprehension attribute indicates the
solution supports visual analysis tasks to improve the com-
prehension of SA and its evolution. Analysis tasks means
tasks that generate results to facilitate the understanding the
SA, its components, dependencies and relationships, as well



as its evolution. They should support top-down or bottom-
up approaches [27]. The Styles attribute indicates that the
solution is able to identify architectural styles and/or verify
its compliance with a predefined reference. The Show Evo-
lution attribute indicates that the solution provides facilities
to exhibit evolution evidence of a SA, in a basic or advanced
way [27]. The Construction attribute indicates that the so-
lution provides resources to add, change or remove SA ele-
ments in the visual representation. The Evaluation attribute
means the solution supports SA quality analysis and also
compliance evaluation. The Comparison attribute points
out that the solution performs visual comparison among re-
leases of the software system under analysis. A typical use
of this attribute is the comparison between the as-is with the
to-be architectures or the as-designed with as-implemented
software architecture [27]. The Tracking indicates that the
the solution supports the tracking of SA changes throughout
its releases. This is a key resource to, for example, identify
and trace the architectural decay of a SA, which impairs the
software lifespan [2]. Finally, the Rationale indicates that
the solution presents and make available the rationale be-
hind the design decisions that somehow influences the SA.

4.2. Visual Solutions According to Taxonomy

The Table 11 shows the main characteristics, proper-
ties and features identified in the visual solutions of the
selected papers from the perspective of the proposed tax-
onomy. These characteristics were identified and collected
exclusively based on the text provided by the selected stud-
ies listed in Table 10.

The column labeled Category indicates different cate-
gories of solutions found in the selected papers, according
the description presented in Subsection 4.1. The column
labeled Stage means the stage of the solution proposed by
the paper at the time it was published. The column labeled
Visualization Form means the summary description of fun-
damental characteristics related to what can be exhibited in
the visual solution. The content of this column is based
on the Form category proposed by the taxonomy of Price
[26]. The columns labeled Static Representation, Dynamic
Representation, Architectural Tasks are based on keys areas
proposed in Gallagher’s framework [27]. The column Oth-
ers Features shows complementary purposes, features and
characteristics of the presented visual solution not listed be-
fore.

We decided to present a analysis about the visual solu-
tion named EVA to illustrate how the characteristics of the
selected visual solutions presented in Table 11 can be deter-
mined. This analysis is shown in Table 12. The visual solu-
tion EVA was previously presented in the paper S12 [2] and
its justifications come exclusively from this paper’s content.

The Figure 7 presents the overview of current stages for
all visual solutions referenced by Table 11. Its worth re-

membering that current stages means the stage at the time
its study was published. Note that most of solutions (5 in
12) were in “Stable Release” stage, whereas few of them (2
in 12) were in “Conceptual” stage.

Figure 7: Current Stages of Visual Solutions

The Figure 8 shows the categories of solution found in
selected papers. The “Tool” category has the major prefer-
ence in visual solutions, being present in 8 of 12 solutions
found. The “Description” category is present in only two
solutions.

Figure 8: Categories of Visual Solutions

Figure 9 shows that the tasks Comprehension and Show
Evolution are adopted in all visual solutions from the se-
lected studies. It means that all of them reported the support
of analysis tasks to improve the SA comprehension. More-
over, they also reported the adoption of facilities to exhibit
the SA evolution. These are in fact, minimum requirements
of a visual solutions to support comprehension of SA evolu-
tion. The task Comparison is also representative in the an-
alyzed solutions. They have reported the ability to perform
visual comparison of SA characteristics among two or more
releases of a specific software system, which corresponds
to 83% of analyzed visual solutions. The visual solutions
not related to the task Comparison is the ARAMIS solu-
tion (S07) [21] and (S09) [23]. These papers reported the
focus in real-time monitoring. The tasks Anomalies, Styles
and Rationale were not representative in the solutions, cor-
responding to only 17% . The task Construction explic-
itly appears in 33% of the visual solutions and half of them



Table 11: Using the Proposed Taxonomy to Classify the Visual Solutions to SA Evolution

Ref.
Paper

Name of
Visual Solution Category Stage Visualization

Form
Static

Representation
Dynamic

Representation Architectural Tasks Other Features

S01 Beagle
Environment,
Technique Prototype

2D Elements,
Tree-based

Static Visualization,
Recovery N/A

Comprehension,
Comparison,
Show Evolution

Evolution metrics usage

S02 Not named
Description,
Technique Conceptual

2D Elements,
Bigraph Static Visualization

Dynamic Visualization,
Live

Comprehension,
Comparison,
Construction,
Show Evolution,
Styles

BRS resources

S03
Film Strip and
Dependency Matrix Technique Prototype 2D Elements

Static Visualization,
Recovery N/A

Comprehension,
Comparison,
Show Evolution

N/A

S04 SAVE
Tool,
Environment Stable Release 2D Elements

Static Visualization,
Recovery N/A

Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution,
Rationale,
Styles,
Evaluation

Process-oriented,
Products comparison

S05 GOP
Tool,
Environment Project

2D Elements,
Color Coding

Static Visualization,
Recovery N/A

Comprehension,
Comparison,
Construction,
Show Evolution,
Tracking

Methodology-oriented

S06 Evolve Tool Stable Release
2D Elements,
UML-based,
Animation

Static Visualization N/A

Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution

Model-driven,
ADL implementation

S07 ARAMIS Tool Conceptual N/A Static Visualization
Dynamic Visualization,
Events Monitoring

Comprehension,
Show Evolution,
Evaluation

Model-driven

S08 eCITY Tool Stable Release

2D Elements,
Color Coding,
Animation,
Visual Metaphor

Static Visualization N/A

Comprehension,
Comparison,
Show Evolution,
Tracking

N/A

S09 ARAMIS
Tool,
Technique Prototype

2D Elements,
UML-based N/A

Dynamic Visualization,
Events Monitoring,
Live,
Post-mortem

Comprehension,
Show Evolution,
Evaluation

Model-driven,
Traceability with requirements,
Views creation

S10 eCITY+
Tool,
Technique Stable Release

2D Elements,
3D Visualization,
Color Coding,
Animation,
Visual Metaphor

Static Visualization N/A

Comprehension,
Comparison,
Show Evolution,
Tracking

As-plugin

S11 Not named Description Project
2D Elements,
UML-based,
Color Coding

Static Visualization N/A
Comprehension,
Comparison,
Show Evolution

Model-driven,
Modernization

S12 EVA Tool Stable Release
2D Elements,
3D Visualization,
Color Coding

Static Visualization,
Recovery N/A

Comprehension,
Comparison,
Show Evolution,
Tracking,
Rationale

ADD Traceability

present specific resources to design the architecture, such as
S02 solution [17] (using Bigraphical Reactive System) and
S06 solution [20] (using an ADL visual modelling compo-
nent).

5. Discussion

The specific research question SRQ1 is related to the
main visual solutions to support the software architecture
evolution comprehension. The answer is presented in Table
11, where it is possible to identify their main goals and char-
acteristics of each solution. The specific research question
SRQ2 is concerned to different purposes of using the vi-
sual solutions to support the software architecture evolution
comprehension. The purposes are also presented in Table
11, identified primarily in the Architectural Tasks column
and also in the Static Representation, Dynamic Represen-
tation and Other Features columns. The specific research
question SRQ3 focuses on solutions designed to visually
support comprehension of software architecture evolution
can be classified. The solutions can be classified in the
categories Description, Technique, Tool and Environment.

The Table 11 classify each solution and shows that the Tool
category has more representants among the selected stud-
ies. The specific research question SRQ4 focuses on visual
forms used to support comprehension of software architec-
ture evolution. The Table 11 uses the Visualization Form
column to list the visual forms adopted in the visual solu-
tions discussed in the selected studies.

Finally, the main research question (RQ) focuses on the
evaluation of the usage of visual solutions to support the
comprehension of software architecture evolution based on
papers published in the peer-reviewed literature. Table 11
presents an up-to-date overview of solutions used for the
stated purpose with different characteristics and strategies
as has been already explained for the specific research ques-
tions. We have identified that based on evidence from the
selected studies, features of comprehension and SA evo-
lution visualization are minimum requirements to support
software architecture evolution comprehension, as shown
in Figure 9. On the other hand, the low number of papers
found in this systematic mapping study, suggests that visual
solutions to support SA evolution comprehension is an area



Figure 9: Distribution of Architectural Tasks in the Selected Papers

Table 12: Sample Analysis - Visual Solution EVA [2]

Values Justifications
Category =
(“Tool”)

Title of the paper is “EVA: A Tool for Visualizing
Software Architectural Evolution”.

Stage = (“Sta-
ble Released”)

The behavior of EVA presented in the paper always
suggests that it is in production; EVA was already
evaluated in use and is in the process of deploying to a
large development organization.

Visualization
Form = (“2D
Elements”,
“3D Visualiza-
tion”, “Color
Coding”)

“2D Elements”: suggested by figures displayed in
the paper; “3D Visualization”: EVA provides a view
that shows architectures of multiple releases in a 3D
visualization; “Color Coding”: EVA differs code-level
entities through color coding.

Static Rep-
resentation =
(“Static Vi-
sualization”,
“Recovery”)

“Static Visualization”: EVA only collects data at
compile-time (static elements); “Recovery”: EVA
supports many SA recovery techniques.

Dynamic
Representation
= N/A

The paper does not present any characteristic or fea-
ture for dynamic representation.

Architectural
Tasks = (“Com-
prehension”,
“Compari-
son”, “Show
Evolution”,
“Tracking”,
“Rationale”)

“Comprehension”: EVA provides a view that repre-
sents a single SA release, allowing users to interac-
tively understand the functionality of each architecture
component; “Comparison”: EVA provides compari-
son view that shows the SA dierences between two
releases; “Show Evolution”: EVA visualizes the SA
evolution through a set of source codes across multiple
releases; “Tracking”: EVA provides a view that allows
representation of change tracking of entities across
multiple releases; “Rationale”: EVA collects relevant
data of design decisions from system repositories, dis-
playing them together with the architecture evolution
visualization.

Other Features
= (“ADD
Traceability”)

EVA shows the traceability of architecture design
decisions over time

that needs expand in terms of studies and options available
for practitioners and researchers.

6. Conclusion
The aim of this work is to report the design, execution

and results of a systematic mapping study of visual solu-
tions to support the comprehension of software architecture
evolution. We performed a SMS according to the plan de-
scribed in Section 3. Initially, the applied search strings
retrieved 92 papers from the selected electronic databases.
This number was reduced to 12 after applying all selec-
tion procedures criteria. From these 12 selected studies, the
identified visual solutions to support the comprehension of
SA evolution were classified as follows: 17% categorized
as Description, 42% as Technique, 67% as Tool and 25%
as Environment. All of them support the architectural tasks
Comprehension and Show Evolution.

Besides the identification of visual solutions from the lit-
erature, another contribution of this study is a taxonomy to
classify these solutions. The taxonomy contains six dimen-
sions: category, stage, visualization form, static representa-
tion, dynamic representation and architectural tasks. These
dimensions and their attributes was explained in Section 4,
SubSection 4.1. Each visual solution was classified accord-
ing to this taxonomy, generating a table of characterization
of visual solutions to SA evolution, presented in Table 11.
The assignment of the taxonomy attributes value to the vi-
sual solution characteristics shows a current overview of the
available visual solutions in peer-reviewed literature.

Moreover, this study also shows that visual solutions to
support SA evolution comprehension usually present fea-
tures to support analysis tasks to improve the SA compre-



hension and also provide facilities to exhibit the SA evolu-
tion. This study also concludes that, due to a few number
of papers found in this SMS, the studies may consider to
allocate more research and development effort to provide
effective visual solutions to support SA evolution compre-
hension, improving the acquired knowledge in this area.

As a future work, we recommend extending the research
to establish a methodology or process, based on the taxon-
omy proposed, to define projects to build visual solutions
of SA evolution comprehension. Another possibility for fu-
ture work is the improvement of the proposed taxonomy,
aiming to generate a new framework to objectively evaluate
solutions like that ones discussed in this SMS.

References
[1] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review of

software architecture evolution research,” Information and Software
Technology, vol. 54, no. 1, pp. 16 – 40, 2012.

[2] D. Nam, Y. K. Lee, and N. Medvidovic, “Eva: A tool for visu-
alizing software architectural evolution,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion
(ICSE-Companion), May 2018, pp. 53–56.

[3] Q. Tu and M. W. Godfrey, “An integrated approach for studying ar-
chitectural evolution,” in Proceedings 10th International Workshop
on Program Comprehension, 2002, pp. 127–136.

[4] M. Lungu and M. Lanza, “Exploring inter-module relationships
in evolving software systems,” in 11th European Conference on
Software Maintenance and Reengineering (CSMR’07), 2007, pp.
91–102.

[5] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory and Practice, J. Wiley and Sons, Eds., Hoboken,
New Jersey, 2009.

[6] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution
styles: Foundations and tool support for software architecture evo-
lution,” in 2009 Joint Working IEEE/IFIP Conference on Software
Architecture European Conference on Software Architecture, 2009,
pp. 131–140.

[7] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of soft-
ware architecture visualization techniques,” Journal of Systems and
Software, vol. 94, pp. 161 – 185, 2014.

[8] M. Shahin, P. Liang, and M. R. Khayyambashi, “Improving under-
standability of architecture design through visualization of architec-
tural design decision,” in Proceedings of the 2010 ICSE Workshop
on Sharing and Reusing Architectural Knowledge, ser. SHARK ’10,
2010, pp. 88–95.

[9] R. L. Novais and M. G. de Mendonca Neto, Computer Systems
and Software Engineering: Concepts, Methodologies, Tools, and
Applications, ser. Chapter: Software Evolution Visualization: Sta-
tus, Challenges, and Research Directions. IGI Global, 2018.

[10] A. Telea, L. Voinea, and H. Sassenburg, “Visual tools for soft-
ware architecture understanding: A stakeholder perspective,” IEEE
Software, vol. 27, no. 6, pp. 46–53, 2010.

[11] M. Sulr, M. Bakov, S. Chodarev, and J. Porubn, “Visual augmenta-
tion of source code editors: A systematic mapping study,” Journal of
Visual Languages Computing, vol. 49, pp. 46 – 59, 2018.

[12] C. Wohlin et al., Experimentation in Software Engineering.
Springer-Verlag, 2012.

[13] V. R. Basili and H. D. Rombach, “The tame project: towards
improvement-oriented software environments,” IEEE Transactions
on Software Engineering, vol. 14, no. 6, pp. 758–773, 1988.

[14] J. Cleland-Huang, R. S. Hanmer, S. Supakkul, and M. Mirakhorli,
“The twin peaks of requirements and architecture,” IEEE Software,
vol. 30, no. 2, pp. 24–29, 2013.

[15] T. Dyb and T. Dingsyr, “Empirical studies of agile software develop-
ment: A systematic review,” Information and Software Technology,
vol. 50, no. 9, pp. 833 – 859, 2008.

[16] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, P. Group et al.,
“Preferred reporting items for systematic reviews and meta-analyses:
the prisma statement,” PLoS medicine, vol. 6, no. 7, p. e1000097,
2009.

[17] Z. Chang, X. Mao, and Z. Qi, “An approach based on bigraphical
reactive systems to check architectural instance conforming to its
style,” in First Joint IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering (TASE ’07), 2007, pp. 57–66.

[18] W. C. Stratton, D. E. Sibol, M. Lindvall, and P. Costa, “The save
tool and process applied to ground software development at jhu/apl:
An experience report on technology infusion,” in 31st IEEE Software
Engineering Workshop (SEW 2007), 2007, pp. 187–193.

[19] L. Schrettner, P. Hegedus, R. Ferenc, L. J. Fulop, and T. Bakota, “De-
velopment of a methodology, software – suite and service for sup-
porting software architecture reconstruction,” in 2010 14th European
Conference on Software Maintenance and Reengineering, 2010, pp.
190–193.

[20] A. McVeigh, J. Kramer, and J. Magee, “Evolve: Tool support for
architecture evolution,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11, 2011, pp. 1040–
1042.

[21] A. Dragomir and H. Lichter, “Model-based software architec-
ture evolution and evaluation,” in 2012 19th Asia-Pacific Software
Engineering Conference, vol. 1, 2012, pp. 697–700.

[22] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “ecity: A tool
to track software structural changes using an evolving city,” in 2013
IEEE International Conference on Software Maintenance, Sep. 2013,
pp. 492–495.

[23] A. Dragomir and H. Lichter, “Run-time monitoring and real-time
visualization of software architectures,” in 2013 20th Asia-Pacific
Software Engineering Conference (APSEC), vol. 1, 2013, pp. 396–
403.

[24] T. Khan, S. R. Humayoun, K. Amrhein, H. Barthel, A. Ebert, and
P. Liggesmeyer, “ecity+: A tool to analyze software architectural
relations through interactive visual support,” in Proceedings of the
2014 European Conference on Software Architecture Workshops,
ser. ECSAW ’14, 2014, pp. 36:1–36:4.

[25] D. Escobar, D. Crdenas, R. Amarillo, E. Castro, K. Garcs, C. Parra,
and R. Casallas, “Towards the understanding and evolution of mono-
lithic applications as microservices,” in 2016 XLII Latin American
Computing Conference (CLEI), 2016, pp. 1–11.

[26] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy
of software visualization,” Journal of Visual Languages Computing,
vol. 4, no. 3, pp. 211 – 266, 1993.

[27] K. Gallagher, A. Hatch, and M. Munro, “Software architecture vi-
sualization: An evaluation framework and its application,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 260–270,
2008.


